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ABSTRACT Device-to-device (D2D) communication is an emerging technology in the evolution of the 5G
network enabled vehicle-to-vehicle (V2V) communications. It is a core technique for the next generation
of many platforms and applications, e.g. real-time high-quality video streaming, virtual reality game,
and smart city operation. However, the rapid proliferation of user devices and sensors leads to the need
for more efficient resource allocation algorithms to enhance network performance while still capable of
guaranteeing the quality-of-service. Currently, deep reinforcement learning is rising as a powerful tool to
enable each node in the network to have a real-time self-organising ability. In this paper, we present two novel
approaches based on deep deterministic policy gradient algorithm, namely ‘‘distributed deep deterministic
policy gradient’’ and ‘‘sharing deep deterministic policy gradient’’, for the multi-agent power allocation
problem in D2D-based V2V communications. Numerical results show that our proposed models outperform
other deep reinforcement learning approaches in terms of the network’s energy efficiency and flexibility.

INDEX TERMS Non-cooperative D2D communication, D2D-based V2V communications, power alloca-
tion, multi-agent deep reinforcement learning, and deep deterministic policy gradient (DDPG).

I. INTRODUCTION
Vehicle-to-vehicle (V2V) communication, which utilises
intelligent vehicles in order to improve traffic safety and
reduce energy consumption, has recently emerged as a
promising technology. There have been researches on V2V
communications that aim to make each vehicle more intelli-
gent while ensuring safety [1], [2]. TheV2V technology facil-
itates efficient supervision of possible pitfalls in the roadways
by allowing vehicles to cooperate with the already existing
transport management systems. Moreover, intelligent trans-
port systems can exploit data from V2V communications to
enhance traffic management and enable vehicles to commu-
nicate with road infrastructures in order to build more reliable
self-driving cars.

In device-to-device (D2D) communications, end-users can
interact with each other without having to connect directly
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to base stations (BS) or core networks. It enables the devel-
opment of various platforms and applications. For example,
D2D communication is a core technique in smart cities [3],
high-quality video streaming [4], and disaster relief net-
works [5]. D2D communication can also support V2V com-
munications as it has tremendous advantages such as spectral
efficiency, energy efficiency, and fairness [6]–[9]. Firstly,
the V2V communications under the D2D-enabled architec-
ture are supported through localized D2D communication to
inherit the benefits of D2D-based networks. Techniques that
are used in D2D communication substantially reduce latency
and power consumption; hence, they are suitable for tight
delay V2V communications. Secondly, the requirement of
time constraint in V2V links is strict as in D2D pairs due to
the low latency is essential for critical safety services. In addi-
tion, the demand for high reliability in V2V communication
is approximately similar in D2D communication. The V2V
link reliability is guaranteed by ensuring the SINR is not
lower than a small threshold. We identify and incorporate the
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reliability QoS requirements for V2V links into the objec-
tive formulation. Therefore, the D2D communication rep-
resents an emerging solution to enable safe, efficient, and
reliable V2V communications. However, the resource allo-
cation problem is one of the challenges to enable D2D-based
V2V communications due to rapid channel variations caused
by V2V user mobility.

Resource allocation problems in D2D communication
have received enormous attention from the research com-
munity [10]–[15]. In [10], the authors considered three sce-
narios, namely the perfect channel state information, partial
channel state information, and imperfect channel between
the users and the transmitters, to present a resource alloca-
tion algorithm to achieve optimal performance in terms of
secrecy throughput and energy efficiency. In [11], the authors
introduced an optimisation scheme based on the combina-
tion of coral reefs optimisation and quantum evolution to
gain the optimal results for joint resource management and
power allocation problem in cooperative D2D heterogeneous
networks. The authors in [12] proposed an optimisation
algorithm based on logarithm inequality to solve the joint
energy-harvesting time and power allocation in D2D commu-
nications assisted by unmanned aerial vehicles. Meanwhile,
in [13], in order to maximise the total average achievable
rate from D2D transmitters to D2D receivers, the authors
proposed an optimal solution to allocate the spectrum and
power in cooperative D2D communications with multiple
D2D pairs. In [14], a resource allocation approach was
presented to improve energy-efficient D2D communication.
In particular, the power allocation problem was solved by
using the Lambert W function, and channel allocation was
solved appropriately by Gale-Shapley matching algorithm.
However, all the above approaches have a common drawback
that requires the data of all D2D pairs to be collected and pro-
cessed in a centralised manner at the BS. It causes delays in
real-time scenarios. Furthermore, many previous algorithms
typically only work on a small, static environment and all
the data was analysed at one point. It is not realistic because
environments are dynamic and centralised processing will
inflict a bottleneck, congestion, and blockage at the BS or
central processing unit.

Some recent works have studied to apply techniques
in D2D communication to support V2V communica-
tions [6]–[9]. In [7], a cluster-based resource block sharing
algorithm and in [9] a separate resource block algorithm were
proposed to deal with the radio resource allocation problem
in D2D-based vehicle-to-everything communications. Mean-
while, the authors in [8] proposed a grouping algorithm, chan-
nel selection, and power control strategies to maximise the
performance of a network consisting of multiple D2D-based
V2V links sharing the same channel. However, the major
issue of D2D communication is that each D2D pair in the
network typically has limited resources and power for trans-
mitting information whilst the demand for efficient resource
allocation such as spectrum and power allocation is rising
rapidly. Furthermore, each pair in D2D networks cannot

frequently transfer or store in their memory the informa-
tion of its resource allocation scheme due to limitations in
transmission power and memory storage. Besides, if we use
BS as a central processing unit to find a resource allocation
scheme for each pair, the delay incurred will make the system
model unsuitable for real-time applications. Recently, effi-
cient optimisation algorithms have been deployed to enhance
both energy efficiency and processing time [12], [16], [17].

In [18], reinforcement learning algorithm (RL) was used
to obtain the optimal policy for the power control problem
in energy harvesting two-hop communication. The authors
considered that each energy harvesting node only knows the
harvested energy and channel coefficients. Thus, the problem
can be transferred to two point-to-point problems, and to
maximise the amount of data at the receiver, RL algorithm
called SARSA is employed at each energy harvesting node to
reach the optimal policy at a transmitter. Nevertheless, the RL
based algorithm has some disadvantages such as instability
and inefficiency when the number of nodes in the network is
sufficiently large.

Recently, deep learning (DL), a subfield of machine
learning, is a powerful optimisation tool to solve the
resource management problems in modern wireless net-
works [19], [20]. An approach based on deep recurrent neu-
ral networks was presented in [19] to obtain the optimal
policy for resource allocation in a non-orthogonal multi-
ple access-based heterogeneous internet-of-things network.
In [20], the authors proposed a deep learning-based resource
management scheme to balance the energy and spectrum
efficiency in cognitive radio networks. By utilising the neural
networks, the convergence speed was significantly improved
in terms of the lower computational complexity and learn-
ing cost while satisfying the network performance. DL has
also been applied to solve the physical layer issues in wire-
less networks [21]–[25]. The authors in [21] proposed a
convolutional neural network-based method to automatically
recognise eight popular modulation models, which are used
in advanced cognitive radio networks. The proposed net-
work was trained by using the two datasets of in-phase and
quadrature to extract features and efficiently classify mod-
ulated signals. Meanwhile, the authors in [22] introduced a
fully-connected neural network-based framework for max-
imising the network throughput under the limited constraint
of total transmit power. The data was generated without labels
and put into the neural network for offline unsupervised train-
ing. The DL-based algorithms were also proposed to enable
mmWave massive multiple-input multiple-output framework
for hybrid precoding schemes [23] and to detect the channel
characteristics automatically [24].

Deep reinforcement learning, a combination of RL and
deep neural network, has been used widely in wireless com-
munication thanks to its powerful features, impressive per-
formance, and adequate processing time. The authors in [26]
formulated a non-cooperative power allocation game in D2D
communications and proposed three approaches based on
deep Q-learning, double deep Q-learning, and dueling deep
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Q-learning algorithm for multi-agent learning to find the
optimal power level for each D2D pair in order to maximise
the network performance. The authors in [27] used deep
Q-learning algorithm to look for the optimal sub-band and
transmission power level for each V2V user in V2V com-
munications while satisfying the requirement of low latency.
However, these algorithms can only work on the discrete
action space; hence, human intervention is required to design
the power level of each pair.With the finite set of action space,
the performance of these algorithms cannot reach the optimal
result, and the reward can become worse if we cannot divide
the power level accurately.

Against this background, in this paper, we propose two
novel models termed as distributed deep deterministic pol-
icy gradient (DDDPG) and sharing deep deterministic pol-
icy gradient (SDDPG) based on deep deterministic policy
gradient (DDPG) algorithm [28]. Our proposed approaches
can work on a continuous action space for the multi-agent
power allocation problem in D2D-based V2V communica-
tions. Therefore, we can improve the algorithm convergence
quality and sample efficiency significantly, especially when
the number of V2V pairs in the network increases. From the
numerical results, we show that our model outperform the
approach based on the original DDPG algorithm in terms
of energy efficiency (EE) performance, computational com-
plexity, and network flexibility. Our main contributions are as
follows:
• We provide two novel approaches based on DDPG
algorithm to solve the multi-agent learning and
non-cooperative power allocation problem in D2D-
based V2V communications. Experiment results show
promising results over other existing deep reinforcement
learning
approaches.

• By modifying the input of the neural network, all the
agents in the multi-agent deep reinforcement learning
algorithm can share one actor network and one critic
network to reach higher performance and faster conver-
gence while reducing the computational complexity and
memory storage significantly.

• Finally, after training the policy neural network, the non-
cooperative power allocation problem in D2D-based
V2V communications can be solved in millisec-
onds. It becomes a promising technique for real-time
scenarios.

The remainder of the paper is organised as follows.
In Section II, we describe the system model and formulation
of the multi-agent power allocation problem in D2D-based
V2V communications. Section III describes the value func-
tions, policy gradient concepts, and proposes distributed
deep deterministic policy gradient algorithm-based method.
In Section IV, we improve the model by using the embed-
ding layer to solve the non-cooperative resource allocation
problem in D2D-based V2V communications efficiently.
In Section V, the simulation results are presented to demon-
strate the efficiency of our proposed schemes. Finally,

FIGURE 1. System model of D2D-based V2V communications.

we conclude this paper and propose some future works in
Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we define the system model and formula-
tion of the power allocation problem in D2D-based V2V
communications. As depicted in Fig. 1, there are N V2V
pairs are distributed randomly within the coverage of one BS.
Each V2V pair consists of a single antenna V2V transmit-
ter (V2V-Tx) and a single antenna V2V receiver (V2V-Rx).
We define that β0, fi and αh are the channel power gain at
the reference distance, an exponentially distributed random
variable with unit mean, and the path loss exponent for V2V
links, respectively. The location of the ith V2V-Tx and jth
V2V-Rx with i, j ∈ {1, . . . ,N } are (x iTx, y

i
Tx) and (x jRx, y

j
Rx).

Hence, the channel power gain hij between the ith V2V-Tx
and jth V2V-Rx is written as

hij = β0f 2i R
−αh
ij , (1)

where Rij =
√
(x iTx − x

j
Rx)

2 + (yiTx − y
j
Rx)

2 is the Euclidean
distance between the ith V2V-Tx and jth V2V-Rx.
The received signal-to-interference-plus-noise ratio (SINR)

at the ith V2V user is defined as

γi =
pihii∑j6=i

j∈N pjhji + σ
2
, (2)

where pi ∈ (pmini , pmaxi ) and σ are the transmission power at
ith V2V pairs and the AWGN power, respectively.
In the power allocation problem in D2D-based V2V com-

munications with N V2V pairs, our objective is to find an
optimal policy to maximise the EE performance of our net-
work. The information throughput at the ith V2V pair is
defined as follows:

ψi =W ln(1+ γi)

=W ln(1+
pihii∑j 6=i

j∈N pjhji + σ
2
) (3)
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where W is a bandwidth. The total performance of the net-
work is a joint function of all V2V pairs.We define the quality
of service (QoS) constraints as

γi ≥ γ
∗
i ,∀i ∈ N . (4)

In this work, we focus on maximising the total EE per-
formance of the network while satisfying energy constraints
and the QoS constraints for each V2V pair. Therefore, the EE
optimisation problem can be defined as

max
N∑
i

W
pi

ln
(
1+

pihii∑j 6=i
j∈N pjhji + σ

2

)
, (5)

s.t γi ≥ γ ∗i ,∀i ∈ N , (6)

pmini ≤ pi ≤ p
max
i . (7)

In the D2D-based V2V communications, we have N V2V
pairs in which each V2V pair can only have its environment
information about power allocation strategy and current envi-
ronment state. This makes the power allocation problem in
D2D-based V2V communications become a multi-agent and
non-cooperative game. Thus, we formulate the multi-agent
power allocation game in D2D-based V2V communications
and propose two deep reinforcement learning approaches
based on the DDPG algorithm to enable each V2V user to
have an optimal power allocation scheme.

In RL, an agent interacts with the environment to find
the optimal policy through trial-and-error learning. We can
formulate this task as aMarkov decision process (MDP) [29].
In particularly, we define a 4-tuple 〈S,A,R,P〉, where S
and A is the agent state space and action space, respectively.
The reward function r = R(s, a, s′) can be obtained at state
s ∈ S, action a ∈ A, and next state s′ ∈ S. An agent has
transition function Pa

ss′ which is the probability of next states
s′ when taking action a ∈ A at state s ∈ S.
Regarding the multi-agent power allocation problem in

D2D-based V2V communications, we define that each V2V
transmitter is an agent, and the system consists of N agents.
The ith V2V-Tx is defined as ith agent, which is represented
as 〈Si,Ai,Ri,Pi〉, where Si is the environment state space,
Ai is the action space, Ri is the reward function, and Pi is
the state transition probability function. Generally, an agent
corresponding to a V2V user at each time t observes a state,
st from the state space, S, then accordingly takes action of
selecting power level, at , from the action space, A based on
the policy, π . By taking the action at , the agent receives a
reward, r t and the environment transits to a new state st+1.

In the next step, we define the action spaces, state spaces
and reward function of themulti-agent power allocation prob-
lem in D2D-based V2V communications as follows:
State spaces: At each time t , the state space of the ith V2V

transmitter observed by the V2V link for characterising the
environment is defined as

Si = {i, Ii}, (8)

where Ii ∈ (0, 1) is the level of interference as

Ii =
{
1 for γi ≥ γ ∗i
0 for otherwise

(9)

Action spaces: The agent i at time t takes an action ati ,
which represents the agent selected power level, according
to the current state, sti ∈ Si under the policy πi. The action
space of ith V2V-Tx is denoted as

Ai = {pi}, (10)

where pmin
i ≤ pi ≤ pmax

i .
Reward function: Our objective is to maximise the total

performance of the network by interacting with the environ-
ments while satisfying the QoS constraints. Thus, we design a
reward functionRi of the ith V2V user in state si by receiving
the immediate return by executing action ai as

Ri =

{ W
pi
ln(1+ γi) if Ii = 1

0 if Ii = 0
(11)

III. MULTI-AGENT POWER ALLOCATION PROBLEM IN
D2D-BASED V2V COMMUNICATIONS: DISTRIBUTED DEEP
DETERMINISTIC POLICY GRADIENT APPROACH
In RL, we have two main approaches and a hybrid model to
solve the games. There are value function-based methods,
policy search-based methods, and an actor-critic approach
that employs both value functions and policy search [30].
In this section, we explain value function and policy search
concepts which can learn on continuous domains. We further
propose a solution based on the DDPG algorithm to solve
the energy-efficient power allocation problem in D2D-based
V2V communications.

A. VALUE FUNCTION
Value function, which is often denoted asV π (s), estimates the
expected reward for an agent staring in state s and following
the policy π subsequently. Value function represents how
good for an agent to be in a given state

V π (s) = E
[
R|s0 = s, π

]
, (12)

whereE(·) stands for the expectation operation andR denotes
the rewards gain from the initial state s while following the
policy π . In all the possibility of the value function V π (s)
there is an optimal value V ∗(s) corresponding to an optimal
policy π∗; the optimal value function V ∗(s) can be defined as

V ∗(s) = max
π

V π (s), s ∈ S. (13)

The optimal policy π∗ is the policy that can be retrieved
from optimal value function V ∗(s) by choosing the action a
from the given state s to maximise the expected reward. We
can rewrite (13) by using Bellman equation [31]

V ∗(s) = V π
∗

(s) = max
a∈A

[
r(s, a)+ ζ

∑
s′∈S

pass′V
∗(s′)

]
, (14)
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where r(s, a) is the expected reward obtain when taking
action a from the state s, pass′ defines the probability of the next
state s′ if the agent at the state s takes action a, and ζ ∈ [0, 1]
is the discounting factor.

The action-value function Qπ (s, a) is the total reward
which represents how good for an agent to pick an action a in
state s when following the policy π

Qπ (s, a) = E
[
r(s, a)+ ζE[V π (s′)]

]
. (15)

The optimal action-value function Q∗(s, a) can be written
as

Q∗(s, a) = E
[
r(s, a)+ ζ

∑
s′∈S

pass′V
∗(s′)

]
. (16)

Thus, we have

V ∗(s) = max
a∈A

Q∗(s, a). (17)

Q∗(s, a) = E
[
r(s, a)+ ζ max

a′∈A
Q∗(s′, a′)

]
. (18)

Q-learning [32], an off-policy algorithm, regularly uses the
greedy policy π = argmaxa∈A Q(s, a) to choose the action.
The agent can achieve the optimal results by adjustingQ value
according to the updated rule

Q(s, a)← (1−α)Q(s, a)+α
[
r(s, a)+ζ max

a′∈A
Q(s′, a′)

]
, (19)

where α ∈ [0, 1] is the learning rate.

B. POLICY SEARCH
The policy gradient, which is one of policy search techniques,
is a gradient-based optimisation algorithm. It aims to model
and optimise the policy to directly search for an optimal
behaviour strategy π∗ for the agent. The policy gradient
method is in popularity because of the efficient sampling
ability when the number of policy parameters is large. Let
π and θπ denote the policy and vector of policy parameters,
respectively; and J is the performance of the corresponding
policy. The value of the reward function depends on this
policy, and then the various algorithms can be applied to
optimise parameter θπ to achieve the optimal performance.

The average reward function on MDPs can be written as

J (θ ) =
∑
s∈S

d(s)
∑
a∈A

πθ (s, a; θπ )R(s, a) (20)

where d(s) is the stationary distribution of Markov chain for
policy πθ . Using gradient ascent, we can adjust the parameter
θπ suggested by∇θJ (θπ ) to find the optimal θ∗π that produces
the highest reward. The policy gradient can be computed like
in [33] as follows

∇θJ =
∑
s∈S

d(s)
∑
a∈A

πθ (s, a; θπ )∇θ logπθ (s, a; θπ )Qπ (s, a)

= Eπθ
[
∇θπ logπθ (s, a; θπ )Q

π (s, a)
]

(21)

The REINFORCE algorithm is devised as a Monte-Carlo
policy gradient learning algorithm that relies on an estimated

return by Monte-Carlo simulations where episode samples
are used to update the policy parameter θπ . The objective
of REINFORCE algorithm is to maximise expected rewards
under policy π

θ∗π = argmax
θπ

J (θ ). (22)

Thus, the gradient is presented as

∇θπ = Eπθ
[
∇θπ logπθ (s, a; θπ )Q

π (s, a)
]
, (23)

Then, parameters are updated along positive gradient direc-
tion

θπ ← θπ + α∇θπ (24)

A drawback of the REINFORCE algorithm is the slow
speed of convergence due to the high variance of the policy
gradients.

C. DISTRIBUTED DEEP DETERMINISTIC
POLICY GRADIENT
By utilising the advantages of both policy search-based
methods and value function-based methods, a hybrid model
called the actor-critic algorithm has grown as an effective
approach [30]. In policy gradient-based methods, the policy
function π (a|s) is always modelled as a probability distri-
bution over actions space A in the current state, and thus
it is stochastic. Very recently, deterministic policy gradi-
ent (DPG) is deployed as an actor-critic algorithm in which
the policy gradient theorem is extended from stochastic pol-
icy to deterministic policy. Inspired by the success of deep
Q-learning [26], which uses neural network function approx-
imation to learn value functions for a very large state and
action space online, the combination of DPG and deep learn-
ing called deep deterministic policy gradient enables learning
in continuous spaces.

An existing drawback of most optimisation algorithms is
that the samples are assumed to be independently and identi-
cally distributed. It leads to the destabilisation and divergence
of RL algorithms if we use a non-linear approximate function.
To overcome that challenge, we use two major techniques as
follows:
• Experience replay buffer: agent i has a replay buffer Di
to store the samples and take mini-batches for training.
Transitions are sampled from the environment following
the exploration policy and the tuple (sti , a

t
i , r

t
i , s

t+1
i ) will

be stored inDi. When the replay bufferDi is big enough,
a mini-batch Ki of transitions is sampled randomly from
the bufferDi to train the actor and critic network. By set-
ting the finite size of replay bufferD, the oldest samples
are removed to retrieve space for the new samples, and
the buffers are always up to date.

• Target network: At each step of training, the Q value
is shifted. Thus, if we use a constantly shifting set of
values to estimate the target value, the value estimations
are easy out of control, and it makes the network unsta-
ble. To address this issue, we use a copy of the actor
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and critic networks,Q′i(si, ai; θq′i ) andµ
′
i(si; θµ′i ), respec-

tively, to calculate the target values. The parameter θq′i
and θµ′i in actor and critic network are then updated using
soft target updates with τ � 1

θq′i
← τθqi + (1− τ )θq′i (25)

θµ′i
← τθµi + (1− τ )θµ′i (26)

By using the target networks, the target values are
constrained to change slowly, significantly learning
the action-value function closer to supervised learning.
However, both target µ′i and Q′i are required to pro-
cess a stable target in order to train the critic consis-
tently without divergence. Herein, this may slow training
since the target network delays the propagation of value
estimations.

A notable challenge of learning in continuous action spaces
is exploration [28]. In order to do better exploration, we add
a small white noiseNi(0, 1) to our actor policy to construct a
Gaussian exploration policy µ′i [28]

µ′i(s
t
i ) = µi(s

t
i ; θ

t
µi
)+ εNi(0, 1) (27)

where ε is a small positive constant. The details of our pro-
posed algorithm, distributed deep deterministic policy gradi-
ent based on DDPG algorithm, to deal with the multi-agent
power allocation problem in D2D-based V2V communica-
tions are described in Algorithm 1.

IV. SHARING DEEP DETERMINISTIC POLICY GRADIENT
FOR MULTI-AGENT POWER ALLOCATION PROBLEM IN
D2D-BASED V2V COMMUNICATIONS
In this section, we present a simple improvement of the
DDPG algorithm with the parameter sharing technique in
multi-agent learning problems. In this algorithm, we can
reach more effective policies for all the V2V pairs in the net-
work by sharing the parameters of a single policy due to the
homogeneous quality of all agents. Therein, each agent can be
trainedwith the experiences of all agents simultaneously [34].

With the DDDPG algorithm in Algorithm 1, each agent has
an actor network and a critic network for their own. It makes
the systems shift significantly when the number of V2V
pairs increases. In addition, the computational complexity,
memory storage, and processing time are also unmanage-
able. Inspired by the impressive results of the paper [34],
to overcome that problem,we propose a novelmodel based on
DDPG called SDDPG algorithm in which a large number of
agents can use sharing networks. By adding the embedding
layer to build a new input layer of neural networks, we can
use one actor and one critic network for the multiple agents
in deep reinforcement learning. Consequently, it reduces the
overall computational processing significantly in our model
while ensuring the performance. The speed of convergence is
also better than standard approaches.

The simplest way to represent an input layer with a node for
every pair is ‘‘one-hot’’ encoding that is a vector of zeros with
one at a single position. However when the number of V2V

Algorithm 1 Distributed Deep Deterministic Policy Gradi-
ent Algorithm for Multi-Agent Power Allocation Problem in
D2D-Based V2V Communications
Initialisation:
for all V2V i, i ∈ N do
Randomly initialise critic Qi(si, ai; θqi ) and actor
µi(si; θµi )
Randomly initialise targets Q′i and µ

′
i with parameter

θq′i
← θqi , θµ′i

← θµi
Initialise replay buffer Di

end for
for all V2V i, i ∈ N do
for episode = 1, . . . ,M do
Initialise the action exploration to a Gaussian Ni
Receive initial observation state s1i
for iteration = 1, . . . ,T do
Obtain the action ati at state sti according to the
current policy and action exploration noise
Measure the achieved SINR at the receiver accord-
ing to (2)
Update the reward r ti according to (11)
Observe the new state st+1i
Store transition (sti , a

t
i , r

t
i , s

t+1
i ) into replay buffer

Di
Sample randomly a mini-batch of Ki transitions
(ski , a

k
i , r

k
i , s

k+1
i ) from buffer Di

Update critic by minimising the loss:

Li =
1
Ki

∑(
yki − Qi(s

k
i , a

k
i ; θqi )

)2
, (28)

where

yki = rk (ski , a
k
i )

+ζQ′i(s
k+1
i , ak+1i ; θq′i )|ak+1i =µ

′(sk+1i ;θµ′ )
(29)

Update the actor policy using the sampled policy
gradient: ∇θµi Ji ≈

1
Ki

∑
∇aki

Qi(ski , a
k
i ; θqi )|aki =µi(ski )∇θµiµ(s

k
i ; θµi )

(30)

Update the target networks:

θq′i
← τθqi + (1− τ )θq′i (31)

θµ′i
← τθµi + (1− τ )θµ′i (32)

Update the state sti = st+1i
end for

end for
end for

pairs in the network increases, the ‘‘one-hot’’ encoding vector
becomes more sparse with relatively few non-zero values.
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FIGURE 2. Proposed model with sharing actor and critic network for
multi-agent deep reinforcement learning problem.

Thus, ‘‘one-hot’’ encoding has some issues such as the more
data is needed to train the model effectively and the more
parameters, the more computation is required to train and
use the model; herein, it turns out that making a model more
difficult to learn effectively and it is easy to exceed the
capabilities of the hardware.

Embedding is rising as a potential technique in which
a lower-dimensional space can be achieved by translating
from a large sparse vector while preserving semantic rela-
tionships [35] to deal with these above problems. To apply
the embedding layer efficiently in our problem, we divide
the input of the ith V2V pair into two parts, ID i and QoS
constraint Ii. Depending on the number of V2V pairs in the
network, the output dimension of embedding layers can be
chosen flexibly to reduce the memory storage and processing
time while ensuring the performance of the network. The
ID i of the V2V pair is put into the embedding layer and
a fully-connected layer before being concatenated with the
level interference of the ith V2V pair, Ii. We assume that
the concatenated layer is the input of neural networks in
the DDPG algorithm. The actor and critic network of our
proposed model are described in Fig. 2.

The details of the SDDPG algorithm-based approach for
multi-agent power allocation problem in D2D-based V2V
communications are described in Algorithm 2.

V. SIMULATION RESULTS
In this section, we perform the simulation results on PC
Intel(R) Core(TM) i7-8700 CPU @ 3.20Ghz to demonstrate
the effectiveness of our proposed methods in solving the

Algorithm 2 Sharing Deep Deterministic Policy Gradient for
Multi-Agent Power Allocation Problem in D2D-Based V2V
Communications
Initialisation:
Initialise the critic network Q(s, a; θq) and actor network
µ(s; θµ) with random parameter θq and θµ
Initialise the target networks Q′ and µ′ with parameter
θq′ ← θq, θµ′ ← θµ
Initialise replay buffer D
for all V2V i, i ∈ N do
for episode = 1, . . . ,M do
Initialise the embedding layer
Initialise a random process Ni for action exploration
Receive initial observation state s1i by concatenating
the output of the embedding layers and Ii
for iteration = 1, . . . ,T do
Obtain the action ati at state sti according to the
current policy and exploration noise
Measure the achieved SINR at the receiver accord-
ing to (2)
Update the reward r ti according to (11)
Observe the new state st+1i
Store transition (sti , a

t
i , r

t
i , s

t+1
i ) into replay buffer

D
Sample randomly a mini-batch of K transitions
(ski , a

k
i , r

k
i , s

k+1
i ) from buffer D

Update critic by minimising the loss:

L =
1
K

∑(
yk − Q(ski , a

k
i ; θq)

)2
(33)

where

yk = r(ski , a
k
i )

+ζQ′(sk+1i , ak+1i ; θq′ )|ak+1i =µ
′(sk+1i ;θµ′ )

(34)

Update the actor policy using the sampled policy
gradient: ∇θµJ ≈

1
K

∑
∇aki

Q(ski , a
k
i ; θq)|aki =µi(ski )∇θµiµ(s

k
i ; θµi )

(35)

Update the target networks:

θq′ ← τθq + (1− τ )θq′ (36)

θµ′ ← τθµ + (1− τ )θµ′ (37)

Update the state sti = st+1i
end for

end for
end for

power control problem in D2D-based V2V communications.
Tensorflow version 1.13.1 [36] is used to implement all
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TABLE 1. Simulation parameters.

algorithms. We design the actor and critic networks with
one input layer, one output layer, one hidden layer of 100
units and Adam optimisation algorithm [37] for training.
The parameters of neural networks are initialised with small
random values with a zero-mean Gaussian distribution. The
other simulation parameters are given in Table 1.

Fig. 3 illustrates the EE performance of the network using
the DDDPG algorithm while considering different values of
mini-batch size K and the learning rate of actor and critic
network, αA and αC , respectively. From Fig. 3 (a), we can
see that with a small batch size, our proposed algorithms can
be needed to take a long time to reach the optimal policy.
On the other hand, there is a possibility that the learning
process can be trapped in local optimum and cannot escape
to reach the best performance if a batch size is too large,
although the calculated gradient is more accurate than the
ones with a small batch size; hence, it may lead to a slower
convergence. Meanwhile, the parameters of neural networks
are updated according to the value of the learning rate. The
learning rate decides the speed of convergence and stability of
our proposed algorithms. In Fig. 3 (b) with the small values of
the learning rate, results are at a slower speed of convergence.
On the contrary, if we choose a high learning rate, the algo-
rithms can diverge from the optimal solution. Clearly, our
proposed algorithms can achieve the best performance with
the learning rate, αA = 0.0001 and αC = 0.0001. Based on
the result shown in Fig. 3, we choose the batch size to be
K = 32 and the initial learning rate α = 0.0001 for actor and
critic networks.

Fig. 4 compares the performance of our two proposed
approaches based on the DDDPG and SDDPG algorithm
with the output dimension of the embedding layer set to 5,
|Dims| = 5. The comparison is against the standard DDPG
algorithm for a multi-agent power allocation problem in
D2D-based V2V communications. The EE performance of
the network when using the DDDPG and SDDPG algorithm
are almost identical and better than the standard DDPG in
multi-agent learning. In convergence, the speed of conver-
gence with the SDDPG algorithm is faster than ones with the

FIGURE 3. The EE performance of the network by using the DDDPG
algorithm in multi-agent power allocation problem in D2D-based V2V
communications with different values of batch size K and learning rate α,
the number of V2V pairs, N = 30.

FIGURE 4. The EE performance of the network by using the DDDPG,
SDDPG and DDPG algorithm in multi-agent power allocation problem in
D2D-based V2V communications with the number of V2V pairs, N = 30.

DDDPG algorithm and ones with the standard DDPG algo-
rithm. The reason is that when we use sharing networks for
N agents, these networks are trained many times and the next
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FIGURE 5. Performance results of the DDDPG, SDDPG and DDPG
algorithm-based approaches with different number of V2V pairs in the
network.

agents can use the previous pre-trained networks to achieve
an optimal policy faster than the DDDPG algorithm-based
approach. These results advise that using the combination of
multi-agent learning and the DDPG algorithm significantly
helps to find an optimal policy for non-cooperative energy-
efficient power allocation problem in D2D-based V2V com-
munications.

Fig. 5 plots the EE results of the network with different
number of V2V pairs by using the DDDPG, SDDPG, and
standard DDPG algorithm. The output dimensions of the
embedding layer in the SDDPG algorithm for N = 5,
N = 10, N = 15, N = 20, N = 25, N = 30 are
Dims = 2,Dims = 3,Dims = 3,Dims = 4,Dims = 4 and
Dims = 5, respectively. The performance of the network by
using the DDDPG and SDDPG algorithm-based approaches
outperform with ones based on the classical DDPG algo-
rithm in different number of V2V pairs. The simulation
result difference between models based on the DDDPG and
SDDPG algorithm is small even when the number of V2V
pairs increases. With N = 30, the average performances
of the DDDPG and SDDPG algorithm-based approaches are
almost identical. The performance of the scheme based on
the SDDPG algorithm is better than the DDDPG algorithm in
some cases. However, the DDDPG algorithm uses N neural
networks for actor function and N neural networks for critic
function. Meanwhile, in the SDDPG algorithm, we share
one actor network and one critic network for all the agents.
Therefore, the computational processing andmemory storage
used for theDDDPG algorithm-based approach ismany times
higher than the SDDPG algorithm when the number of V2V
pairs increases.

Next, we compare EE performance results of the net-
work using the SDDPG algorithm-based approach in dif-
ferent output dimensions of the embedding layer in Fig. 6.
With the number of V2V pairs in the network N = 30,
we can achieve the best performance while setting the output
dimension of the embedding layer to Dims = 5. The higher
output dimensions in the embedding layer do not guarantee

FIGURE 6. The EE performance of the network by using the SDDPG
algorithm with different output dimensions of embedding layer in
multi-agent power allocation problem in D2D-based V2V communications
with the number of V2V pairs, N = 30.

FIGURE 7. The EE performance of the network by using the DDDPG,
SDDPG and DDPG algorithm in multi-agent power allocation problem in
D2D-based V2V communications while considering different values of
SINR requirement, γ ∗.

better performance. However, the variance of models with the
higher output dimensions of the embedding layer is lower.

Moreover, in Fig. 7, we present the performance of the
network with different values of SINR requirements γ ∗ in
models using the DDDPG, SDDPG, and classical DDPG
algorithm. As we can see from Fig. 7, when the value of SINR
requirement γ ∗ is too high, the EE result degrades due to the
decease in the number of V2V links that satisfy QoS require-
ments. The performance of the SDDPG algorithm-based
approach is better than the ones using the DDDPG algorithm
when we choose the γ ∗ high. In addition, the effectiveness of
our proposed algorithms, SDDPG and DDDPG, is superior to
the classical DDPG algorithm for multi-agent power control
problem in D2D-based V2V communications.

Finally, we evaluate the processing time of our proposed
models during test time after neural networks being trained in
comparison with other approaches. Table 2 presents the aver-
age processing time in different scenarios. By using our pro-
posed models, each V2V user can choose the power level to
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TABLE 2. The running time of our proposed models in comparison with
other approaches.

maximise the EE performance of the network in milliseconds
while satisfyingQoS requirements. Particularly, we only need
21.1ms and 28.07ms to solve the power allocation problem in
D2D-based V2V communications with the number of V2V
pairs, N = 30, by using the DDDPG and SDDPG algorithm,
respectively. On the other hand, the method based on the log-
arithmic inequality algorithm in [12] needs 145.6ms to solve
a similar problem with the same environment parameters.
Therefore, the results suggest that our proposed models are
promising techniques for real-time scenarios.

VI. CONCLUSION
In this paper, we proposed two models based on the DDDPG
and SDDPG algorithm to solve the multi-agent energy-
efficient power allocation problem in D2D-based V2V com-
munications. By utilising the advantage of neural networks
and the embedding layer, our proposed models can overcome
the limitations of existing approaches. The simulation results
outperformed other base-line algorithms in terms of the EE
performance of the network, computational complexity, and
memory storage. The computational complexity and mem-
ory storage of the solution can be significantly reduced by
using the SDDPG algorithm when the number of V2V pairs
increases. In the future, we will investigate more efficient
multi-agent learning approaches and more advanced deep
learningmodels in order to improve the learning convergence,
reduce the training variance, and reduce the algorithm’s com-
putational complexity.
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