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ABSTRACT The traction force of heavy-duty locomotive is reduced significantly and unable to fulfill
the actual traction demand when the wheel slip phenomenon occurs. Aiming at this problem, an adhesion
control method is proposed in this paper. The proposed method achieves online search of optimal traction
torque based on adhesion coefficient-slip ratio relationship which is analyzed using Polach model. The
optimal traction torque is the maximum torque which is operating under current wheel-rail condition
without slip phenomenon. The proposed method detects wheel slip phenomenon by wheel slip velocity and
wheel acceleration. Each axle in locomotive achieves individual traction torque adjustment by utilizing the
advantage of axle control system. Considering the complexity of real heavy-duty locomotive, a co-simulation
model is proposed by usingMATLAB/Simulink to build the electric power circuit and control system as well
as SIMPACK to build the locomotive mechanical system. The simulation is realized based on the StarSim
real-time simulator platform and the experimental results verify the effectiveness of the proposed method.

INDEX TERMS Adhesion control, axle traction control, heavy-duty locomotive, optimal traction torque.

I. INTRODUCTION
With the rapid development of heavy-duty transportation,
the requirements for traction performance and transportation
capacity of heavy-duty locomotives are increasing [1]. Thus,
the locomotive must be able to steadily provide the traction
force to satisfy the actual traction demand with the increasing
load [2]. Adhesion utilization of wheel-rail plays an important
part to ensure the stabilization of traction force [3]. Therefore,
it is crucial to research effective adhesion control methods
to improve adhesion utilization and ensure the stable traction
force to fulfill the actual demand [4].

In fact, rail generates adhesion force to wheel due to the
adhesion utilization of wheel-rail when the wheel moves
relative to the rail. The adhesion force is as the traction
force of the locomotive. The adhesion utilization of wheel-
rail is strongly affected by the wheel-rail conditions such
as water, oil, and so on [5], [6]. When the force generated
by the traction torque is over the maximum adhesion force
that the rail can provide, the wheel slip phenomenon occurs.
As a result, the traction force is decreased significantly,
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and both wheel and rail can suffer significant damage [7].
Therefore, the control method must be able to restrain wheel
slip phenomenon as soon as possible when wheel-rail condi-
tion became bad and adjust the traction torque at an appropri-
ate value to achieve excellent adhesion performance.

Much research and application have focused on the adhe-
sion control. Generally, the adhesion control methods can be
divided into the methods based on re-adhesion. In [8], [9],
the traction torque is greatly reduced when the wheel slip
phenomenon occurs and gradually restoredwhen the slip phe-
nomenon stops. Yuan adds nonlinear model predictive control
in his method [10]. Song develops the fault-tolerant adaptive
control strategy with virtual parameters-based approach [11].
Gao uses the self-structuring neural networks in the fault
tolerant control for high speed trains [12]. Modern methods
try to preserve the adhesion state at the optimal operation
range to obtain the maximum adhesion utilization [13]–[15].
In [16], disturbance observer is used to estimate the adhe-
sion characteristic and quickly search the optimal adhesion
zone. Huang Z adopts forgetting factor recursive least-square
algorithm to estimate the optimal slip ratio [17]. Sadr designs
the adhesion coefficient estimation strategy by constructing
the locomotive acceleration model [18]. Spiryagin estimates
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the adhesion coefficient based on wheel speed and traction
torque [19]. Castillo uses neural network to estimate the
adhesion coefficient in ABS system [20]. Liu applies the
fuzzy control method in adhesion control [21]. In [22], [23],
the methods achieve the estimation by the Extended Kalman
filter and the Unscented Kalman filter.

The HXD2 heavy-duty locomotive has the characteristic
of heavy load, which needs powerful and stable traction
force to satisfy the actual traction demand. The re-adhesion
methods have fast response and easy adjustment, which can
restrain the slip phenomenon effectively. However, they are
hard to preserve the adhesion state at optimal state. The
relevant adhesion performance still needs further optimiza-
tion. Modern methods generally can achieve optimal adhe-
sion utilization. But the relevant algorithms are usually so
complex that they are difficult to achieve ideal control result
in practical engineering.

The application object of the adhesion control is the
electric locomotive, but the actual characteristics of trac-
tion control system are hardly considered in the previous
research. At present, the common locomotive traction control
systems are mainly divided into two modes. One is axle trac-
tion control, which one motor is controlled by one converter.
The other is bogie traction control or vehicle traction control,
which two or four motors are controlled by one converter.
There is a huge gap in control among different traction control
systems. Therefore, it has a significant engineering value for
considering these differences in adhesion control research.

The main contribution of this paper is as follows.
An adhesion method considering the axle traction control
system is proposed. The method online obtains the optimal
traction torque based on re-adhesion method. It achieves the
maximum adhesion utilization without complex computa-
tion, which improves the traction force as much as possi-
ble. And by taking advantage of the axle traction control
system, each locomotive axle can individually adjust the
traction torque during the adhesion control process. To imple-
ment this method, a co-simulation model is simulated by
using MATLAB/Simulink to build the electric power circuit
and control system as well as SIMPACK to construct the
locomotive mechanical system.

This paper is organized as follows. The theory of wheel-
rail adhesion is introduced in Section 2. The locomotive
multi-body model using SIMPACK is presented in Section 3.
The proposed adhesion control method for online search
optimal traction torque is discussed in Section 4. The verifi-
cation of the proposed method in StarSim real-time simulator
platform is discussed in Section 5. The conclusion is provided
in Section 6.

II. WHEEL-RAIL ADHESION
When the wheel contacts with the rail, the elastic deformation
is produced under vertical pressure generated by axle load
FG. Elliptic patch is caused by the elastic deformation in
the wheel-rail contact area. The elliptic patch divides into
adhesion area and slip area [24]. There is relative slip in the

FIGURE 1. Wheel-rail contact and force analysis.

slip area. The wheel velocity is greater than the locomotive
velocity vt due to the relative slip. The difference is called slip
velocity vs [25]. The relation is presented in Equation (1).

vs = ωr − vt (1)

In Equation (1), ω represents the wheel angular velocity, r
represents wheel radius.

Driven by the traction torque T , the wheel generates a
longitudinal force Ft to the rail when the wheel moves rel-
ative to the rail. At the same time, the rail also produces an
opposite reaction force Fad to the wheel, that is adhesion
force. The wheel-rail contact and force analysis is shown
in Fig. 1.

III. LOCOMOTIVE MULTI-BODY MODEL
The wheel-rail adhesion behavior is complex, which has
strong nonlinearity and time-vary property [26]. Furthermore,
the wheel-rail adhesion can be influenced by the mechani-
cal structures of the electric locomotive [27]. The wheel-set
single axle model is generally used to analyze the adhesion
behavior [28]. However, it ignores the integrity of locomotive
as well as the interaction among the different axles. In com-
parison, the multi-body model can fully simulate the adhe-
sion dynamic response under the influence of the complex
mechanical structure of locomotive.

The HXD2 electric heavy-duty locomotive is selected as
the research object in this paper. HXD2 is an eight-axle
electric locomotive. It consists of two identical four-axle
locomotives. Therefore, we only analyze one four-axle loco-
motive in this paper. The multi-body model of locomotive
is established by using the multi-body software SIMPACK.
The integral multi-body model in SIMPACK is shown
in Fig. 2.

The locomotive model has a B0-B0 wheel arrangement,
which each bogie has two axles. The bogie model con-
sists of primary suspension and secondary suspension which
are formed of spring elements and damper elements. The
spring elements dynamically simulate the interaction of force.
The damper elements are used to attenuate the vibration.
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FIGURE 2. Integral multi-body model in SIMPACK.

FIGURE 3. Bogie model in SIMPACK.

The track uses the elastically foundation model which pre-
vents unrealistic force values during simulation. The bogie
model is shown in Fig. 3.

Through the multi-body software, the interaction among
locomotive mechanical structure is accurately simulated in
longitudinal, transverse and vertical direction. It makes the
wheel-rail dynamic behavior close to the actual working
condition.

The resistance of locomotive is complex which is
influenced by many factors during operation. Thus,
the empirical formula based on practical engineering is
usually used to compute resistance in simulation. The
resistance of HXD2 heavy-duty locomotive Fd is shown
in Equation (2).

Fd (vt ) = (0.84+ 0.0012 · vt + 0.000313 · v2t ) ·M · g (2)

In Equation (2),M represents the total locomotive weight,
g represents the gravity acceleration.

IV. ONLINE SEARCH OPTIMAL TORQUE METHOD
A. MAXIMUM TRACTION FORCE BASED ON
ADHESION CHARACTERISTIC CURVE
Currently, Polach model [29] is usually used to calculate
the adhesion force in heavy-duty locomotive traction control.

FIGURE 4. Characteristic curve of adhesion.

The relevant formulas are presented in Equation (3), (4), (5).

Fad =
2µFG
π

[
kAε

1+ (kAε)2
+ arctan (ksε)

]
(3)

µ = µ0

(
(1− A) e−Bvs + A

)
(4)

A =
µ∞

µ0
(5)

In Equation (3), µ represents the adhesion coefficient, kA,
kS respectively represent reduction factor in the adhesion area
and in the slip area, ε represents gradient of the tangential
stress in adhesion area,µ0 represents maximum friction coef-
ficient at zero slip velocity,µ∞ represents friction coefficient
at infinity slip velocity, A represents ratio of friction coeffi-
cientsµ∞/µ0,B represents coefficient of exponential friction
decrease (s/m).

In order to reflect the slip degree, the slip ratio [30] is
presented in Equation (6).

λ =
vs
vt

(6)

Adhesion characteristic curve [31], which represents the
relationship of adhesion coefficient and slip velocity or ratio,
is usually used to reflect wheel-rail adhesion state in practical
engineering. In this paper, the adhesion coefficient-slip ratio
relationship is adopted as shown in Fig. 4.

As shown in Fig. 4, the peak point of the adhesion
characteristic curve is corresponding to the maximum adhe-
sion coefficient. The adhesion characteristic curve can be
divided into two parts by this point. The left part repre-
sents the adhesion area and the right part represents slip
area. In adhesion area, the slope of the curve is positive,
the adhesion coefficient increases with the slip ratio. On
the contrary, in slip area, the adhesion coefficient decreases
with the increase of the slip ratio. With the traction toque
increasing, Ft is greater than the maximum Fad which cur-
rent wheel-rail condition can provide. It causes the slip ratio
to increase sharply. And the adhesion coefficient rapidly
decreases coming with it. As a result, the normal adhe-
sion of wheel-rail is lost, and the wheel slips. Equation (3)
shows that locomotive traction force is proportional to the
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FIGURE 5. Axles classification.

adhesion coefficient. Obviously, the maximum traction force
can be safely obtained when the operating point near the left
side of peak point. Therefore, maintaining the operation point
at the adhesion area, especially near the peak point, is the
key factor to avoid the wheel slip phenomenon and obtain
the optimal traction performance.

B. ONLINE SEARCH USING THE ADVANTAGE
OF AXLE TRACTION CONTROL SYSTEM
The heavy-duty locomotive is generally provided with axle
traction control system. In axle control systems, each motor
is equipped with one converter, which means that each motor
can individually control the output traction torque. It is flexi-
ble for each axle to adjust the torque during adhesion control
and conducive to the coordination among axles.

Based on the advantages of axle traction control system,
this paper proposes an adhesion control method which online
searches of the optimal traction torque. The method divides
the four axles into two categories. The axle which first
encounters wheel slip phenomenon is defined as the search-
ing axle, and the other axles are as the receiving axles. For
convenience to explain the method, this paper assumes the
front axle towards moving direction as the searching axle and
the other axles as the receiving axles, shown in Fig. 5.

The proposed method is focused on the adhesion control
during acceleration. The adhesion control system detects the
slip phenomenon by comparing the slip velocity and the
wheel acceleration of each axle with their predetermined
values. The predetermined values are the threshold of slip
phenomenon which were obtained from many experiments.
If the slip velocity or acceleration exceeds the predetermined
value, there is a slip phenomenon.

When the wheel-rail condition becomes severe, the slip
phenomenon triggers the adhesion control system. Based on
the above classification, the searching axle searches the opti-
mal traction torque, which is the maximum torque operating
under current wheel-rail condition without slip phenomenon.
The relevant algorithm is shown in next part. The remaining
receiving axles takes the optimal torque information trans-
mitted by the searching axle as the reference and quickly
adjusts the traction torque. Through the cooperation between
the searching axle and the receiving axle, all axle’s wheel

FIGURE 6. Block diagram of adhesion control system.

can quickly restrain slip phenomenon and restore the normal
adhesion performance under current wheel-rail condition.
The traction motor is three-phase asynchronous motor which
is controlled using vector control and voltage Space Vector
Pulse Width Modulation (SVPWM). The block diagram of
the adhesion control system is shown in Fig. 6.

C. ALGORITHM FLOW
The initial traction torque per axle is T0. The locomotive
starts operating normally on the rail. The flowchart of the
optimal torque online search algorithm is shown in Fig. 7.
The algorithm process is mainly divided into four phases.

In phase 1, the searching axle first happens to slip when
the wheel-rail condition becomes severe. The traction torque
of the searching axle is rapidly reduced to suppress slip
until the slip velocity and wheel acceleration less than the
predetermined values. At this moment, the traction torque
is T1.

T1 = T0 − C1 · t1 (7)

In Equation (7),C1 represents the adjustment coefficient of
torque decrease, t1 represents the period of torque decrease.
In phase 2, After the slip phenomenon stopping, the trac-

tion torque is slightly increased step by step. With the traction
torque increasing, the wheel slips again when the force driven
by traction torque exceeds the maximum adhesion force.
From the discussion in part A of IV, the current operating
point is between adhesion area and slip area, which near the
peak point of adhesion characteristic curve. Record the trac-
tion torque value Tmax at this moment, which is the maximum
threshold value under the current wheel-rail condition. The
wheel will slip when the output traction torque greater than
or equal to it.

Tmax = T1 + C2 · t2 (8)

In Equation (8),C2 represents the adjustment coefficient of
torque increase, t2 represents the period of torque increase.
In order to avoid secondary slip phenomenon and make the

operating point near the left side of peak point, the traction
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FIGURE 7. Flow chart of optimal torque online search control.

torque should be adjusted slightly smaller than the maximum,
that is, the optimal traction torque Top.

Top = K · Tmax (9)

In Equation (9), K represents the adjustment coefficient of
optimal traction torque.

In phase 3, due to the wheel slip after phase 2, the pro-
cess of torque decreasing in phase 1 is executed again after
obtaining the optimal traction torque value. When the slip
phenomenon ends, the traction torque is quickly restored
according to Top.

T3 = T1 + C3 · t3 (10)

In Equation (10), T3 represents traction torque after restor-
ing which equals to Top, C3 represents the adjustment coeffi-
cient of optimal traction torque restoration, t3 represents the
period of torque restoration.

In phase 4, the process mainly confirms whether the loco-
motive has left the bad wheel-rail condition or not. Repeat
the process in phase 2. If the new maximum traction torque
Tnew is less than or equal to the original maximum traction
torque Tmax, it represents that the locomotive is still in the bad
wheel-rail condition. Then the Tmax value will update to Tnew.
If there is no slip phenomenon while the Tnew exceeds Tmax,
it represents that the locomotive has driven out of the bad
wheel-rail condition. Then the control process is terminated,

TABLE 1. Locomotive parameters.

TABLE 2. Traction motor parameters.

and the traction torque is restored to the initial value before
slip phenomenon.

V. SIMULATION ANALYSIS
In order to verify the correctness of the proposed method,
a co-simulation model is proposed. The electrical traction
system and control system are built in MATLAB/Simulink,
and the locomotive mechanical system is built in SIMPACK.
The main locomotive parameters are shown in Table 1. The
traction motor parameters are shown in Table 2. The block
diagram of the co-simulation model is shown in Fig. 8.
Generally, the actual locomotive testing of adhesion con-
trol is costly and it needs to coordinate a large number
of manpower and material resources. The real-time simu-
lator can efficiently test the accuracy and feasibility of the
algorithm with low cost, which is widely used in adhesion
control implement. Therefore, the simulation in this paper
is done in StarSim real-time simulator platform as shown
in Fig. 9.

Dry, wet, and oil wheel-rail conditions which are the
most common in real environments are tested in the sim-
ulation. The calculation coefficients of different rail condi-
tions are shown in Table 3. Furthermore, the sudden change
between two different wheel-rail conditions are designed to
verify the correctness and efficiency of the proposed method.
In step one, the wheel-rail condition changes from dry to wet.
In step two, the condition gets worse, the wheel-rail condition
changes from wet to oil. In step three, the condition returns
to dry from oil.
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FIGURE 8. Co-simulation model.

FIGURE 9. Real-time simulator.

TABLE 3. Calculation coefficients of different rail.

The adhesion coefficient of searching axle is shown in
Fig.10. The locomotive initially runs on dry condition. The
adhesion of wheel-rail is good and the wheel slip phe-
nomenon does not occur. The adhesion coefficient maintains
stably around 0.28.

The adhesion coefficient decreases sharply at 26 s. This
represents that wheel slip phenomenon occurs while the
wheel-rail condition changes from dry to wet. After a short
time, the adhesion coefficient is stabilized around 0.23. This
represents that the slip phenomenon triggers the adhesion
control, the traction torque is adjusted effectively under pro-
posed control algorithm and the adhesion of wheel-rail is
gradually recovered. Similarly, at 60 s, the adhesion coef-
ficient gradually stabilized around 0.18 after the wheel-rail
condition changes from wet to oil. At 80 s, the condition

FIGURE 10. Adhesion coefficient of searching axle.

FIGURE 11. Characteristic curves of adhesion in different conditions.

changes to the initial dry condition, the adhesion coefficient
returns to the normal value in dry condition.

Comparing the above adhesion coefficient value with the
adhesion characteristics curves in Fig. 11, which are based
on Table 3, the operating points under different wheel-rail
conditions all in the range near the peak value in adhesion
coefficient curves. It can be verified that the algorithm can
effectively find the optimal traction torque under different
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FIGURE 12. Locomotive velocity and wheel velocity of each axle.

FIGURE 13. Slip ratio of each axle.

wheel-rail conditions and restrain the slip phenomenon and
improves the adhesion utilization as much as possible.

The locomotive velocity vt and wheel velocity vd of each
axle are shown in Fig. 12 and the relevant slip ratio is shown
in Fig. 13. Axle 1 which serves as the searching axle first
slip when the wheel-rail condition changes. And axle 2, 3 and
4 which serve as the receiving axles happen to slip in succes-
sion. The traction torque of each axle is shown in Fig. 14.
The receiving axles keep the lower torque to avoid secondary
slip when the Top is not found. After the Top is received,
the receiving axles rapidly restore the torque to this value.
The four axles slip ratio is finally stabled at 0.3%, 1.2%,
0.8% respectively in dry, wet, oil wheel-rail condition under
the proposed method. And the slip ratio is meet the adhesion
characteristics curves in Fig. 11. Comparing the four axles,
the number of times which receiving axle occurs slip are less
than searching axle. It can be verified that slip phenomenon
is effectively reduced when the optimal traction torque is
found.

The average traction force of the locomotive is shown
in Fig. 15. Under the adjustment of the algorithm, the average
traction force is kept stably under all dry, wet, oil condi-
tions. It can efficiently guarantee the actual traction force of
locomotive regardless of wheel-rail conditions.

FIGURE 14. Traction torque of each axle.

FIGURE 15. Average traction force of whole locomotive.

VI. CONCLUSION
In this paper, an adhesion control method of heavy-duty loco-
motive is proposed. The method considers the advantage of
the axle traction control system. The optimal traction torque
which is suitable for operating on current wheel-rail condition
is searched online. The co-simulation model is established
which uses MATLAB/Simulink to build electrical traction
system and control system as well as SIMPACK to build the
locomotive mechanical system. The proposed method is veri-
fied under a changed wheel-rail condition including dry, wet,
and oil, which are the most common conditions in practical
engineering. The simulation is implemented on the StarSim
real-time simulator platform. The results illustrate that the
proposed method effectively restrains the slip phenomenon,
improves the adhesion utilization, and guarantees the actual
traction force of locomotive.
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