
Received October 20, 2019, accepted November 2, 2019, date of publication November 7, 2019, date of current version November 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2952173

The Obstacle Detection Method of
UAV Based on 2D Lidar
LANXIANG ZHENG , PING ZHANG , JIA TAN , AND FANG LI
School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China

Corresponding author: Ping Zhang (pzhang@scut.edu.cn)

This work was supported by the Science and Technology Planning Project of Guangdong Province, China, under Grant 2017B010116001.

ABSTRACT With the widespread use of UAVs in daily life, there are many sensors and algorithms used
to ensure flight safety. Among these sensors, lidar has been gradually applied to UAVs due to its stability
and portability. However, in the actual application, lidar changes its position with the movement of the UAV,
resulting in an offset in the detected point cloud. What’s more, when the lidar works, it scatters laser light
from the center to the surroundings, which causes the detected point cloud to be externally sparse and dense
inside. This point cloudwith uneven density is difficult to cluster using common clustering algorithms. In this
paper, a velocity estimation method based on the polynomial fit is used to estimate the position of the lidar
as it scans each point and then corrects the twisted point cloud. Besides, the clustering algorithm based on
relative distance and density (CBRDD) is used to cluster the point cloud with uneven density. To prove the
effectiveness of the obstacle detection method, the simulation experiment and actual experiment were carried
out. The results show that the method has a good effect on obstacle detection.

INDEX TERMS UAV, obstacle, lidar, point cloud, correction, clustering, CBRDD.

I. INTRODUCTION
In the last decade, Unmanned Aerial Vehicles (UAVs)
received increasing attention from academia. UAV is
an autonomous, semi-autonomous or remote-controlled
unmanned aerial vehicle with lightweight, small size, high
maneuverability, good concealment and adaptability. UAVs
can perform dangerous, difficult-to-operate air applications
and reduce costs [1]. It has beenwidely used in search and res-
cue [2], aerial mapping [3], target tracking [4], autonomous
formation flight [5], collaborative search [6]. Among them,
obstacle detection is one of the most important guarantees for
the success of applications.

Obstacle detection is essential for autonomous safe flight
of UAVs. Having obstacle information along with their loca-
tion allows the generation of accurate path for the application.
Obstacle information can be reflected in two ways: global
obstacle information and local obstacle information. Global
information is typically performed using grids, such as occu-
pancy maps [7]. In each grid cell, the probability of the pres-
ence of an obstacle is calculated based on the range sensor
and the position of the sensor itself. Especially, This method
is used in conjunction with uncertainty probability sensor

The associate editor coordinating the review of this manuscript and

approving it for publication was Noor Zaman .

models to handle uncertainty in sensor measurements [8].
This method has been widely used in UAVs but comes with
a computational cost and memory usage. The local obstacle
information is different from the global obstacle information,
and it is more concerned with the relationship between the
obstacle and the current position of the UAV. This method
does not take into account the current position of the UAV,
using sensors to detect obstacle information [9]. Local obsta-
cle information is more like local optimization while global
obstacle information is more inclined to global optimiza-
tion, and both methods have better effects. The two can be
converted to each other through the position of the UAV
(the position of the sensor).

The obstacle detection system can detect obstacles in the
environment in real-time during the flight to ensure that the
UAV has a clear understanding of its surroundings, and it is
also a prerequisite for UAVs to automatically avoid obsta-
cles [10]. In the course of flight, UAV relies on the onboard
environment detection sensors to perceive the environment.
The sensors should be real-time and effective, and mainly
have the following types [11]: vision sensors [12], [13], lidar
sensors [14], [15], and ultrasound sensors [16], [17]. Com-
paring with other kinds of sensors, lidar sensors bears several
advantages such as being less impacted by the environment
(weather, cloud cover) and flying conditions, more precision

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 163437

https://orcid.org/0000-0002-2707-9180
https://orcid.org/0000-0003-0803-5462
https://orcid.org/0000-0003-4725-1467
https://orcid.org/0000-0002-4195-9475
https://orcid.org/0000-0001-8116-4733


L. Zheng et al.: Obstacle Detection Method of UAV Based on 2D Lidar

and density data, and high flexibility. Thus, it has been widely
used in obstacle detection systems.

In the case of obstacle detection, attention was often given
to the surveying accuracy of the point cloud from lidar, which
is more important for improving detection accuracy. The
cause of the error mainly comes from the fixed position [18],
sensormeasurement error [19], andmotion error [20].Motion
error is mainly considered in this paper. If the only motion
of the lidar is to rotate the laser beam, the acquired point
cloud can accurately reflect the obstacle distribution in the
environment. However, if the lidar itself is moving with the
UAV, accurate mapping requires knowledge of the lidar atti-
tude during continuous laser ranging. There are two ways to
solve this problem [21], one is to speed up the scanning speed
of the lidar, and the other is to correct the point cloud. The
former is limited by the hardware of the lidar and is difficult to
implement. The latter uses position estimation (via GPS/INS)
to map the laser points into a desired coordinate system.
Position estimation can be implemented by GPS/INS [22],
or visual odometry systems [23]. GPS/INS is more flexible,
less affected by the environment and less computation, widely
used in position estimation. Specifically, comparing with
GPS, INS has higher instantaneous accuracy and is enable to
estimate UAV heading, so it is more suitable for the position
estimation. Once the position of the lidar during continuous
laser ranging is obtained, the core process of point cloud
correction is to construct an observation error equation and
solve this equation.

In this paper, the primary goal is to develop a simple, cheap
and utilizable obstacle detection system that provides effec-
tive obstacle information for UAVs or robots. Although many
studies use lidar to detect obstacles, the effects of movement
on the point cloud are ignored, which affects the accuracy of
detecting obstacles. To this end, a novel and effective method
to correct the point cloud obtained by lidar is proposed. This
method estimates the position of the UAV when the lidar
scans each point and then corrects the point cloud through
relationship transformation. After analyzing the point cloud
characteristics obtained by laser radar, a clustering algorithm
based on relative distance and density(CBRDD) is proposed
to cluster the poind cloud with uneven density.

To summarize, the contributions of our work include the
following.
• Proposing a cost-effective obstacle detection system.
The hardware of this system is simple and easy to fix.
The cost depends on the price of the lidar, therefore, it is
suitable for large-scale swarm applications.

• A point cloud correction method is proposed to estimate
the position of the UAV when the lidar scans each point.
This method can correct the distortion caused by the
UAVs movement.

• Proposing a clustering algorithm for point clouds with
uneven density obtained by lidar, which can be extended
to apply to a 3D point cloud if needed.

• The obstacle detection system has a simple hardware
structure, has good robustness and versatility, and can

be applied to various mobile robots and even 3D motion
robots.

The rest of this article is organized as follows: related
work is covered in Section II. In Section III, the frame-
work of the obstacle detection system and the experimental
platform of UAV are introduced. Section IV describes the
point cloud correction method and related conversion rela-
tionships in detail. Section V describes CBRDD and shows
the pseudo-code for the method.We present our experimental
results in Section VI. Finally, Section VII concludes the
paper.

II. RELATED WORK
The steps of obstacle detection generally contain three
parts [24]: obtaining obstacle information, point cloud pre-
processing and point cloud clustering. Among them, obstacle
information is collected by lidar, and stored in point clouds.
Point cloud preprocessing mainly includes correction and
filtering, in which point cloud correction is to restore the
distorted point cloud, and filtering is to remove unneces-
sary points. Point cloud clustering extracts ordered obstacle
information from cluttered point clouds and forms intuitive
obstacle information.

The reason of the distorted point cloud is that the lidar
has extrinsic motion during continuous laser ranging. In this
case, a method is proposed to correct the distorted point
cloud, using the position compensation method. Such as
using the ICP (Iterative Closest Point) algorithm to obtain
the motion of the lidar when two adjacent point clouds are
obtained, and establishes a compensation function to correct
the point cloud [25]. Although this method achieves good
results, it requires a large amount of computation. Another
way is to use the INS to estimate the position of the lidar
when scanning each point, and then correct the point cloud
to the real coordinate system [26]. However, the operating
frequency of the INS is difficult to match the frequency of
the lidar’s scanning of each point, so it is needed to estimate
the position of the lidar. Linear interpolation is a commonly
used method for estimating the position of lidar. This method
estimated the position of the lidar when it scans each point
by calculating periodic IMU/INS data, and then constructs a
transformation equation between the estimated position and
the position at which the sequence is returned, mapping the
point to the actual position [20], [27].

Clustering obstacle points can obtain information such as
the shape, size, angle, and position of the obstacles, so that
the UAV can fully recognize the obstacles and adopt effective
strategies to avoid obstacles. Several algorithms have good
results, for example, the algorithm for feature extraction and
matching on the point cloud obtained by multi-point clouds
fusion is used to identify obstacles [28], [29], which can
extract the shape of obstacles and match the point cloud
models in the library to classify types of obstacles. Convo-
lutional neural networks [30], [31] are also used for obstacle
recognition. However, these methods usually take more time
consuming and are not conducive to UAV with high-speed

163438 VOLUME 7, 2019



L. Zheng et al.: Obstacle Detection Method of UAV Based on 2D Lidar

and weak computing power. For most autonomous robots,
the category of obstacles is not important, and knowing the
size and position of obstacles is enough to avoidance. In this
case, K-MEANS [32], DBSCAN [34], Euclidean clustering
method [33] are widely used. The iterative DBSCAN algo-
rithm divides the points in the sequence into different clus-
ters to identify obstacles in the environment [34]. DBSCAN
algorithm can’t accurately segment obstacles with similar
density, so the DBSCAN algorithm can be combined with
K-MEANS algorithm [35] to improve the obstacle clustering
effect. A simple range difference of neighboring pixels (in
scan angle) would perform the same effects as well [36]. This
method is efficient and has a small amount of calculation, but
the threshold in this method needs to change as the distance
from the obstacle to the lidar changes. Besides, obstacles
can be divided into circular, linear and rectangular clusters
according to the number of points in the cluster and the
distribution of points [37].

In conclusion, the clustering algorithm can effectively
divide the disordered point cloud into classes, which makes
it easier for the UAV to perceive the environment. The clus-
tering algorithm should have a better clustering effect, and
also requires a lower amount of computation so that it can be
operated on an onboardmicroprocessor with weak computing
power.

In this paper, a low-cost obstacle detection system based
on a 2D lidar is proposed, which can detect obstacles in the
environment during the movement of UAV. To improve the
accuracy of obstacle clustering, motion state estimation is
used to estimate the position of lidar, and then to solve the
point cloud distortion caused by motion. Besides, the tradi-
tional clustering algorithm is less robust when clustering on
point clouds with uneven density. In this case, the clustering
algorithm based on relative distance and density is used to
solve the problemwhich has a better effect than the traditional
clustering algorithm.

III. SYSTEM FRAMEWORK
The UAV system framework used in this paper is shown
in Fig. 1. It is mainly divided into three parts: obstacle detec-
tion sensor, microprocessor, and flight platform. In this sys-
tem, the DJI Matrice 100 (M100) is used as a flight platform,
a fixed 2D lidar is used as an obstacle detection sensor, and
Raspberry Pi 3B (RPi) as a microprocessor.

M100 is one of the most commonly used flight plat-
forms, equipped with an autopilot called the N1 flight con-
troller that controls its stability while feeding back the flight
data (velocity, heading, acceleration, position, etc.) of the
UAV to the user through the UART. The obstacle detec-
tion system uses a low-cost 360◦ 2D lidar which center is
fixed as close as possible to the center of the UAV, and
the lidar initializes its direction towards the heading of the
UAV.

As shown in Fig. 1, the flight data acquired from the
M100 and the point cloud returned by the lidar are sent to
the RPi via the UART. After that, a series of processing will

FIGURE 1. Lightweight obstacle detection system of UAVs: obstacle
detection sensor (green boxes), flight platform (orange boxes),
microprocessor (blue boxes).

be performed on the RPi, displayed in blue color dotted boxes
in Fig. 1, so that obstacle information can be obtained.

IV. POINT CLOUD CORRECTION
In this paper, lidar consists of a fixed part and a rotational
part: the former is for fixing on the UAV, while the latter
realizes 360◦ environment scanning with the utilization of
rotated measuring units, to obtain environmental point cloud
of the whole plane. The lidar packs and transmits obstacle
information after a work cycle, and angle and distance of each
point in the returned sequence is referenced to the position at
which the lidar starts this duty cycle. However, in practical
applications, the lidarmoves as the UAVmoves, which causes
the position of the lidar to change all the time. Therefore,
the influence of the movement on the point cloud obtained
by lidar cannot be ignored. Fig. 2 shows a simple linear

FIGURE 2. Illustration of the difference between the ideal point cloud
and the actual point cloud obtained by a motion lidar.

VOLUME 7, 2019 163439



L. Zheng et al.: Obstacle Detection Method of UAV Based on 2D Lidar

FIGURE 3. Illustration of lidar detection obstacles.

relationship between the ideal point cloud and the actual
point cloud for lidar scanning. Where the direction of UAV is
indicated by the arrow, and lidar scans clockwise. UAV starts
at the black point and moves along green points. The blue
point cloud is based on the coordinate system where the lidar
starts working, and the red point cloud is actually scanned
points by lidar. The offset error between two point clouds can
not be ignored, and the faster the UAV moves, the larger the
offset error is. Therefore, it is necessary to correct the point
cloud before it sets on practice.

A. COORDINATE SYSTEM CONVERSION
The point clouds obtained by lidar is in the polar coordi-
nates, as shown in Fig. 3, where αi represents the angle of
the i-th point relative to the initial direction of the lidar,
and ρi represents the distance between the lidar and this
point. To facilitate the calculation, it is necessary to convert
sequence from the polar coordinate system to the Cartesian
coordinate system. Assume the set S represents the data in
the Cartesian coordinate system, S = {si|i = 1, 2, . . . ,N },
si = (xi, yi). The coordinate conversion formula is as follows.{

xi = ρi cos θi
yi = ρi sin θi

(1)

B. VELOCITY ESTIMATION MODEL
Correcting the point cloud requires knowing the position of
the lidar (the UAV) when the lidar scans each point. In gen-
eral, the position of the UAV can be obtained by its GPS or
IMU, but the frequency at which the position is obtained can-
not correspond to the frequency at which each point scanned.
Therefore, it is necessary to estimate the position of the UAV
when the lidar scans each point. Comparing with GPS, IMU
has higher instantaneous accuracy and is enable to estimate
UAV heading, so it is used for the position estimation. The
velocity we used comes from the feedback data from the
M100, which is accurate compared to the velocity we cal-
culated from the IMU’s original data.

In this paper, the polynomial fitting algorithm is used to
fit the velocity and estimate the velocity curve, and then
calculate the position of lidar at each scanned point. It is
well known that using the speed of the UAV closer to the
target time for fitting, the estimated speed is more accurate.
Therefore, it is necessary to know that the correspondence
between the time of lidar scans the i-th point and the time of
the latest UAV speed is acquired. Assuming the time that the
lidar start working before the UAV is toffset . The lidar takes
time TL to complete a work cycle, and it will package the
scannedN points of obstacles to the user after at the end of the
work cycle. The velocity information is obtained from IMU
with a period TU . j indicates j-th speed obtained by the UAV
before the i-th point, then the following relationship exists
between i and j.

j =
⌊
(cN + i)TL − Ntoffset

NTU

⌋
(2)

In the above formula, c is the number of cycles that the lidar
has scanned, and N is the number of points in the point cloud.
bxc means rounding down x.
Then, the polynomial fitting algorithm is used to estimate

the velocity vLi of UAV corresponding to each point i in the
sequence. Assuming that Vj = {vj−k , vj−k+1, · · · , vj−1, vj}
represents speed acquired before tUj, and k represents speed
corresponding to the previous k times. Then vLi can be
expressed as

vLi = pi,0 + pi,1t + . . .+ pi,ntn (3)

where Pi = [pi,0, pi,1t, . . . , pi,n]T is a vector consisting of
coefficients of a polynomial fitting algorithm.

After obtaining the velocity vLi, the distance of the UAV
moves at the i-th point can be expressed as.

1x =
n∑
i=1

vxLi1tLi

1y =
n∑
i=1

vyLi1tLi (4)

where1tLi represents the time interval between the i-th point
and the previous point. vxLi and v

y
Li are the velocity compo-

nents along the heading and perpendicular to the heading,
respectively.

C. POINT CLOUD CORRECTION
Define the world coordinate system {W }, the UAV coordi-
nate system {U}, and the lidar coordinate system {L}. U ′

and L ′ indicate the position of UAV and lidar at the next
moment. The movement of UAV when the lidar works is
shown in Fig. 4. The deviation between the center of lidar
and the center of UAV and the deviation between the pos-
itive direction of lidar and the positive direction of UAV
are indicated by (xoffset , yoffset , θoffset ) respectively. Therefore,
the conversion between the lidar coordinate system and the

163440 VOLUME 7, 2019



L. Zheng et al.: Obstacle Detection Method of UAV Based on 2D Lidar

FIGURE 4. UAV’s motion model during one week of lidar scanning.

UAV coordinate system is as follows.

T LU = (TUL )
−1
=

cos θoffset − sin θoffset xoffset
sin θoffset cos θoffset yoffset

0 0 1

−1(5)
where T AB represents the homogeneous transformation matrix
from the coordinate system {A} to the coordinate system {B},
and T AB = (T BA )

−1. In addition, 1x, 1y, are calculated by
equation 4, representing the displacement of the UAV on the
x-axis and y-axis during the 1t time period. 1θ represent
the deflection angle of the UAV. Then the position of UAV is
changed fromU toU ′ after time1t , expressed asU → U ′ =
(1x,1y,1θ), and the transformation matrix can be defined
as.

TUU ′ = (TU
′

U )
−1
=

cos1θ − sin1θ 1x
sin1θ cos1θ 1y

0 0 1

 (6)

As shown in Fig. 4, P is a point obtain by lidar and the
measured correction of the point is P′, and the homogeneous
conversion between them is as follows.

P̃L = T LU · T
U
U ′ · T

U ′
L ′ · PL ′ (7)

V. CBRDD
When the lidar is working, it emits a laser beam to the
surroundings. The laser beam will reflect if it encounters
an obstacle, which in turn can assess the distance from the
lidar to the obstacle. Due to the special working mode of
the lidar, the point cloud of the obstacle returned is unevenly
distributed. For example, Fig. 5(a) shows the point cloud of
lidar scanning the ground and lidar is at the origin of the
coordinates, and points detected near the y-axis are denser
and points far from the y-axis are sparse. To visualize the
detection characteristics of lidar more intuitively, the pro-
cessed scanning results are shown in Fig. 5(b) and Fig. 5(c),
where Fig. 5(b) shows the distance between two adjacent
points and Fig. 5(c) shows the density distribution of points in
units of 0.2× 0.2 m2. Through Fig. 5, the following features
of the lidar can be obtained.
Feature 1: The distance between two adjacent points is

proportional to the distance from the lidar, and it is small in
which points near the lidar and is big where points far away
from the lidar.
Feature 2: Detection points close to lidar are dense and the

peripheral points are sparse, as shown in Fig. 5(c).
Due to the above features, the general clustering algorithm
does not apply to this kind of point clouds. Therefore, clus-
tering based on relative distance and density (CBRDD) algo-
rithm is used here, which has strong versatility to handle both
dense and sparse cloud points.

A. RELATIVE DISTANCE
Generally, judging whether two points belong to the same
cluster needs to compare the distance between the two points
and the threshold. Such as, in Fig. 6(a), the lidar detects an
obstacle, where A, B, and C are the corresponding points
of the laser beam on the obstacle, respectively. A and B
belong to the same cluster, if and only if the distance between
these two points is less than the distance threshold. And the
distance thresholds need real-time changes so that clustering
algorithms can be applied to a wider range of detections [36],
which is a trouble. In this case, we convert the Euclidean
distance into the relative distance so that a distance threshold
can be applied to each point.

This transformation is similar to the scaling transformation
of a triangle, as shown in Fig. 6(b). First, connect the point AB

FIGURE 5. Lidar detection characteristics.

VOLUME 7, 2019 163441



L. Zheng et al.: Obstacle Detection Method of UAV Based on 2D Lidar

FIGURE 6. The shortest distance between two adjacent points in the
point cloud.

to construct a triangle ABOL (1ABOL), then shorten the edge
OA to the unit length, while shortening the sides AB and BOL
at the same ratio. After that, a similar 1A′B′OL of 1ABOL
is constructed, as shown as the red triangle in Fig. 6(b).
1C ′A′OL can be acquired after similar treatments, shown in
the blue triangle in Fig. 6(b). In this way, we can map each
point in the point cloud to the relative coordinate system of
i-th point, and then we can select the appropriate threshold
for clustering.

When calculating the relative distance between points and
the i-th point, the reference distance bdi can be defined as

bd i =
√
x2i + y

2
i (8)

where (xi, yi) is the position of i-th point. Then the relative
distance between i-th point and j-th point can be defined as

rd i,j =

√
(xi − xj)2 + (yi − yj)2

bdi
(9)

Referring to the definition of the distance matrix, the rel-
ative distance matrix can be defined as follows, using the
reference data as a row and other data as a column.

RD =

rd11 · · · rd1N
...

. . .
...

rdN1 · · · rdNN

 (10)

Although the relative distance method is effective, there is
also a disadvantage that when the relative distance of i to j
satisfies the threshold, the relative distance of j to imay not be
satisfied. As shown in Fig. 7, A and B are two points detected
by lidar, and 1A′B′OL is a triangle based on the reference
distance OLA while 1A′B′OL is based on reference distance
OLB. When rdba just meets the threshold, it is obvious that
rdab is not satisfied. But this does not affect our clustering
algorithm, because in this method, as long as any relative
distance is less than the threshold, the two points will be
attributed to the same cluster.

FIGURE 7. Relative distances between A and B based on different
reference distances.

B. POINT CLOUD CLUSTERING ALGORITHM
The clustering algorithm used has some simplifications and
improvements on the DBSCAN algorithm [39], mainly based
on core points and edge points. All points can be divided into
core points and edge points according to the relative distance
density. The core point is the point that is closer to the cluster
center, and the edge point is the point that is far from the
center and close to the cluster boundary. The definition of
these two types of points is as follows.

Refer to the definition in CFDP [38], using σi for local rel-
ative density, σc for relative density threshold, rdc for relative
distance threshold. σi represents the number of points in the i-
th row of the relative distance matrix whose relative distance
is less than the relative distance threshold, that is, the number
of points in the point cloud whose relative distance to the i-th
point is less than the threshold, defining a binary function as
follows.

χ (x) =

{
1 x ≤ 0
0 x > 0

(11)

Then the definition of σi is as follows.

σi =
∑

i,j∈S,i6=j

χ (rdij − rdc) (12)

The local relative density of all points in the point cloud
constitutes a set σ , σ = (σ1, σ2, · · · , σN ).

Algorithm 1Calculate the Relative Distance Density of Point
Clouds
Input: The corrected point cloud S = {s1, s2, . . . , sn}; rela-
tive distance threshold rdc
Output: Relative distance density den
1: for i=1 to n do
2: selfDist[i] = distance_between(s[i], 0)
3: for j!=i and j<n do
4: RD[i,j]= distance_between(s[i], s[j]) / selfDist[i]
5: end for
6: end for
7: for i=1 to n do
8: DEN[i] = the num of RD[i]<rdc
9: end for
10: return DEN

A point that satisfies the core point decision condition
χ (σi− σc) > 0, is a core point, otherwise, it is an edge point.

163442 VOLUME 7, 2019



L. Zheng et al.: Obstacle Detection Method of UAV Based on 2D Lidar

Algorithm 2 CBRDD Algorithm Clustering
Input: All points in set S; relative density threshold denc
and relative distance threshold rdc; the relative density matrix
DEN.
Output: The cluster result.
1: Define CLUSTERS to store points, core points set

CORESET and edge points set EDGESET;.
2: for i=1 to sizeof(DEN) do
3: ifDEN[i] > denc+1 then add point s[i] to CORESET
4: elseadd point s[i] to EDGESET
5: end if
6: end for
7: while CORESET is not Empty do
8: clusterNum = clusterNum + 1
9: Establish newCluster

10: add CORESET[i] to newCluster
11: remove CORESET[i] form CORESET
12: while node[j] satisfy the condition: RD[i,j] < rdc or

RD[j,i] < rdc do
13: add node[j] to newCluster
14: remove node[i] if node[i] in CORESET
15: remove node[j] if node[j] in CORESET
16: remove node[j] if node[j] in EDGESET
17: end while
18: for node[i] in newCluster do
19: while RD[i,j]<denc do
20: add j to newCluster
21: RD[i,j] = Inf
22: RD[j,i] = Inf
23: end while
24: end for
25: CLUSTERS[clusterNum] = clusterNew
26: end while
27: for node[i] in EDGESET do
28: clusterNum = clusterNum + 1
29: Establish newCluster
30: add point to newCluster
31: CLUSTERS[clusterNum] = clusterNew
32: end for
33: return CLUSTERS

FIGURE 8. Illustration of point cloud clustering.

Then the connectivity of the point cloud is used to classify
the point cloud. As shown in Fig. 8, red dots and blue dots
are core points, and the other points are the edge points.
Starting from the red points 1 and 2, the clustering algorithm

sequentially traverses all the points that satisfy the relative
distance threshold to generate a set. The blue points in Fig. 8
are in a special cluster with only core points and no edge
points. The detailed clustering algorithm is as follows.

Assume U and E are core point set and edge point set
respectively, and sets C1,C2, · · · ,Ck store clustered points.
The clustering criteria for the points are as follows.

Step 1. Start with the first point u1 in the core point set
and put the point into the new set Ck . Move all points in
the relative distance matrix whose relative distance is less
than the relative distance threshold rdc into the set Ck . Then
remove the elements that exist both in the set U and set Ck
from the core point set U , and set the corresponding rdij and
rdji in the relative distance matrix to infinity. Remove the
elements that exist both in the set E and set Ck from the edge
point set E .
Step 2. Traversing set Ck , moving all points in the relative

distance matrix whose rdij is less than the relative distance
threshold into the set Ck . Then remove the elements that exist
both in the setU and set Ck from the core point setU , and set
the corresponding rdij and rdji in the relative distance matrix
to infinity. Remove the elements that exist both in the set E
and set Ck from the edge point set E .
Step 3. Repeat step 2 until there are no points that satisfy

the criteria. So far, the division of points belonging to the
same cluster with the core point u1 is ended.
Step 4. The above steps are repeated for the first point in

the core point set U , and ends when the core point set U is
empty. Points that are not yet assigned to each cluster at the
end are noise points, which can be divided into a new set or
discarded according to system requirements.

VI. EXPERIMENTAL RESULT
A. EXPERIMENTAL ENVIRONMENT
The algorithm is tested on the computer and UAV system
respectively. The computer is used to conduct the simulation,
and the UAV system performs practical feasibility. On the
computer, the simulation is constructed using Gazebo 7 and
ROSKinetic. As shown in Fig. 9, the platform of UAV system
is DJI’s M100 UAV, equipped with Raspberry Pi 3B and a 2D
lidar. The lidar is RPLIDAR A2, which has a detection range
of 8 m, a weight of 190 g, a scanning frequency of 10 Hz,
a resolution angle of 1◦, and returns a sequence containing
360 points after once scan. Raspberry Pi 3B’s hardware
are 4 core Broadcom BCM2837 64-bit ARMv8 processor
1.2GHz and 1GB RAM, and its operating system is Ubuntu
MATE 16.04. M100 weighs 2355g and has a maximum load
of 1169g.

B. VELOCITY ESTIMATION ALGORITHM EXPERIMENT
The parameters in the polynomial fitting algorithm will affect
the results. To select the appropriate parameters, we randomly
select 3000 data in the speed log file of the UAV’s outdoor
flight, changed the parameters, and estimating the UAV speed
of each point in the sequence. The above experiment was

VOLUME 7, 2019 163443



L. Zheng et al.: Obstacle Detection Method of UAV Based on 2D Lidar

TABLE 1. Standard deviation and time consumption of the velocity estimation algorithm.

FIGURE 9. The platform of UAV system and environmental detection
system used in the experiment.

carried out 10 times, and the standard deviation and the
time consumption of the velocity estimation algorithm under
different parameters are shown in Table 1, where the order is
represented by n and the number of fitted data is represented
by S.

As can be seen from Table 1, at the same order, the stan-
dard deviation does not decrease as the number of fitted
data increases, but gradually increasing after decreasing. This
means that there is an overfitting phenomenon, so the fitting
data cannot be too much. We noticed that there is a minimum
standard deviation at S = 6, n = 2, shown by the bold values
in Table 1, and the time consumption is small at the same
time. Therefore, s=6, n=2 is selected as the parameter of the
polynomial fit.

Then we compare the estimated path with the original path,
as shown in Fig 10. The original path is one of the flight
data fed back by M100, having a high accuracy [40]. The
estimated path is generated by estimating the velocity of the

FIGURE 10. The result of path estimation algorithm.

UAV corresponding to each point of the sequence obtained
by lidar between the two adjacent feedback data, and will be
calibrated when new feedback data is acquired. Fig. 10 are
comparisons of estimated and actual paths, and Fig. 10(b) is
a drawing of partial enlargement in the red box in Fig. 10(a).
As can be seen, the estimated path can fit the actual path and
can be used to correct the point cloud.

C. POINT CLOUD CORRECTION ALGORITHM SIMULATION
EXPERIMENT
To verify the feasibility and effectiveness of the point cloud
correction algorithm, we designed a simulation experiment
and built a 3D scene on Gazebo as shown in Fig 11. In this
scene, the red rectangular blocks are impenetrable obstacles
which are randomly distributed. The UAV flies at a speed of
2m/swith fixed altitude. The lidar scanning range is R = 8m,
the working frequency is 10Hz, the adjacent scanning interval
is 1◦, and the number of sequence points obtained by scanning
is N = 360.

FIGURE 11. Gazebo 3D simulation scene.

The single-scan results of the lidar are shown in Fig. 12(a),
and dots in the figure represent the point cloud of obstacles.
The original point cloud and the corrected point cloud are
shown in Fig. 12(b), and are represented by blue and red
respectively. Also, the actual position of obstacles is repre-
sented by green rectangular dotted boxes in Fig 12(b). The
error of each point between the original point cloud and the
actual point cloud before and after point cloud correction is
shown in Fig. 12(c) and Fig. 12(d), respectively. Comparing
Fig. 12(c) and Fig. 12(d), it can be found that after the point
cloud correction, the error is mainly the random error of the
lidar detection.

163444 VOLUME 7, 2019



L. Zheng et al.: Obstacle Detection Method of UAV Based on 2D Lidar

FIGURE 12. Point cloud correction.

FIGURE 13. BNSCAN clustering results.

D. CLUSTERING ALGORITHM SIMULATION EXPERIMENT
After correction, the clustering algorithm is used to obtain
the distribution information of obstacles. In order to verify
the clustering effect of the CBRDD algorithm, we compare
it with the DBSCAN algorithm, and the result is shown
in Fig. 13 and Fig. 14.

FIGURE 14. CBRDD clustering results.

Fig. 13 are results of the DBSCAN algorithm, and different
clusters are in a different color. Differences between those
figures are due to the difference in the parameters Eps and k .
Eps refers to the core point Eps domain radius, and k refers to
the core point Eps neighborhood density threshold [39]. The
corrected point cloud is shown in Fig. 13(a), and the position
of the UAV is indicated by ∗. In Fig. 13(b), when Eps = 0.2
is small, the DBSCAN algorithm can cluster high-density

point clouds near the lidar, but cannot cluster the low-density
point clouds away from the lidar. In Fig. 13(c), Eps = 0.5,
the algorithm is more effective than that in Fig. 13(b), and
can effective to cluster the majority of point clouds except
peripheral point clouds. In Fig. 13(d), Eps = 0.8, all points
can be clustered, but since the Eps is large, it is easy to
divide points closer to the lidar into the same cluster, such
as clustering result inside the red dotted box shown in the
Fig. 13(d).

The clustering results of the CBRDD algorithm is shown
in Fig. 14(b) with the parameter ds = 0.1 and k = 5.
It can be seen from the figure that different clusters have been
identified by different colors, and two clusters that are closer
together within the red dotted box are also distinguished.
It indicates that the CBRDD algorithm can effectively cluster
point clouds with different densities.

E. POINT CLOUD CORRECTION ALGORITHM ACTUAL
EXPERIMENT
To further verify the method proposed in this paper, we use
the UAV system to detect obstacle information in the envi-
ronment. We select a more representative scene, as shown
in Fig. 15, the scene contains an arch bridge and four pil-
lars. The UAV automatically flies under the bridge to detect
obstacle information with a fixed altitude.

In this experiment, the velocity of the UAV is 2m/s, and the
flight state diagram of UAV during the experiment is shown

VOLUME 7, 2019 163445



L. Zheng et al.: Obstacle Detection Method of UAV Based on 2D Lidar

FIGURE 15. Experimental scene.

in Fig. 16.We randomly select one of the obstacle information
sequences returned by the lidar, as shown in Fig. 17, in which,
the original point cloud is in blue, the corrected point cloud is
in red, and green dotted boxes indicate the actual obstacles.
To see more clearly, the point cloud in the red box is mag-
nified and displayed on the right side of Fig. 17. As can be
seen from Fig. 17, the corrected point cloud more accurately
reflects the information of real obstacles than the original
point cloud.

FIGURE 16. Several moments of flight.

FIGURE 17. Original point cloud and corrected point cloud.

F. CLUSTERING ALGORITHM ACTUAL EXPERIMENT
After correction, the point cloud is clustered byDBSCANand
CBRDD respectively, and the clustering results are shown
in Fig. 18. Fig. 18(b) and Fig. 18(c) are the clustering result of
the DBSCAN algorithm with parameters Eps = 0.2, k = 5
and Eps = 0.5, k = 5. When the parameter Eps = 0.2,
k = 5, the DBSCAN algorithm can cluster the three obstacles

in the point cloud, ignoring the obstacles in the upper right
corner. That is mainly because that this neglected obstacle
point cloud is far from the lidar, causing the distance between
any two adjacent points in the point cloud to exceed the
parameter Eps of the DBCSAN. Therefore, the large param-
eter Eps = 0.5 can better cluster the point cloud, as shown
in Fig. 18(c). From the result of the CBRDD algorithm,
as shown in Fig. 18(d), we can see that the effect of clustering
is the same as DBSCAN at parameter Eps = 0.5. It can
be concluded from the above experiments that the CBRDD
algorithm has the same effect in some cases, such as when
obstacles have a similar distance to the lidar.

FIGURE 18. DBSCAN and CBRDD algorithm clustering results.

Besides, the performance of the Raspberry Pi was mon-
itored in actual experiments, shown in Table 2. The point
cloud correction algorithm requires less time than the clus-
tering algorithm, and the time consuming of 0.5 ms while
the clustering algorithm has a large time consuming. CPU
occupancy is the occupied proportion of single-core (RPi 3B
has 4 cores). The occupied memory (MEM) between the two

TABLE 2. Consumption of algorithms.

163446 VOLUME 7, 2019



L. Zheng et al.: Obstacle Detection Method of UAV Based on 2D Lidar

methods is not much different, because both need to store a
large amount of point cloud data.

In summary, the above experiments verify the feasibility
of the obstacle detection algorithm proposed in this paper.
The point cloud correction algorithm can effectively reduce
the influence of the movement on the obstacle point cloud,
and the corrected point cloud is closer to the real position
of the obstacle. By comparing the CBRDD and DBSCAN
algorithms, the CBRDD algorithm has the same result as the
DBSCAN algorithmwhen the point cloud density is uniform,
such as the clustering algorithm actual experiment. However,
in the clustering algorithm simulation experiment, CBRDD
has a better effect than DBSCAN when the point cloud den-
sity is not uniform. Therefore, the CBRDD algorithm is more
suitable for the uneven density point clouds acquired by lidar.

VII. CONCLUSION
The paper proposed an obstacle detection system consists of
a lidar and a raspberry pie, which is lightweight and low cost.
The detection method is divided into two parts: point cloud
correction and CBRDD. To correct the point cloud, the real
velocity of the lidar is estimated by polynomial fitting, and
then correct the distorted point cloud using position calcu-
lated according to the estimated speed. CBRDD is used to
cluster the point cloud with uneven density obtained by lidar.

In the experimental section, methods are verified by simu-
lation experiments and actual experiments respectively. The
popular clustering algorithms DBSCAN for point clouds was
selected as a comparison. The experimental results show that
the method proposed in this paper can correct the offset of
the point cloud and effectively cluster the point cloud with
uneven density. Besides, the experiment also proves that the
lightweight and inexpensive obstacle detection system can
have a good effect on the UAV.

In future works, we will optimize the system model and
algorithm, looking for a method that can replace the rela-
tive distance or address its shortcomings. At the same time,
we will combine it with the gimbal or similar institutions [27]
to achieve the detection of 3D obstacles.

REFERENCES
[1] B. Sinopoli, M. Micheli, G. Donato, and T.-J. Koo, ‘‘Vision based navi-

gation for an unmanned aerial vehicle,’’ in Proc. IEEE Int. Conf. Robot.
Automat. (ICRA), vol. 2, May 2001, pp. 1757–1764.

[2] W. Zhao, Q. Meng, and P. W. H. Chung, ‘‘A heuristic distributed task
allocation method for multivehicle multitask problems and its application
to search and rescue scenario,’’ IEEE Trans. Cybern., vol. 46, no. 4,
pp. 902–915, Apr. 2016.

[3] W. Ni, G. Sun, Y. Pang, Z. Zhang, J. Liu, A. Yang, Y. Wang, and D. Zhang,
‘‘Mapping three-dimensional structures of forest canopy using UAV stereo
imagery: Evaluating impacts of forward overlaps and image resolutions
with LiDAR data as reference,’’ IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 11, no. 10, pp. 3578–3589, Sep. 2018.

[4] U. Zengin and A. Dogan, ‘‘Real-time target tracking for autonomous uavs
in adversarial environments: A gradient search algorithm,’’ IEEE Trans.
Robot., vol. 23, no. 2, pp. 294–307, Apr. 2007.

[5] F. Liao, R. Teo, J. L. Wang, X. Dong, F. Lin, and K. Peng,
‘‘Distributed formation and reconfiguration control of VTOL UAVs,’’
IEEE Trans. Control Syst. Technol., vol. 25, no. 1, pp. 270–277,
Jan. 2017.

[6] L. F. Bertuccelli and M. L. Cummings, ‘‘Operator choice modeling for
collaborativeUAVvisual search tasks,’’ IEEETrans. Syst., Man, Cybern. A,
Syst. Humans, vol. 42, no. 5, pp. 1088–1099, Sep. 2012.

[7] A. Y. Hata, F. T. Ramos, and D. F. Wolf, ‘‘Monte Carlo localization on
Gaussian process occupancy maps for urban environments,’’ IEEE Trans.
Intell. Transp. Syst., vol. 19, no. 9, pp. 2893–2902, Sep. 2018.

[8] C. Yin, Z. Xiao, X. Cao, X. Xi, P. Yang, and D. Wu, ‘‘Offline and online
search: UAV multiobjective path planning under dynamic urban environ-
ment,’’ IEEE Internet Things J., vol. 5, no. 2, pp. 546–558, Apr. 2018.

[9] N. Gageik, P. Benz, and S. Montenegro, ‘‘Obstacle detection and collision
avoidance for a UAVwith complementary low-cost sensors,’’ IEEEAccess,
vol. 3, pp. 599–609, 2015.

[10] H. Jing-Lin, S. Xiu-Xia, L. Ri, D. Xiong-Feng, and L. Mao-Long, ‘‘UAV
real-time route planning based on multi-optimized RRT algorithm,’’ in
Proc. 29th Chin. Control Decis. Conf. (CCDC), May 2017, pp. 837–842.

[11] A. Mukhtar, L. Xia, and T. B. Tang, ‘‘Vehicle detection techniques for
collision avoidance systems: A review,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 16, no. 5, pp. 2318–2338, May 2015.

[12] C. Hu, F. Arvin, C. Xiong, and S. Yue, ‘‘Bio-inspired embedded vision
system for autonomous micro-robots: The LGMD case,’’ IEEE Trans.
Cogn. Develop. Syst., vol. 9, no. 3, pp. 241–254, Sep. 2016.

[13] K. McGuire, G. de Croon, C. D. Wagter, K. Tuyls, and H. Kappen, ‘‘Effi-
cient optical flow and stereo vision for velocity estimation and obstacle
avoidance on an autonomous pocket drone,’’ IEEE Robot. Autom. Lett.,
vol. 2, no. 2, pp. 1070–1076, Apr. 2017.

[14] T. Luettel, M. Himmelsbach, and H.-J. Wuensche, ‘‘Autonomous ground
vehicles—Concepts and a path to the future,’’ Proc. IEEE, vol. 100,
pp. 1831–1839, May 2012.

[15] Z. J. Chong, B. Qin, T. Bandyopadhyay, M. H. Ang, E. Frazzoli, and
D. Rus, ‘‘Mapping with synthetic 2D LIDAR in 3D urban environment,’’ in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Nov. 2013, pp. 4715–4720.

[16] A. Lay-Ekuakille, P. Vergallo, D. Saracino, and A. Trotta, ‘‘Optimizing
and post processing of a smart beamformer for obstacle retrieval,’’ IEEE
Sensors J., vol. 12, no. 5, pp. 1294–1299, May 2012.

[17] M. R. Strakowski, B. B. Kosmowski, R. Kowalik, and P. Wierzba,
‘‘An ultrasonic obstacle detector based on phase beamforming principles,’’
IEEE Sensors J., vol. 6, no. 1, pp. 179–186, Feb. 2006.

[18] Z. Li, J. Tan, and H. Liu, ‘‘Rigorous boresight self-calibration of mobile
and UAV LiDAR scanning systems by strip adjustment,’’ Remote Sens.,
vol. 11, no. 4, p. 442, 2019.

[19] M. D. Adams, ‘‘Lidar design, use, and calibration concepts for correct
environmental detection,’’ IEEE Trans. Robot. Autom., vol. 16, no. 6,
pp. 753–761, Dec. 2000.

[20] J. Xu, J. Lv, Z. Pan, Y. Liu, andY. Chen, ‘‘Real-time LiDARdata assocation
aided by IMU in high dynamic environment,’’ in Proc. IEEE Int. Conf.
Real-Time Comput. Robot. (RCAR), Aug. 2018, pp. 202–205.

[21] P. Merriaux, Y. Dupuis, R. Boutteau, P. Vasseur, and X. Savatier,
‘‘LiDAR point clouds correction acquired from a moving car based
on CAN-bus data,’’ 2017, arXiv:1706.05886. [Online]. Available:
https://arxiv.org/abs/1706.05886

[22] J. N. Gross, Y. Gu, M. B. Rhudy, S. Gururajan, and M. R. Napolitano,
‘‘Flight-test evaluation of sensor fusion algorithms for attitude estima-
tion,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 3, pp. 2128–2139,
Jul. 2012.

[23] K. Konolige, M. Agrawal, and J. Sola, ‘‘Large-scale visual odometry for
rough terrain,’’ in Robotics Research. Berlin, Germany: Springer, 2010,
pp. 201–212.

[24] Y. Peng, D. Qu, Y. Zhong, S. Xie, J. Luo, and J. Gu, ‘‘The obstacle detection
and obstacle avoidance algorithm based on 2-D lidar,’’ in Proc. IEEE Int.
Conf. Inf. Automat., Aug. 2015, pp. 1648–1653.

[25] S. Hong, H. Ko, and J. Kim, ‘‘VICP: Velocity updating iterative closest
point algorithm,’’ in Proc. IEEE Int. Conf. Robot. Automat., May 2010,
pp. 1893–1898.

[26] S. Schneider, M. Himmelsbach, T. Luettel, and H.-J. Wuensche, ‘‘Fusing
vision and lidar-synchronization, correction and occlusion reasoning,’’ in
Proc. IEEE Intell. Vehicles Symp., Jun. 2010, pp. 388–393.

[27] J. Zhang and S. Singh, ‘‘LOAM: Lidar odometry and mapping in real-
time,’’ in Robotics: Science and Systems, vol. 2. 2014.

[28] Z. Rozsa and T. Sziranyi, ‘‘Obstacle prediction for automated guided
vehicles based on point clouds measured by a tilted LIDAR sensor,’’ IEEE
Trans. Intell. Transp. Syst., vol. 19, no. 8, pp. 2708–2720, Aug. 2018.

[29] Y. Choe, S. Ahn, and M. J. Chung, ‘‘Online urban object recognition
in point clouds using consecutive point information for urban robotic
missions,’’ Robot. Auton. Syst., vol. 62, no. 8, pp. 1130–1152, Aug. 2014.

VOLUME 7, 2019 163447



L. Zheng et al.: Obstacle Detection Method of UAV Based on 2D Lidar

[30] B. Li, ‘‘3D fully convolutional network for vehicle detection in point
cloud,’’ inProc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017,
pp. 1513–1518.

[31] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner, ‘‘Vote3Deep:
Fast object detection in 3D point clouds using efficient convolutional neu-
ral networks,’’ inProc. IEEE Int. Conf. Robot. Automat. (ICRA), May 2017,
pp. 1355–1361.

[32] X. Wang, C. Yang, Z. Ju, H. Ma, and M. Fu, ‘‘Robot manipulator self-
identification for surrounding obstacle detection,’’Multimedia Tools Appl.,
vol. 76, no. 5, pp. 6495–6520, 2017.

[33] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena,
‘‘SegMatch: Segment based place recognition in 3D point clouds,’’ inProc.
IEEE Int. Conf. Robot. Automat. (ICRA), May 2017, pp. 5266–5272.

[34] A. Asvadi, L. Garrote, C. Premebida, P. Peixoto, andU. Nunes, ‘‘DepthCN:
Vehicle detection using 3D-LIDAR and ConvNet,’’ in Proc. IEEE 20th Int.
Conf. Intell. Transp. Syst. (ITSC), 2017, pp. 1–6.

[35] J. Duan, L. Shi, J. Yao, D. Liu, and Q. Tian, ‘‘Obstacle detection research
based on four-line laser radar in vehicle,’’ in Proc. IEEE Int. Conf. Robot.
Biomimetics (ROBIO), Dec. 2013, pp. 2452–2457.

[36] M. Hammer, M. Hebel, M. Laurenzis, and M. Arens, ‘‘Lidar-based detec-
tion and tracking of small UAVs,’’ Proc. SPIE, vol. 10799, Oct. 2018,
Art. no. 107990S.

[37] P. Wu, S. Xie, H. Liu, J. Luo, and Q. Li, ‘‘A novel algorithm of autonomous
obstacle-avoidance for mobile robot based on LIDAR data,’’ in Proc. IEEE
Int. Conf. Robot. Biomimetics (ROBIO), Dec. 2015, pp. 2377–2382.

[38] A. Rodriguez and A. Laio, ‘‘Clustering by fast search and find of density
peaks,’’ Science, vol. 344, no. 6191, pp. 1492–1496, Jun. 2014.

[39] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ in Proc.
KDD, vol. 96, no. 34, 1996, pp. 226–231.

[40] S. Świerczynski and A. Felski, ‘‘Determination of the position using
receivers installed in UAV,’’ in Proc. Eur. Navigat. Conf. (ENC), Apr. 2019,
pp. 1–4.

LANXIANG ZHENG received the B.S. degree
in electronic information engineering from Shen-
zhen University, Shenzhen, China, in 2017. He is
currently pursuing the M.S. degree in com-
puter science with the South China University of
Technology.

His current research interests include distributed
control, obstacle detection, and collaborative
obstacle avoidance.

PING ZHANG received the B.S. degree in
mechanical engineering and the M.S. and Ph.D.
degrees in robotics from Tianjin University, Tian-
jin, China, in 1985, 1988, and 1994, respectively.

He is currently a Professor with the School of
Computer Science and Engineering, South China
University of Technology, Guangzhou, China.
His research interests include intelligent net-
worked robotics, intelligent networked manufac-
turing, human–computer interaction, and real-time

embedded systems.

JIA TAN received the B.S. degree in electronic
information science and technology from the
Wuhan University of Technology, Wuhan, China,
in 2008, and the M.S. degree in software engineer-
ing from the South China University of Technol-
ogy, in 2012. He is currently pursuing the Ph.D.
degree in computer science with the South China
University of Technology.

His current research interests include robotic
software architecture, multimobile robot systems,

and mobile wireless ad-hoc networks.

FANG LI received the B.S. and M.S. degrees
from the Mechanical and Electronic Engineering
Department, Central South University, Changsha,
China, and the Ph.D. degree from the Mechanical
and Automotive Engineering Department, South
China University of Technology, Guangzhou,
China.

She is currently a Teacher with the Com-
puter Science and Engineering Department, South
China University of Technology. Her research

direction is mechatronic engineering. Her current research interests
include embedded system development approach and cyber-physical system
development.

163448 VOLUME 7, 2019


