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ABSTRACT Arrhythmia is less frequent than a normal heartbeat in an electrocardiogram signal, and the
analysis of an electrocardiogram measurement can require more than 24 hours. Therefore, the efficient
storage and transmission of electrocardiogram signals have been studied, and their importance has increased
recently due to the miniaturization and weight reduction of measurement equipment. The polygonal approxi-
mationmethod based on dynamic programming can effectively achieve signal compression and fiducial point
detection by expressing signals with a small number of vertices. However, the execution time and memory
area rapidly increase depending on the length of the signal and number of vertices, which are not suitable for
lightweight and miniaturized equipment. In this paper, we propose a method that can be applied in embedded
environments by optimizing the processing time and memory usage of dynamic programming applied to the
polygonal approximation of an ECG signal. The proposed method is divided into three steps to optimize
the processing time and memory usage of dynamic programming. The first optimization step is based on
the characteristics of electrocardiogram signals in the polygonal approximation. Second, the size of a data
bit is used as the threshold for the time difference of each vertex. Finally, a type conversion and memory
optimization are applied, which allow real-time processing in embedded environments. After analyzing the
performance of the proposed algorithm for a signal length L and number of vertices N , the execution time
is reduced from O(L2N ) to O(L), and the memory usage is reduced from O(L2N ) to O(LN ). In addition,
the proposed method preserve a performance of fiducial point detection. In a QT-DB experiment provided
by Physionet, achieving values of -4.01 ± 7.99 ms and -5.46 ± 8.03 ms.

INDEX TERMS Dynamic programming, electrocardiogram, embedded system, fiducial point, optimization,
polygonal approximation, signal compression.

ABBREVIATION
The following abbreviations are used in this manuscript:

ECG electrocardiogram
PA polygonal approximation
DP dynamic programming

I. INTRODUCTION
With the development of life science and technology, the per-
centage of deaths from heart disease is gradually increasing
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as society ages due to the increased average life expectancy.
Research on electrocardiogram (ECG) signals is actively
being carried out for the early diagnosis of heart disease,
especially since the development of hardware has resulted
in the miniaturization and weight reduction of equipment [1]
and the size of the related market is gradually increasing. As a
result, various studies have been being conducted on real-time
analysis of ECG signals in embedded environments [2].

ECG signals are electronically converted from the depolar-
ization and repolarization of the atria and ventricle [3], and
P-wave, QRS complex and T-wave waveforms are periodi-
cally repeated [4], [5]. Since arrhythmia causes changes in the
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shape of the waveform, it is possible to detect arrhythmia by
analyzing thewaveform’s characteristic values [6]. The onset,
peak, and offset of the P-wave, QRS complex, and T-wave
waveforms are called the fiducial points of the waveform.
Because these points are used to acquire the feature values
of the waveform, the detection of a correct fiducial point is
the basis for ECG signal analysis [7]–[10].

Fig. 1 shows the fiducial points and feature values of each
waveform.

FIGURE 1. The fiducial points and features of an ECG signal.

Arrhythmia is rare and appears to be nonperiodic in ECG
signals. It takes a long time to obtain enough arrhythmia data
for an accurate analysis of a heart disease, sometimes more
than 24 hours. ECG signals are sampled using high frequen-
cies above 100 Hz, so a vast amount of data is recorded
in a short time. Therefore, signal compression techniques
are required to effectively store and transmit the data. How-
ever, conventional signal compression techniques, such as
the Fourier transform, Walsh transform [11], wavelet trans-
form [12], [13] and Karhunen-Loeve transform [14], result
in loss in during the data compression process. In particular,
signal distortion causes the nondetection or false detection of
the fiducial point [15].

Polygonal approximation (PA)-based fiducial point detec-
tion [16] has been proposed as a method to express an ECG
signal as a small number of vertices to determine the fiducial
points. The advantage of this approach is that ambiguous
fiducial points can be represented as vertex points using
features that are boundaries between the baseline area, with
small amplitude changes, and the waveform area, with large
amplitude changes. Fig. 2 illustrates the PA in which ambigu-
ous areas are simplified by vertices.

As shown in Fig. 2(b), the number of candidates of the
fiducial point is decreased, and the features of the vertices
are highlighted.

The PA not only enables an effective signal compression
but also emphasizes the feature value with the fiducial point
included as the vertex; it makes it easier to detect the fiducial

FIGURE 2. Illustration of the PA: (a) the existing method and (b) the PA.

FIGURE 3. Result of the PA for an ECG signal: (a) result in the R-R interval
and (b) zoom-in of the black box region in (a).

point and has the advantage of not requiring a signal restora-
tion. Fig. 3 is a result of PA in the ECG signal.

Approximately 300 samples of the signal are compressed
by the PA into approximately 30 vertices. The onset, peak,
and offset of the waveform are well represented as vertices,
and the small approximation error maintains the shape infor-
mation of the signal well.

However, the PA has difficulty in real-time processing
under low-power and low-capacity constraints, such as in an
embedded environment, because the optimization technique
is based on the dynamic programming (DP) method [17],
which requires more memory area and a longer execution
time with an increase in the signal length and number of
vertices.

In addition, the method used to record the time information
of each vertex is inefficient. The number of approximated
vertices is small, but the time differences between the vertices
are irregular. Therefore, additional memory is required to
store the vertex time information. In particular, ECG sig-
nals require a long measurement time, which significantly
increases the number of bits allocated to the time information,
resulting in a lower compression ratio.

To solve this problem, in this paper, we propose an
improved PA method that enables real-time processing in an
embedded environment by optimizing the DP based on the
characteristics of ECG signals.

Fig. 4 compares the complexity problem of conventional
DP and the improved result of the proposed DP method in
this paper. The time and space complexity of the algorithm
are greatly reduced.
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FIGURE 4. The problem of the conventional DP method and the improved
performance of the proposed DP method: (a) the execution time of
conventional DP (O(L2N)), (b) memory usage of conventional DP
(O(L2N)), (c) execution time of the proposed DP method (O(L)),
and (d) memory usage of the proposed DP method (O(LN)).

The proposed method consists of three stages. First,
the computation and memory usage are optimized based on
the characteristics of ECG signals and a bottom-up operation.
Then, the time information of a vertex is stored as the time
difference between the vertices with a given time threshold.
In this step, the time-difference threshold improves the per-
formance time by reducing theDP computation. Additionally,
the threshold minimizes the memory usage through the type
conversion of data and a memory optimization during the
calculation.

The composition of this paper is as follows. First, the exist-
ing DP method and the problem are briefly described in
Section II, and each step in the DP optimization is described
in Section III. In Section IV, the performance of the optimized
DP method is verified through experiments in an embedded
environment. Finally, we conclude the paper in Section V.

II. REVIEW OF THE EXISTING METHODS
A. CONVENTIONAL POLYGONAL APPROXIMATION
The algorithm flow of the PA for an input ECG signal is
summarized as follows, and Fig. 5 shows the results of each
step.

1) The R-R section of the input signal is separated.
2) After calculating the curvature of the separated R-R

section, the curvature-based PA [18] is applied to select
the initial vertices. However, many of the fiducial
points, specifically the onsets and offsets, are not rep-
resented by vertices due to their similar features with
the samples around them and their low curvature.

3) The sequential PA [19] is applied to the interval
between each initial vertex to select additional vertices.
The fiducial points are well expressed through the addi-
tional vertices, but the large error is a problem.

FIGURE 5. The results of the PA according to the algorithm flow for
the (a) curvature-based PA, (b) sequential PA, (c) optimization, and
(d) zoom-in of the black box region in (c).

4) DP is applied to the additional vertices to optimize their
positions.

5) Steps 2–4 are repeated to proceed with the PA for the
entire input signal.

B. DYNAMIC PROGRAMMING
In the PA, DP optimizes the location information of the
vertices selected in the sequential PA. This not only mini-
mizes the error between the approximated signal and the input
signal but also helps to represent the fiducial point as a vertex,
which is the boundary point separating the baseline region
from the waveform region.

DP is a global optimization technique in which the optimal
path between two points is optimized based on the optimal
principle of Bellman as the global optimal path between any
two points on the global optimal path. The top-down recursive
approach simplifies and optimizes the problem, especially by
using memoization to remember the computational results,
which eliminates redundant operations to enable a high-speed
global optimization. In this case, the size of the cost matrix
and path matrix required for memoization is O(L2N ) when
L is the length of the input signal and N is the number of
vertices.

Algorithm 1 shows the existing DPmethod using the recur-
sive method.

Fig. 6 represents the cost matrix for DP. Ck (i, j) represents
the cost optimization result for k vertices in the partial sig-
nal for the samples from i to j, and C0 is the base matrix,
which represents the approximation error if there is no vertex
inside the partial signal and a practical error operation is
performed.

For a signal with length L, the optimization of the partial
signal from i to j, including the k vertices, is recursively
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Algorithm 1 Conventional DP

1 Goal: Calculate CN (1,L)
2 S : input signal
3 L : length of the signal
4 N : number of vertices
5 Ck : cost matrix of size L × L, k = 1, · · · ,N
6 C0 : base matrix of size L × L
7 R : range of vk

8 % By using the recursive function DP, CN (1,L) is
calculated

9 CN (1,L) = DP(1,L,N )

10 Function: Ck (i, j) = DP(i, j,N )
11 if N is 0 then
12 if C0(i, j) is∞ then
13 Calculate the linear approximation error

between i to j and save as C0(i, j)

14 else
15 Return C0(i, j) % Memoization

16 else
17 if C0(i, j) is∞ then
18 R = [1, · · · ,L]
19 Ck (i, j) = min

vk∈R
{DP(i, vk ,N − 1)+ DP(vk , j, 0)}

20 else
21 Return Ck (i, j) % Memoization

FIGURE 6. The composition of the cost matrix for DP.

computed as (1).

Ck (i, j) = min
vk∈[1,··· ,L]

(Ck−1(i, vk )+ C0(vk , j)), (1)

where vk denotes the position of the k th vertex.Ck (i, j) divides
the partial signal including k−1 vertices and the partial signal

that does not include vertices based on vk and stores the result
inCk (i, j) when the sum of the partial signal is at its minimum.
At this time, the path vk is stored in the path matrix Pk (i, j),
as shown in (2).

Pk (i, j) = argmin
vk∈[1,··· ,L]

(Ck−1(i, vk )+ C0(vk , j)) (2)

Therefore, the DP method using memoization has a disad-
vantage inmemory usage is needed to record the cost and path
matrices. Fig. 7 shows the execution time of the conventional
DP method according to the signal length and number of
vertices.

FIGURE 7. The execution time of conventional DP.

As shown in Fig. 7, it is difficult to apply real-time process-
ing with conventional DP in embedded environments due to
the rapid increase in the execution time with the signal length
and number of vertices.

III. OPTIMIZATION OF DYNAMIC PROGRAMMING
FOR AN ECG SIGNAL
In this paper, the proposed improvement for the real-time
application ofDP in embedded environments has three stages.
First, the calculation and memory usage are optimized based
on the characteristics of ECG signals and the PA, and then
a bottom-up method is performed to improve the process-
ing time and memory usage instead of a top-down method.
The time difference between vertices is used to effectively
record a vertex’s time information, which further improves
the processing time by reducing the computational range of
the cost matrix according to the threshold NBit for the time
difference. Here, NBit is a number determined by the number
of allocated bits. For example, when the number of allocated
bits is 3, NBit is 8 = 23. Finally, a conversion of the data
type and an adaptive determination of the weight value are
proposed to optimize the memory usage. Then, by modifying
the bottom-up method’s computational sequence, the mem-
ory optimization of the base matrix is performed to minimize
the memory usage.

A. CHARACTERISTICS OF THE POLYGONAL
APPROXIMATION OF AN ECG SIGNAL
As shown in Fig. 7, DP increases the amount of memory and
operations required according to the signal length and number
of vertices. However, the characteristics of the PA for ECG

VOLUME 7, 2019 162853



S. Lee et al.: Advanced Real-Time DP in the PA

signals can substantially reduce the memory required for the
operation.

The approximation error in ECG signal does not change
when the signal is inverted, and the cost matrix can be
expressed as (3):

Ck (i, j) = Ck (j, i) (3)

Thus, the cost matrix is a symmetric matrix, and we denote
that the cost matrix has a symmetry characteristic. The area in
which the operation cost is actually required in the cost matrix
becomes the area of the upper triangular matrix, as shown
in Fig. 8.

FIGURE 8. Decrease in the memory usage in the cost and base matrices
according to the symmetry characteristic.

In addition, the symmetry is enhanced by the characteristic
in the PA applied to the ECG signal. The ECG signal is
inputted over time, and time information at each vertex of the
PA is monotone increasing; we denote that the vertices of the
PA have amonotone characteristic. The monotone increasing
of time information of each vertex can be expressed as (4):

x1 = xv0 < xv1 < · · · < xvN < xvN+1 = xL (4)

where xi and xvk denote the time information of the ith sample
and k th vertex, respectively, and N denotes the number of
vertices.

Therefore, the range of vk in (1) is computed only between i
and vk+1, and (1) is modified as shown in (5):

Ck (i, j) = min
i<vk<vk+1

(Ck−1(i, vk )+ C0(vk , j)) (5)

In addition, for the ECG signal, DP is applied to the signal
inside the initial vertices and always starts and ends at the
first and last samples of the input signal, which are the initial
vertices. Therefore, only the first row of each layer of the cost
matrix, except the base matrix, is used for the computation.
That is, the computational component used for Ck (i, j) in the
cost matrix is always i = 1, and the existing cost matrix
Ck (i, j) is expressed as C(k, j), as shown in (6).

C(k, j) = min
1<vk<j

(C(k − 1, vk )+ C0(vk , j)) (6)

The modified cost matrix can be represented as shown
in Fig. 9. Accordingly, the improved algorithm can be
expressed as Algorithm 2. Since the path matrix can be
expressed in the same form, we can confirm that the spatial
complexity improves from O(L2N ) to O(L2).

FIGURE 9. Decrease in the memory usage in the cost and base matrices
according to the monotone characteristic.

Algorithm 2 Advanced DP by Using the Characteristics
of an ECG Signal

1 Goal: Calculate C(N ,L)
2 S : input signal
3 L : length of the signal
4 N : number of vertices
5 C : cost matrix of size N × L
6 C0 : base matrix of size L × L
7 R : range of vk

8 % Initialize the base matrix
9 foreach i from 1 to L do
10 foreach j from i+ 1 to L do
11 Calculate the linear approximation error

between i to j and save as C0(i, j)

12 % Calculate the first row of cost matrix
13 foreach j from 3 to L − N + 1 do
14 R = [2, · · · , j− 1]
15 C(1, j) = min

vk∈R
{C0(1, vk )+ C0(vk , j) }

16 % Calculate the second to N − 1th row of cost matrix
17 foreach d from 2 to N − 1 do
18 foreach j from 2+ d to L − N + d do
19 R = [d + 1, · · · , j− 1]
20 C(d, j) = min

vk∈R
{C(d − 1, vk )+ C0(vk , j) }

21 % Calculate C(N ,L)
22 R = [N + 1, · · · ,L − 1]
23 C(N ,L) = min

vk∈R
{C(N − 1, vk )+ C0(vk ,L) }

B. TIME CONSTRAINT BETWEEN VERTICES
The PA transmits the information at the vertices, which
also has the effect of signal compression. The existing ECG
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signals are periodically sampled signals, but the vertices of
the approximated signals are chosen nonperiodically, which
results in the need to store additional time information. How-
ever, ECG signals generally involve a long-term measure-
ment, resulting in a larger number of bits being needed to
express the time information, which undermines the signal
compression performance. Especially in embedded environ-
ments, these problems need to be solved because an improved
signal compression performance is necessary to minimize the
power consumption.

For this purpose, we suggest storing the time information
of the current vertex as the time difference from the pre-
vious vertex. The current vertex’s time information can be
computed by accumulating the time difference information
based on the initial vertex’s time information. In general,
the time difference between vertices is approximately 30 sam-
ples (based on 250 Hz signals), so allocations of 5 bits in
size will result in a sufficient time information expression.
However, when using the simplified form of an ECG signal,
the number of vertices decreases, resulting in a sharp increase
in the time difference between vertices. To avoid such an
exceptional case, we add a time constraint to the sequential
PA and DP steps.

First, during the PA step, the additional vertex selection
stage using the sequential PA is improved. The sequential
PA is a technique that is used to add vertices, with previ-
ous samples added as vertices if the approximation error is
larger than a threshold. At this time, when adding a vertex,
a condition is added such that the time difference between the
fixed point and the vertex does not exceed the threshold value
NBit corresponding to the given number of bits. Additionally,
the DP method must be modified to maintain the time differ-
ence threshold in the optimization process. By modifying the
search interval of the k th vertex in (5) as (7), the optimiza-
tion value is calculated only when the interval between the
k th vertex and the k + 1th vertex does not exceed NBit :

Ck (i, j) = min
ThrL<vk<vk+1

(Ck−1(i, vk )+ C0(vk , j)), (7)

where ThrL = max(i, vk+1 − NBit ).
Since the time difference between the two vertices is lim-

ited by NBit , the computation for the base matrix (C0) is
reduced, as shown in Fig. 10.

C. MEMORY OPTIMIZATION
1) TYPE CONVERSION
The result of the approximation error calculation usually
includes a decimal point, so a data type such as a float or
a double is used. We propose to reduce the memory to less
than half by converting a 32-bit or 64-bit data structure to a
16-bit unsigned int type. However, when a simple type cast is
applied, decimal deviations of less than 0 are recognized as a
difference of 0 or 1 in the quantization process, so a normal
error calculation cannot be applied. To solve this problem,
it is necessary to consider appropriate weights. Small weights
may still cause a large distortion of the matrix due to the

FIGURE 10. Decrease in the memory usage in the base matrix according
to the threshold of time difference NBit .

FIGURE 11. Calculation of the maximum error limit and determination of
the scaling weight ω.

small deviation, and large weights may cause the matrix
to exceed the limit of the 16-bit unsigned int type–65,535,
in this case. Each component of the cost matrix represents
an approximation error, but the maximum component cannot
be obtained until the cost matrix is completed. In this study,
we suggest a scaling weight ω based on the maximum error
limit of the signal. The maximum error limit is determined as
shown in Fig. 11.

The two points with the maximum distance difference
from the straight line connecting the two ends of the signal
are obtained in the + and - directions. Then, the rectangles
passing through both the end points of the signal and the two
points with the maximum distance difference are obtained.
The area of the obtained rectangle becomes the upper limit of
the approximation error. The area of the rectangle is used as
the maximum error to determine the scaling weight ω.

By appropriately determining the weights, it is possible
to greatly reduce the memory usage while maintaining the
deviation between the data in the type conversion.

2) MEMORY OPTIMIZATION
The existing bottom-up operation computes the base matrix
and then computes the cost matrix row-by-row. Since each
row of the cost matrix uses the previous row of the cost matrix
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FIGURE 12. Minimizing the base matrix in a row-wise bottom-up
operation.

in the computation process, it can be reduced to a memory
space of two rows in size, and the base matrix can compress
the column length, as shown in Fig. 12

However, the base matrix, which accounts for most of
the memory, will not be significantly improved, because the
memory usage reduction rate is not large. To improve the
effective memory usage, we propose to reorganize the order
of the bottom-up operations. To obtain the components of
the cost matrix C(k, j), the k − 1th row of the cost matrix
and the jth column of the base matrix are required. In other
words, the jth column of the base matrix is only used when
calculating the jth column of the cost matrix. Therefore, when
the cost matrix is computed in units of columns instead of in
units of rows, the base matrix can be represented by a column
with a size of L × 1 instead of a matrix with a size of L × L.
Algorithm 3 shows a DP scheme in which the memory

is optimized by applying an operation in units of columns.
Additionally, cost matrix can be minimized to NBit × 1 in
size, as shown in Fig. 13.

FIGURE 13. Column-wise bottom-up operation and minimized base
matrix.

As shown in Fig. 12, additional memory can be reduced
by compressing the upper triangular matrix component of the
cost matrix into a trapezoid shape. Therefore, the sizes of the
cost matrix and base matrix are reduced from L × L × N

Algorithm 3 Advanced DP by Optimizing the Memory
Usage

1 Goal: Calculate C(N ,L)
2 S : input signal
3 L : length of the signal
4 N : number of vertices
5 C : cost matrix of size N × L
6 C0 : base matrix of size NBit × 1 column vector
7 CT : temporary row vector used in the first row of the
cost matrix

8 R : range of vk

9 % Calculate the CT
10 foreach j from 3 to 1+min(NBit ,L − N − 1) do
11 Calculate the linear approximation error between 1

to j and save as CT (j− 1)

12 % Calculate the cost matrix until L − 1th column
13 foreach j from 3 to L − 1 do
14 % Update the base matrix according to jth column of

cost matrix
15 foreach i from max(1, j− NBit ) to j− 1 do
16 Calculate the linear approximation error between

i to j and save as C0(i− (j− NBit )+ 1, 1)

17 % Calculate each row of jth column of cost matrix
18 foreach d from max(1, j−W − 1) to

min(N − 1, j− 2) do
19 if d is 1 then
20 R = [max(2, j− NBit ), · · · , j− 1]
21 C(1, j) =

min
vk∈R
{CT (vk − 1)+ C0(vk − j+ NBit + 1) }

22 else
23 R = [max(d + 1, j− NBit ), · · · , j− 1]
24 C(d, j) =

min
vk∈R
{C(d − 1, vk )+ C0(vk − j+ NBit + 1) }

25 % Update the base matrix according to L th column of
cost matrix

26 foreach i from max(1,L − NBit ) to L − 1 do
27 Calculate the linear approximation error between i to

L and save as C0(i− (L − NBit )+ 1)

28 % Calculate C(N ,L)
29 R = [max(d + 1,L − NBit ), · · · ,L − 1]
30 C(N ,L) = min

vk∈R
{C(N −1, vk )+C0(vk − (L−NBit )+1)}

and L × L to N ×W and NBit × 1, respectively, through the
proposed memory improvement of DP.

IV. EXPERIMENT AND ANALYSIS OF THE RESULTS
A. EMBEDDED SYSTEM
For the experiment with the proposed algorithm, a Raspberry
Pi 3 Model B is used for wireless transmission with a
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FIGURE 14. Raspberry Pi circuit with Healthy Pi and a power debugger.

microcontroller unit (MCU), and Healthy Pi v3 is used as the
sensor, configured as shown in Fig. 14.

Healthy Pi v3 is well designed to measure ECG signals
using 3-lead electrodes, and the Raspberry Pi is also compat-
ible with Healthy Pi. A power debugger is used to measure
the change in the power consumption of the proposed algo-
rithm. The data used in the experiments are roughly divided
into three types. First, an experiment is carried out with a
signal lasting 10 seconds acquired at a sampling frequency
of 125 Hz in the embedded system. To emphasize the excel-
lence of the proposed algorithm, the same experiment is also
performed on a MIT-BIH ADB record [20]. The MIT-BIH
ADB is recorded for approximately 30 minutes at a high
frequency of 360 Hz. Finally, an experiment is conducted on
the QT-DB of Physionet [21] in the same manner, and the
results are compared to verify that the fiducial point detection
performance of the conventional PA is preserved during the
improvement process. Each signal used in the experiment is
preprocessed by applying a 1-25 Hz Butterworth bandpass
filter to suppress the baseline wander (0.15 up to 0.3 Hz)
and power line interference (30 Hz or 60 Hz). The polygonal
approximation is performed after detecting the R-peak in the
filtered signal [7].

B. TIME COMPARISON
This section provides experimental results on data obtained
directly at a 125 Hz sampling frequency and on MIT-BIH
ADB record obtained at a 360 Hz sampling frequency to
confirm the improved performance in an embedded system.
Fig. 15 shows the results of a detailed recording of the varia-
tions in the execution time according to the improved DP for
each of the initial vertex intervals within one R-R interval in
the signal with a 125 Hz sampling frequency in the embedded
system.

In the case of interval 8, the length of the interval is
10 and the number of vertices is 0, but in the experiment of
Section III-C, the execution time increases because the vertex
is added by the time difference threshold of NBit = 8. How-
ever, because there are more intervals where the execution
time is reduced and the reduction ratio is also large, the overall
execution time is greatly reduced.

FIGURE 15. Processing time for the data measured at 125 Hz in an
embedded system.

FIGURE 16. Processing time for the MIT-BIH ADB record at 360 Hz.

The experimental results for the MIT-BIH ADB record
with a sampling frequency of 360 Hz are shown in Fig. 16.

In this way, the execution time is improved through the
improvement of the DP. The longer the input signal and the
larger the number of vertices, the greater the improvement in
the execution time is, as in the case of interval 7 of Fig. 15
and interval 5 of Fig. 16.

C. MEMORY COMPARISON
Regarding the memory usage, the initial space complexity
is O(L2N ) but is improved to O(L2) and finally to O(NL),
as shown in Sections III-A and III-C.2.
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FIGURE 17. Memory usage of the MIT-BIH ADB record for each RR
interval.

Fig. 17 shows the memory usage in applying the improved
DP method in Fig. 16 when the transform is added and after
the final optimization.

The existing DP method increases the memory usage
as the interval length increases and cannot be applied in
a low-capacity embedded environment due to the memory
overflow. However, as a result of the proposed improve-
ment to the DP method, the memory usage of the first
interval, which has the largest memory usage, is greatly
reduced from 5,141 KB to 14 KB. Thus, the memory
usage of DP is greatly improved, and the memory usage
can be maintained in a stable manner since the mem-
ory usage for a long interval is reduced more, as shown
in Fig. 17.

D. POWER CONSUMPTION
As shown in the previous experiment, the proposed DP
improvement can greatly reduce the execution time andmem-
ory usage. This can be expected to reduce the power con-
sumption, and we conduct an experiment as shown in Fig. 18
for the same data used in Fig. 15.

As shown in Fig. 18, the improved DP reduces the total
power consumption due to the reduction in the execu-
tion time. Thus, we confirm that the proposed DP method
can be effectively applied even in a low-power embedded
environment.

E. SUMMARY OF THE EXPERIMENTS
Fig. 19 summarizes the processing time and memory usage
performance according to the DP improvement stages.

Regarding the change in the memory usage, the spatial
complexities of the cost matrix and base matrix are O(L2N )
and O(L2), respectively, but the proposed algorithm sig-
nificantly reduces the complexities to O(NL) and O(NBit ),
respectively. In the case of the execution time, the time
complexity of conventional DP with a top-down operation
is O(L2N ), which is similar to the spatial complexity of the
cost matrix. In Sections III-A and III-B, however, the time
complexities of O(L2) and O(NBitL) corresponding to the
memory usage of the base matrix are shown. Since NBit is
given as a constant, the execution time is not influenced by
the number of vertices, as shown in Fig. 19. In Section III-C,
the type conversion and the operation order are changed to
optimize the memory usage. Since the amount of opera-
tion does not change, the execution time result is the same.
Regarding the power consumption, a large amount of power
is required, because the execution time andmemory usage are
large. However, the power consumption is reduced due to the
reductions in the execution time and memory usage.

Fig. 20 shows a graph of the execution time and mem-
ory usage changes for each RR interval of the data used
in Fig. 17.

For interval 1, the execution time and memory usage
decrease by 95.44% and 97.08%, respectively. Comparing the
results of Sections III-A based on the characteristics of the
ECG signal, the execution time and memory usage decrease
by 89.54% and 90.67%, respectively.

Fig. 21 shows the experimental results comparing the mea-
suredmemory usage and processing time for each RR interval
in a 30-minute MIT-BIH ADB record consisting of 2271 RR
intervals.

As shown in Fig. 20 and Fig. 21, the proposed method
dramatically improves the DP in terms of the execution time
and memory area.

FIGURE 18. Power consumption of Fig. 15: (a) conventional DP, (b) the DP method in Section III-A, and (c) the DP method in Section III-B.
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FIGURE 19. Performance comparison with the improved DP method.

FIGURE 20. Comparison of the changes in the execution time and
memory usage of DP in Fig. 17: (a) execution time and (b) memory usage.

F. FIDUCIAL POINT DETECTION
Finally, to verify the effects on the detection of the fiducial
points, we apply the improved PA and compare the detec-
tion results when applying the same fiducial point-detection
method. A fiducial point is detected by analyzing three fea-
ture values: the amplitude difference (A), time difference (T ),
and angles with neighboring vertices (θ), as shown in Fig. 22.

FIGURE 21. Comparison of the changes in the execution time and
memory usage of DP in 2271 heartbeats of the MIT-BIH ADB record:
(a) total results and (b) zoom-in of the green box region in (a).

The experiment is conducted in the same way as with the
existing PA for QT-DB provided by Physionet, and the results
are shown in Table 1.

The experimental results show no meaningful error in
the fiducial point detection, and the conventional DP
method can be sufficiently replaced with the improved DP
method.
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FIGURE 22. Three features of each vertex.

TABLE 1. QRS segmentation performance comparison in the QT-DB.

V. CONCLUSION
The PA requires a long execution time and a large memory
usage during the application of DP. It is inefficient to apply
in embedded environments. Accordingly, in this paper, DP is
improved in three steps to enable real-time application in
embedded environments. In the first step, the characteristics
of the PA are effectively analyzed in ECG signals to ensure
that the DP performance is maintained while the execution
time and memory usage are improved. In the second step,
the time information at the vertex is expressed using the
time differences with the previous vertex, and time difference
thresholds are applied together. The second step significantly
improves the execution time while maintaining most of the
fiducial point detection performance, enabling a real-time
application in embedded environments. In the third step,
by determining the adaptive thresholds based on the maxi-
mum error when calculating the optimization errors, the error
is effectively scaled to maintain the error deviation in the
type conversion, enabling a stable memory improvement.
In addition, in the bottom-up operation, the size of the base

matrix is reduced significantly after replacing the row-by-
row operation of the cost matrix with a column-by-column
operation, which can operate stably even in an embedded
environment with a low memory capacity.

The proposed method can improve the performance by
effectively analyzing the characteristics of ECG signals and
the DP method for a one-dimensional signal. This result is
expected to be applicable not only to ECG signals but also to
similar one-dimensional signals. In particular, it is expected
that this approach will be useful for signal compression
and transmission in an application to signals such as photo-
plethysmography (PPG) and electroencephalography (EEG)
signals.
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