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ABSTRACT We consider the joint estimation of direction-of-arrival (DOA) and polarization of constant
modulus (CM) signals based on an electromagnetic vector-sensor (EMVS) array. Two algebraic algorithms
for canonical polyadic decomposition (CPD) with CM constraint are proposed in two scenarios, in which
the source signals are fully and partially CM, respectively. The proposed algorithms use the analytic CM
algorithm in the first step to calculate the source matrix, and then exploit the CPD structure of the data
tensor to compute the remaining factor matrices, from which the DOA and polarization parameters can
finally be obtained. Due to the algebraic nature, the proposed algorithms are faster and more stable than
the optimization based algorithms, and can be used to effectively initialize the latter. We have shown that
the proposed algorithms have more relaxed uniqueness conditions than unconstrained CPD, and thus can
be applied in highly underdetermined cases where the number of source signals greatly exceeds that of the
EMVSs. Simulation results are provided to illustrate the performance of the proposed algorithms.

INDEX TERMS Direction-of-arrival, polarization, tensor, canonical polyadic decomposition, constant
modulus.

I. INTRODUCTION
An electromagnetic vector-sensor (EMVS) comprises
2 − 6 electromagnetic (EM) sensors (e.g., orthogonally
oriented short dipoles and/or small loops arranged in a co-
located or distributed manner, see FIGURE 1) that provide
complete or partial measurements of the EM fields induced
by the incident sources [1]–[5]. An EMVS array consists
of multiple EMVSs, arranged into a certain spatial config-
uration, e.g. linear, circular, L-shaped. Compared with the
conventional scalar sensor array, which mainly captures and
exploits the information of signals in the time-space domain,
an EMVS array can additionally perceive the diversity of
impinging signals in the polarization domain. Therefore,
an EMVS array is polarization sensitive. As such, during
the past several decades, there have been enormous efforts
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devoted to the development of direction-of-arrival (DOA)
and polarization estimation techniques based on the EMVS
array [6]–[20]. These works have revealed the advantages
of EMVS array over scalar sensor array, with regard to
parameter estimation accuracy, identifiability, etc.

As mentioned above, the EMVS array output signal
admits a multi-dimensional (MD) structure in the time-
space-polarization domain. For example, we can express the
observed signal of an EMVS array as an N × K × T tensor
X , where N , K , T denote the dimensionality of the signal in
space, polarization, and time domain, respectively. As such,
a particular entry of X , xn,k,t , denotes the array signal asso-
ciated with the kth component of the nth EMVS, at time
instant t . However, the early methods, such as multiple signal
classification (MUSIC) [12]–[14] and estimation of signal
parameters via rotational invariance techniques (ESPRIT)
[15]–[20], do not fully exploit this MD structure. More pre-
cisely, the MUSIC based techniques employ a long-vector
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FIGURE 1. Illustration of four typical EMVSs. (a) Cross-dipole. (b) Triple. (c) The cocentered complete EMVS. (d) The distributed complete EMVS.

model, which combines the space and polarization modes of
an EMVS array data, i.e. they do not distinguish the space and
polarization domain. The ESPRIT based approaches, on the
other hand, divide the EMVS array into two or more subar-
rays, and exploit the rotational invariance property between
them. These approaches do not fully make use of the MD
structure, in the sense that the number of signals that can be
handled by ESPRIT is required to be less than the number of
sensors in each subarray.

Tensor based methods for array processing were proposed
in the past decades. In [9], [21]–[23], the conventional matrix
based subspacemethods are extented to the higher-order case.
These methods use the multilinear singular value decompo-
sition and low multilinear (ML) rank approximtion in the
estimation of ML subspaces, and are shown to perform better
than their matrix based counterpart. In [21]–[23], the canon-
ical polyadic decomposition (CPD) of third order tensor, also
known as parallel factor analysis or canonical decomposition,
is used for DOA estimation based on a multi-invariance array.
Third-order and fourth-order CPDs is widely adopted in a
number of EMVS array processing techniques, which are
shown to have better performance than the matrix based
approaches.

The above methods are mainly based on unconstrained
tensor decompositions. In practice, however, prior knowl-
edge of either the source signal or the sensor array is often
available. Imposing these priors in tensor decomposition
as certain structure or constraint may result in better per-
formance with regard to both accuracy and identifiability
[24]–[27]. Commonly used structures/constraints include
orthogonality [24], non-negativity [25], Vandermonde struc-
ture [26], Toeplitz structure [27], etc, and a variety of
constrained tensor decomposition algorithms have been
developed in the literature. Notably, a library of tensor
decompositions and factor structures/constraints to choose
from, as well as a flexible framework of structured data fusion
(SDF) for structured/coupled matrix and tensor decomposi-
tion, is offered in Tensorlab 3.0 [28].

In this study, we consider DOA and polarization estimation
of constant modulus (CM) signals based on an EMVS array,
using CM constrained CPD.CM signals are widely used in
practice. For example, the BPSK, QPSK and 8PSK signals
are adopted in relay satellite communication systems. Even in
the receive array scenario, where the receive signals are not
strictly CM due to channel attenuation, it is still reasonable

to consider approximate CM signals. Indeed, many existing
works have considered the scenario where the receive array
signals are CM signals or multi-modulus (MM) signals, and
have proposed a lot of algorithms exploiting the CM or MM
properties [29], [30]. However, existing work on CM signal
processing did not consider the use of EMVS arrays where
the received signals admit a CPD model. Moreover, existing
work on CPD did not discuss how CM property can be
used to relax the uniqueness conditions of a CPD. Based on
the above reasons, we think it is of practical significance
to study the CM property with EMVS array. By applying
the analytic CM algorithm (ACMA) [30] and imposing the
CPD structure, we present two algebraic CPD algorithms
with full and partial CM constraints, which correspond to the
following two scenarios, respectively: (a) all the sources are
CM signals; (b) part of the sources are CM signals. We also
present a joint DOA and polarization estimator which jointly
exploits the factor matrices in both space and polarization
modes. The proposed algorithms are algebraic. Therefore,
they are computationally efficient and stable, and can be used
to effectively initialize the optimization based algorithms
(e.g., the SDF implementation of a CPD with CM con-
straints). The main advantage of the proposed algorithms,
in comparison with the unconstrained CPD, which will be
clarified later, is that the CM constraint can further relax the
uniqueness conditions of a CPD. Put it into the context of
EMVS array, the above advantage implies that by using CM
property an EMVS array may identify the DOA and polariza-
tion parameters of more source signals. In addition, through
simulations we have found that the proposed algorithms can
generate correct results even in cases where the unconstrained
CPD is not unique.

The rest of the paper is organized as follows. In Section II,
we introduce the data model of an EMVS array receiving
CM signals, and formulate the jont DOA-polarization estima-
tion problem as a CPD with CM constraints. In Section III,
we propose twoCPD algorithmswith full and partial CMcon-
straints, respectively, and present a joint DOA-polarization
estimator. In Section IV, simulation results are given to illus-
trate the performance of the proposed algorithms, in compar-
ison with optimization based algorithms, implemented with
SDF, and unconstrained CPD. Section V concludes the paper.

We note that part of the results of the paper, i.e., the full
CM constraint based method, has been presented in [31] as
a conference paper.
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FIGURE 2. The angle and polarization definition. (a) The angle definition. (b) Polarization ellipse. (c) Poincare sphere.

Notation: Scalars, vectors, matrices and tensors are
denoted by italic lowercase, lowercase boldface, uppercase
boldface and uppercase calligraphic letters, respectively. The
r th column vector and the (i, j)th entry ofX are denoted by xr
and xi,j, respectively. The identity matrix and all-zero vectors
are denoted by IM ∈ RM×M and 0M ∈ RM×M , respectively.
The null space of a matrix X is denoted as ker (X). The
dimensionality of a vector space = is denoted as dim (=).
Transpose, conjugate, conjugated transpose, Moore-Penrose
pseudo-inverse, Frobenius norm and matrix determinant are
denoted as (·)T , (·)∗, (·)H , (·)†, ‖·‖F , and |·|, respectively.

The symbols ‘⊗’, ‘�’ and ‘⊗’ denote Kronecker prod-
uct, Khatri-Rao product, and outer product, respectively. The
symbol ‘∧’ denotes vector-cross-product, defined as a∧ b 1

=

[a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1]T , a, b ∈ C3. The
symbol ‘ 6 ’ denotes the phase angle of a complex number,
and ‘im(·)’ denotes the imaginary part of its entry. The letter
‘i’ denotes the imaginary unit.

A polyadic decomposition (PD) of X expresses X as the
sum of rank-1 terms:

X =
R∑
r=1

ar ⊗ br ⊗ cr = [[A,B,C]]R, (1)

where A 1
= [a1, · · · , aR] ∈ CI×R, B 1

= [b1, · · · , bR] ∈
CJ×R, and C 1

= [c1, · · · , cR] ∈ CK×R. We call (1) a
canonical PD (CPD) if R is minimal.

For a matrix A ∈ CI1×I2 , vec (A) ∈ CI1I2 denotes the
vector representation of A: [vec (A)]ĩ

1
= ai1,i2 , with ĩ =

(i1 − 1) I1 + i2, while unvec (·) performs the inverse. The
matrix representation 1 of X ∈ CI×J×K is denoted as X ∈
CIJ×K , and defined by X ((i−1)J+j,k) = X (i,j,k).
We define Ten (X, [I , J ,K ]) = X as the operation to

reshape an IJ × K matrix X into a third-order X of size

1Note that there are various types of matrix representation of a third-order
tensor, and that the one defined here is indeed the mode-3 matrix represen-
tation. In this paper we only consider this type of matrix representation.

I × J × K , such that xi,j,k = X ((i−1)J+j,k). We denote the
estimate of a variable a as ã.

II. DATA MODEL AND PROBLEM FORMULATION
A. DATA MODEL
Let (θ, ϕ) be the azimuth-elevation 2D DOA of a narrow-
band planar EM signal, (γ, η) be the polarization state of the
incident signal, where γ and η denote the polarization auxil-
iary angle and the polarization phase difference, respectively,
0 ≤ θ < 2π , 0 ≤ ϕ < π , 0 ≤ γ < π

/
2 , −π ≤ η < π

(see FIGURE 2 for the definition of DOA and polarization
parameters). The response of a cocentered EMVS can be
written as [2]:

bθ,ϕ,γ,η
1
= L

[
eθ,ϕ,γ,η
hθ,ϕ,γ,η

]
, (2)

where[
eθ,ϕ,γ,η
hθ,ϕ,γ,η

]
=

[
v(θ+π/2,0),−v(θ,ϕ−π/2)
v(θ,ϕ−π/2), v(θ+π/2,0)

] [
cos γ
sin γ eiη

]
, (3)

where eθ,ϕ,γ,η ∈ C3 and hθ,ϕ,γ,η ∈ C3 are vectors holding
the electric field components and magnetic field components
of the incident EM waves, respectively. The vector v(θ,ϕ)

1
=

[cos θ sinϕ, sin θ sinϕ, cosϕ]T denotes the Poynting vector
associated with (θ, ϕ) (see FIGURE 2a). By definition, v(θ,ϕ),
v(θ+π/2,0), v(θ,ϕ−π/2) constitute a mutually orthogonal triad
as shown in FIGURE 2a. We denote bθ,ϕ,γ,η as the angular-
polarization steering vector.

The binary matrix L ∈ RK×6 is a selection matrix.
It chooses a subset of the complete EM field components
according to the type of the employed EMVS. For example,
if the complete EMVS is used, then L = I6 and bθ,ϕ,γ,η =
[eTθ,ϕ,γ,η,h

T
θ,ϕ,γ,η]

T . If the tripole antenna is used, then L =
[I3,03] and bθ,ϕ,γ,η = eθ,ϕ,γ,η.

Nowwe introduce the data model of an array ofN EMVSs.
The position coordinates of the nth EMVS are encapsulated
in a vector kn ∈ R3, n = 1, . . . ,N . The phase delays of the
signals collected by different EMVSs can be represented by
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the so-called spatial steering vector defined as follows:

aθ,ϕ
1
=exp

(
i2πλ−1

[
k1T v(θ,ϕ),. . ., kN T v(θ,ϕ)

]T)
, (4)

where λ is the wavelength of the impinging signal. Therefore,
the EMVS array response to a single impinging signal with
DOA-polarization parameters (θ, ϕ, γ, η) can be written as:

X (θ,ϕ,γ,η)(n, k, t) = a(θ,ϕ)(n) · b(θ,ϕ,γ,η)(k) · s(t), (5)

where s ∈ CT is the source vector containing the complex
envelop collected at T time samples. It is shown in (5) that
the response of the EMVS array to a single source signal is a
third-order rank-1 tensor of size N × K × T : X (θ,ϕ,γ,η) =

a(θ,ϕ) ⊗ b(θ,ϕ,γ,η) ⊗ s. In case where there are R incident
signals, we denote X r = X (θr ,ϕr ,γr ,ηr ), ar = a(θr ,ϕr ), br =
b(θr ,ϕr ,γr ,ηr ), and sr as the r th source vector. Then the EMVS
array output can be written as:

X =
R∑
r

X r +N =
R∑
r

ar ⊗ br ⊗ sr +N

= [[A,B,S]]R +N (6)

where A 1
= [a1, . . . , aR] ,B

1
= [b1, . . . , bR] ,S

1
=

[s1, . . . , sR] denotes the spatial steering matrix, the angular-
polarization steering matrix, and the source signal matrix,
respectively, and N denote the noise term. For convenience,
we will omit the noise term in following texts. Therefore, (6)
can be abbreviated as:

X =
R∑
r

X r =

R∑
r

ar ⊗ br ⊗ sr = [[A,B,S]]R, (7)

It is shown in (7) that the EMVS array signal admits a CPD.
We give the matrix representation of (7) as follows:

X = (A� B)ST , (8)

where X denotes matrix representation of tensor X .

B. PROBLEM FORMULATION
Our goal is to estimate the DOA and polarization parameters
from the observed signalX , as model in (6). This can be done
via a CPD based approach. Briefly speaking, we first identify
the factor matrices A and B by computing the CPD of X ,
and then calculate DOA and polarization parameters from the
estimates of A and B.
In this paper, we consider the scenarios where the source

signals are fully or partially CM signals, and we incorporate
this prior knowledge as a constraint into the CPD decomposi-
tion. More specifically, we consider the following two cases:

1) ALL SOURCES ARE CM SIGNALS (FULL CM CONSTRAINT)
In this case, we formulate the problem as CPD with CM
constraint:{
Ã, B̃, S̃

}
= argmin
{A,B,S}

∥∥∥X − (A� B)ST
∥∥∥2
F
,

s.t.
∣∣st,r ∣∣=c, r = 1, · · · ,R, t = 1, · · · ,T ,

(9)

where c denotes the modulus of the source signals.

2) PART OF SOURCES ARE CM SIGNALS
(PARTIAL CM CONSTRAINT)
Without loss of generality, we assume that the first R1 sources
are CM sources and that the remaining sources are orthogonal
to the CM sources. In general, this implies that the non-
CM signal sources are statistically uncorrelated with the CM
signal sources. In this case, we aim to compute a CPD with
partial CM constraint and orthogonality between CM and
non-CM signals :{

Ã, B̃, S̃
}
= argmin
{A,B,S}

∥∥∥X − (A� B)ST
∥∥∥2
F
,

s.t.
∥∥st,r∥∥ = c and sHr · sr ′ = 0,

r ∈ [1,R1] , r ′ ∈ [R1 + 1,R] ,

t ∈ [1,T ] , R1 < R. (10)

Optimization based algorithms (e.g., the Quasi-Newton
algorithm) for computing the above constrained CPDs can
be conveniently implemented via the framework of SDF,
embedded in Tensorlab 3.0 [28], where the CM constraint
is incorporated as a regularization term. However, there is
no guarantee that the obtained source matrix has the CM
property. In [32], an algebraic algorithm is proposed that
combines the CPD structure and the CM constraint. However,
the uniqueness conditions remain the same as those for
unconstrained CPD, i.e., the CM constraint does not relax the
working conditions for the algorithm. Therefore, in this paper,
we will introduce two algebraic CPD algorithms with full and
partial CM constraint, respectively, of which the uniqueness
conditions aremore relaxed than those of unconstrained CPD.
The algorithms mainly make use of the well-known analyt-
ical constant modulus algorithm (ACMA) method and the
inherent rank-1 structure of the matrix representation of each
column of (A� B). To facilitate the use of ACMA, we have
the following additional assumptions:

(A1) (A� B) has full column rank;
(A2) The CM sources are linearly independent and have

sufficient phase variations. e.g., ACMA does not work for
BPSK signals as they only have two different phases [30].

III. PROPOSED ALGORITHM
A. REVIEW OF ACMA
We first give a brief summary of the ACMA method. For
more details, the reader is referred to [30]. We consider the
following signal model:

Y = MST , (11)

where Y ∈ CM×T , M ∈ CM×R, and S ∈ CT×R denote
the observe signal, the mixing matrix, and the source matrix,
respectively. We assume that S has CM property.
The key steps of ACMA are as follows:
(i) Estimate in the row space of Y a set of basis vectors,
{v1, · · · , vR} , of the vector space spanned by the columns
of S.

(ii) Construct matrix P̂ ∈ C(T−1)×R2 , such that the
basis vectors in ker

(
P̂
)
, {z1, · · · , zR} can be reshaped into
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a third-order tensor that admits an overdetermined CPD.
This mainly consists of the following sub-steps:

– DenoteV 1
= {v1, · · · , vR}, and ut

1
= V(t, :)T . Construct

P t = utuHt , t = 1, · · · ,T . Due to the CM constraint,
we have wTr P tw

∗
r = c, where wr denotes a demixing vector

such that sr = Vwr .
– Stack the vector representation of P t , pt

1
= vec (P t),

into the columns of a matrix P of size R2 × T , which admits
the following:

PT zr =

 c...
c

 , where zr = wr ⊗ w∗r .

– Construct a matrix P̂ of size (T − 1)× R2 via the
Householder transformation of P:[

∂

P̂

]
= QPT ,

i.e., P̂ contains the second to the last rows of QPT , where Q
is a Householder transformation matrix. Due to assumption
(A2), we have dim

(
ker

(
P̂
))
= R.

–Calculate a set ofR basis vectors of ker
(
P̂
)
{z1, · · · , zR}

and obtain a tensor Z from those vectors, which admits an
overdetermined CPD:

Z 1
= Ten ([z1, · · · , zR] ,R,R,R) =

[[
W ,W∗,F

]]
R, (12)

where W 1
= [w1, · · ·wR]T ∈ CR×R denotes the demixing

matrix, F ∈ CR×R with F (k, l) = λk,l, where λk,l is the
coefficient in equation (16) of [30].

(iii) Compute the overdetermined CPD (12) to obtainW .
As the CPD Z =

[[
W ,W∗,F

]]
R is overdetermined,

it can be computed algebraically via generalized eigenvalue
decomposition (GEVD) [33], whichmakes use of two frontal
slices of Z . We can also compute it via matrix simultane-
ous diagonalization (SD) that makes use of all the frontal
slices. Once W has been computed, we immediately obtain
ST = WY .
In the above steps, we mainly consider the case where all

the sources are CM signals. We note that, with similar steps,
ACMA also applies in the case where part of the sources
are CM signals. In this case, the algorithm only extracts the
CM sources.

B. ALGEBRAIC CPD WITH FULL CM CONSTRAINT
Now we propose an algebraic algorithm for computing the
constrained CPD (8). The algorithm consist of the following
two steps:

1) IDENTIFY THE CM SOURCE SIGNALS VIA ACMA

By denoting M 1
= A � B, we can rewrite (8) as X = MST .

According to assumption (A1), we know that M has full
column rank. Therefore, we can use ACMA to estimate the
CM source matrix, S̃.

2) CALCULATE FACTOR MATRICES Ã AND B̃ VIA
RANK-1 APPROXIMATION
Now that we have obtained one factor matrix S̃, the other
factor matrices of the CPD (6), Ã and B̃, can be computed by
exploiting the Kronecker-product structure of each column of
the matricized columns of [34]:

Ã� B̃ = X
(
S̃
T
)†
. (13)

Indeed, in the noiseless case, each column of M̃=Ã� B̃ is
a vectorized rank-1 matrix:

unvec (m̃r ) = ãr b̃
T
r , r = 1, · · · ,R. (14)

In the noisy case, (14) holds approximately, and ãr
and b̃r can be computed via the rank-1 approximation of
unvec (m̃r ), which is usually done via singular value decom-
position (SVD).

C. ALGEBRAIC CPD WITH PARTIAL CM CONSTRAINT
Now we propose an algebraic algorithm for computing the
CPD with partial CM constraint and orthogonality between
CM and non-CM sources.

We denote the CM part and the non-CM part of the source
signalsS asS1 ∈ CT×R1 andS2 ∈ CT×R2 , respectively, where
R1 + R2 = R. Analogously, we denote A1 ∈ CN×R1 and
A2 ∈ CN×R2 as the submatrices that hold the first R1 and the
last R2 columns of A, respectively. Matrices B1 ∈ CK×R1

and B2 ∈ CK×R2 can be defined similarly. By definition,
we know that A1 and B1 are associated with the CM part
S1, and that A2 and B2 are associated with the non-CM
part S2. Therefore, the observed signalX can be expressed as:
X = X 1 +X 2, where X 1 and X 2 admit a CPD separately:
X 1 = [[A1,B1,S1]]R1 , X 2 = [[A2,B2,S2]]R2 .

1) IDENTIFY THE CM PART Ã1, B̃1 AND S̃1
We denote the matrix representation of X 1 and X 2 as X1 =

(A1 � B1)ST1 and X2 = (A2 � B2)ST2 , respectively, and

M1
1
= A1�B1,M2

1
= A2�B2. Then we can further rewrite

(6) as:

X = M1ST1 +M2ST2 . (15)

The mixing matrix M = [M1,M2] has full column rank
under the assumption (A1). Therefore, we can use ACMA to
identify the CM source signals S̃1.

We multiply both sides of (15) to the right by S̃
∗

1. Then, due
to the orthogonality between S̃1 and S̃2, we have the following
result:

XS̃1 = M1ST1 S̃
∗

1 +M2ST2 S̃
∗

1 = M1ST1 S̃
∗

1. (16)

Note that S̃1 is already obtained, we can calculate M̃1 from

(16): M̃1 = XS1
(
S̃
T
1 S̃
∗

1

)†
. Then Ã1 and B̃1 can be calcu-

lated by rank-1 approximation of the matricized columns of:
M̃1 = Ã1 � B̃1.
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2) CALCULATE Ã2, B̃2 AND S̃2 VIA CPD
Now that we have obtained Ã1, B̃1 and S̃1, we have X̃ 1 =

[[Ã1, B̃1, S̃1]]. The non-CM part X̃ 2 can be obtained as:

X̃ 2 = X − X̃ 1 = [[Ã2, B̃2, S̃2]]R2 . (17)

As long as the uniqueness conditions hold for the uncon-
strained CPD (17), we can calculate Ã2, B̃2 and S̃2 by
computing the unconstraint CPD of X̃ 2.
We would like to mention that the two proposed algorithms

are (semi-) algebraic, in the sense that they rely only on
arithmetic operations, overdetermined sets of linear equa-
tions, matrix SVD or joint diagonalization, and GEVD. As no
numerical optimization is involved, in which the cost func-
tion may have multiple local optima, it is shown through
simulations that these algorithms have stable performance
and low complexity, in comparison with optimization based
algorithms. We also note that the proposed algorithms consist
of several subproblems, which may have multiple solutions.
E.g. the matrix joint diagonalization subproblem involved in
ACMA and the unconstrained CPD subproblem in the second
step of CPD-PCM-ALG have various solutions. Therefore,
the overall complexity varies when we adopt different solu-
tions to these subproblems. As such, in this paper, we do not
formally analyze the complexity of the proposed algorithms.

D. DOA POLARIZATION ESTIMATION
Now we explain how to compute DOA and polarization
parameters via the estimates Ã and B̃. We first present the
cross-product-based DOA and polarization estimator in the
general case. Then we introduce a refinement scheme to
further improve the estimation accuracy, in the particular case
that the sensor spacing is larger than half wavelength of the
impinging signal.

1) DOA-POLARIZATION ESTIMATION VIA CROSS-PRODUCT
For convenience, we assume that the tripole antenna is used
such that the angular-polarization steering vector bθ,ϕ,γ,η =
eθ,ϕ,γ,η. According to [35], we have the following result:

eθ,ϕ,γ,η ∧ e∗θ,ϕ,γ,η = 2i sin η sin γ cos γ v(θ,ϕ), (18)

where the Poynting vector v(θ,ϕ) denotes the DOA of the
impinging signal. We can also calculate the polarization
parameters from bθ,ϕ,γ,η. For instance, we first construct a
vector:

ρ =

[
ex
ez
,
ey
ez

]T
=

[
bx
bz
,
by
bz

]T

=

− cotϕ cos θ + cot γ
sin θ
sinϕ

cos η − i cot γ
sin θ
sinϕ

sin η

− cotϕ sin θ − cot γ
cos θ
sinϕ

cos η+i cot γ
cos θ
sinϕ

sin η

.
(19)

Then (γ, η) can be computed as:
η = −6 (bx sin θ − by cos θ )

γ = arccot

(
im
(
by sinϕ

)
cos θ sin η

)
.

(20)

As such, for each column b̃r of matrix B̃, we can use cross-
product (18) to obtain the DOA of each signal and use (19),
(20) to obtain the polarization parameters of each signal.

Note that the above derivation is based on the tripole,
which consists of three sensors. For EMVSs with four to
six sensors, the above calculation also applies. For instance,
if the EMVS has four or five sensors, we can apply the above
formulas (18)–(20) to the submatrix that holds the first three
rows of B̃. If a complete EMVS is employed, i.e., it has
six sensors, we can apply the cross-product based scheme
between the electric fieldmeasurement and themagnetic field
measurement to obtain the DOA. The polarization parameters
can be obtained via (19) and (20).

The above cross-product based scheme is able to generate
coarse yet unambiguous DOA and polarization estimates in
the general case. However, it dose not make use of the spatial
aperture of the EMVS array, in particular, a spatially sparse
array with sensor spacing d � λ

/
2. Therefore, in order to

further improve the DOA estimation accuracy, we can use a
refinement scheme.

2) ESTIMATION REFINEMENT
We assume that the sensor spacing d � λ

/
2. For conve-

nience, we limit our derivation to the case that an L-shaped
array of three EMVSs is employed. In this case, we have
k(1) = [d, 0, 0]T , k(2) = [0, 0, 0]T and k(3) = [0, d, 0]T .
We assume that the spatial steering vector has been obtained
via the proposed algorithms. We denote [u, v,w]

1
= v(θ,ϕ),

then the spatial steering vector (4) can be written as a(θ,ϕ) =[
exp

(
−i2πdλ−1u

)
, 1, exp

(
−i2πdλ−1v

)]T
. Then we have

the following result after several simple derivations:
u′m1
= 0.5λd−1π−1 6

{
a (1)
a (2)

}
+ λd−1m1

v′m2
= 0.5λd−1π−1 6

{
a (3)
a (2)

}
+ λd−1m2.

(21)

Note that, as d � λ
/
2, (21) generates two sets of accurate

yet ambiguous estimates u′m1
and v′m2

. The ambiguity is char-
acterized by integersm1 andm2, which can be arbitrary. Here,
we use the estimates obtained by the cross-product based
scheme to remove this ambiguity. More precisely, we denote
by ucp and vcp the estimates of u and v, obtained by the cross-
product-based estimator, and then the optimal m1, m2 can be
calculated by:

m̃1 = argmin
m1

∣∣u′m1 − ucp
∣∣

m̃2 = argmin
m2

∣∣v′m2 − vcp
∣∣ . (22)
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TABLE 1. Explicit expression of each entry of fisher information matrix.

The refined estimates ũ, ṽ are obtained by substituting m̃1
and m̃2 into (21). Once we obtain ũ and ṽ, we immediately
obtain the DOA estimates

(
θ̃ , ϕ̃

)
by solving the equations

ũ = cos θ̃ sin ϕ̃, ṽ = sin θ̃ sin ϕ̃. The refined polarization
parameter estimates can be further obtained via (20).

The above estimation refinement scheme is based on an
L-shaped array of three EMVSs. In practice, the scheme may
not be limited to L-shaped arrays. Similar derivations also
apply to other types of array configuration, e.g., the circular
array or square array. However, we note that if a uniform
linear array is used, we may not be able to refine the two
parameters, u and v, because we can only obtain one equation
in the place of (21). In this case, the scheme refines either
u or v. In addition, if more than three EMVSs are employed,
we can choose three of them to constitute a subarray, for
which the estimation refinement scheme may be applied.
In general, we can let the constructed subarray be as large
as possible, to make the best use of the spatial aperture of the
EMVS array.

E. CRAMÉR-RAO BOUNDS
Here we derive the Cramér-Rao Bound (CRB) for DOA
and polarization estimation based on an array of EMVS’s,
which may serve as a reference of accuracy for the proposed
methods. We assume that a far-field narrowband signal with
wavelength λ is impinging. Then the array output signal
model can be written as:

x (t) =
(
aθ,ϕ ⊗ bθ,ϕ,γ,η

)
s (t)+ n (t) (23)

where n (t) is white Gaussian noise with a priori known
variance σ 2, aθ,ϕ is the spatial steering vector, and bθ,ϕ,γ,η
is the angular-polarization steering vector, defined as (4) and
(2) in Subsection II.A. We assume that the array signal is
sampled at time instants t1 . . . , tN . Then the data-vector can
be defined as:

z 1=
[
xT (t1) · · · xT (tN )

]T
= aθ,ϕ ⊗ bθ,ϕ,γ,η ⊗ s+ ε (24)

where s 1
= [s(t1), . . . , s(tN )]T , ε

1
= [nT (t1), . . . ,nT (tN )]T

and N denotes the number of time samples. We let

ψ
1
= [θ, ϕ, γ, η]T be the vector of to-be-estimated param-

eters, and denote α 1
= aθ,ϕ ⊗ bθ,ϕ,γ,η⊗ s, then we can obtain

the Fisher Information Matrix (FIM) as follows:

Jk,l
1
= 2Re

[
∂αH

∂ψk
0−1

∂α

∂ψ l

]
=

2N
σ 2 Re

[
∂
(
aθ,ϕ ⊗ bθ,ϕ,γ,η

)H
∂ψk

∂
(
aθ,ϕ ⊗ bθ,ϕ,γ,η

)
∂ψ l

]
(25)

where k, l = 1, 2, 3, 4., 0 = 00 ⊗ IN , 00 denotes the
covariance matrix of the noise term n (t), IN is a unit matrix.
Then the CRB of ψkcan be calculated as follows:

CRB
(
ψk
)
=

(
J−1

)
k,k
, k = 1, 2, 3, 4. (26)

We have derived the explicit expression of each entry
of J in the simple case where the array consists of
three tripole antennas, which are summarized in TABLE 1
with p1

1
= [− sin θ sinϕ; cos θ sinϕ; 0] and p2

1
=

[cos θ cosϕ; sin θ sinϕ;− sinϕ].

F. DISCUSSION ON UNIQUENESS CONDITIONS
Here we discuss the generic uniqueness conditions for CPD
with full CM (FCM) constraint and partial CM (PCM) con-
straint, respectively. For comparison, we first introduce the
generic uniqueness conditions of an unconstrained CPD.
In [36], it is shown that the CPD of an N × K × T tensor
of rank R is generic unique if the following conditions hold:{

R (R− 1) ≤ NK (N − 1) (K − 1)
/
2

R ≤ T .
(27)

Note that the above uniqueness conditions are sufficient
yet not necessary for unconstrained CPD, and that there
have been more relaxed results in the literature. We refer the
readers to [37] and [38] for details.

For CPDwith full CMconstraint, we note that the algebraic
algorithm, as described in Subsection III-B, requires that the
working assumptions (A1) and (A2) for ACMAhold, and that
the factor matrix S has full column rank. Therefore,A�B and
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S need to have full column rank, and there should be sufficient
phase variations in S. Generically, a matrix has full column
rank if it has more rows than columns. Therefore, the generic
uniqueness conditions for CPD with full CM constraint are:

R ≤ min (NK ,T ) . (28)

For CPD with partial CM constraint, we note that the alge-
braic algorithm has two steps, as described in Section III-C.
The first step uses ACMA, the orthogonality between the CM
and non-CM parts, and the CPD structure to identify the CM
part of the factor matrices, namely A1, B1, S1. Therefore,
the working assumptions for this step are analogous to (28).
The second step relies on an unconstrained CPD of the non-
CM part X 2. Hence, the unconstrained CPD uniqueness
conditions for X 2 need to be satisfied. As such, the generic
uniqueness conditions for CPD with partial CM constraint
are: 

R2 (R2 − 1) ≤ NK (N − 1) (K − 1) /2
R2 ≤ T
R ≤ NK .

(29)

Note that the uniqueness conditions for CPD with full
and partial CM constraint are more relaxed than those for
unconstrained CPD. To illustrate this, we list several typical
values of Rmax in TABLE 2. where Rmax denotes the maximal
number of R for which the decomposition can be unique. For
clarity, we let N = K for CPD, CPD-FCM and CPD-PCM.
In addition, for CPD-PCM, we let R1 =

⌊
R
/
2
⌋
, where b·c

rounds the number to the nearest integer less than or equal to
that number.

TABLE 2. Generic value of Rmax for CPD, CPD-FCM and CPD-PCM.

IV. SIMULATION RESULTS
In this section we present simulation results to demonstrate
the performance of the proposed algebraic algorithms for
CPD-FCM and CPD-PCM, in comparison with the corre-
sponding optimization based algorithms, and unconstrained
CPD. In simulation A, we show the performance of the
compared algorithms in the case where all the sources are CM
signals. In simulation B, we mainly show the performance of
the compared algorithms in the case where only part of the
sources are CM signals.

We use the following abbreviations:
– CPD-FCM-ALG: proposed algebraic CPD-FCM

method.
– CPD-PCM-ALG: proposed algebraic CPD-PCM

method.
– CPD-FCM-QN (ALG): quasi-Newton CPD-FCM

method, initialized with the result of CPD-FCM-ALG.

– CPD-FCM-QN (RAND): quasi-Newton CPD-FCM
method with random initialization.

– CPD-PCM-QN (ALG): quasi-Newton CPD-PCM
method, initialized with the result of CPD-PCM-ALG.

– CPD-PCM-QN (RAND): quasi-Newton CPD-PCM
method with random initialization.

– CPD: unconstrained canonical polyadic decomposition,
initialized with algebraic CPD.

– ESPRIT: estimation of signal parameter via rotational
invariance techniques, it is a method based on matrix
eigenspace decomposition.

– MUSIC: multiple signal classification, it is a method
based on matrix eigenspace decomposition.

Note that the tensor based approach proposed in [?]
corresponds to the unconstrained CPD method.We imple-
ment CPD-FCM-QN (ALG), CPD-FCM-QN (RAND), CPD-
PCM-QN (ALG) and CPD-PCM-QN (RAND) with the
‘sdf _minf ’ function [28], where the CM constraint is incor-
porated as a regularization term via the use of domain
specific language. The tolerance on the relative function
value, relative step size and maximum number iterations for
‘sdf _minf ’ are set to TolFun =10−10, TolX = 10−8 and
MaxIter =2000, respectively. For CPD-FCM-QN (RAND)
and CPD-PCM-QN (RAND), we try ten random initial values
and select the one that gives the best fit after the first ten
iterations to effectively initialize the algorithm. For all above
algorithms, the weight of the regularization term is set to
RelWeight =10−3. In the implementation of CPD, the toler-
ance on the relative function value and relative step size in the
stopping criteria of ‘cpd_nls’ [28] are set to TolFun = 10−12

and TolX = 10−8, respectively.
We assume thatR far-field, narrowband signals with identi-

cal carrying frequency are impinging upon an L-shaped array
of triple antennas. The spacing between adjacent antennas
is d = 6λ. The number of snapshots is set to T = 1000.
Therefore, the array output signals is a third-order tensorX of
size 3×3×1000, admitting a CPD of rank R. In simulations,
we mainly consider the case R > 3. In this case, the first
two dimensions ofX are smaller than R, and CPD is usually
labelled as ‘‘underdetermined’’. In addition, the noise term is
generated as white Gaussian noise. The signal-to-noise ratio
(SNR) is defined as follows:

SNR 1
= 20log10

(
Ps
/
Pn
)
. (30)

where Ps and Pn denote the signal and noise levels, respec-
tively. We use the Root Mean Squared Error (RMSE) to
measure the accuracy of DOA and polarization estimation for
each signal, which is defined as follows:

RMSE =

√√√√ M∑
m=1

(α̃m − α)
2

M
, (31)

where α ∈ {θ, ϕ, γ, η} denotes one of the to-be-estimated
parameters, α̃m denotes the estimate of α in the mth Monte
Carlo experiment, andM denotes the number of Monte Carlo
runs, which is set to M = 200 in all simulations. For the
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evaluation of the overall accuracy, we further use the Overall
RMSE , which is defined as the mean RMSE values of all the
signals.

The simulations are performed on a workstation with the
following configuration, CPU: Intel Xeon E5-2640 v4 @
2.4 GHz; Memory: 128GB; System: 64bit Windows 10;
MATLABR2016a.

A. RESULTS UNDER FULL CM CONSTRAINT
We first consider DOA and polarization estimation under
full CM constraint in the overdetermined case. We conduct
three simulations to show the performance of the proposed
methods. In the first simulation, we testify the effectiveness
of the proposed CPD-FCM-ALG method against CRB as a
benchmark. We fix the number of snapshots to T = 1000 and
let SNR vary between 0dB and 100dB, the results are given in
FIGURE 3.Then, we fix SNR to 20dB and let T vary between
200 and 1000, the results are given in FIGURE 4. We can see
that with the increase of SNR or the number of snapshots,
the accuracy of CPD-FCM-ALG approaches CRB.

FIGURE 3. Overall RMSE and CRB versus SNR in the overdetermined case
with full CM constraint: N = K = 3, R = 2, T = 1000. (a) Results with the
first source. (b) Results with the second source.

FIGURE 4. Overall RMSE and CRB versus T in the overdetermined case
with full CM constraint: N = K = 3, R = 2, SNR = 20dB. (a) Results with
the first source. (b) Results with the second source.

In the next two simulations, we compare CPD-FCM-
ALG, CPD-FCM-QN(ALG), CPD-FCM-QN(Rand) with
MUSIC, ESPRIT and CPD. In the second simulation
we fix the number of snapshots to 1000 and let SNR
vary between 0dB and 10dB. We assume that there are
R = 2 impinging signals. The DOA-polarization param-
eters of the two signals are (θ1, ϕ1, γ1, η1) = (20◦, 10◦,
15◦, 25◦), (θ2, ϕ2, γ2, η2) = (60◦, 40◦, 45◦, 70◦), respec-
tively. In the third simulation, we fix SNR to 10dB and
let the number of snapshots vary between 40 and 200.

FIGURE 5. Overall RMSE of θ , ϕ, γ and η versus SNR in the
overdetermined case with full CM constraint: N = K = 3, R = 2, T = 1000.
It shows that the proposed method has almost identical performance as
unconstrained CPD. MUSIC has best performance when there are
sufficiently large number of snapshots and high SNR. (a) Overall RMSE
of θ . (b) Overall RMSE of ϕ. (c) Overall RMSE of γ . (d) Overall RMSE of η.

FIGURE 6. Overall RMSE of θ , ϕ, γ and η versus T in the overdetermined
case with full CM constraint: N = K = 3, R = 2, SNR = 10dB. It shows that
the proposed method has almost identical performance as unconstrained
CPD, which is slightly better than that of ESPRIT. However, when the
number of snapshots is small, MUSIC does not perform as well as other
methods. (a) Overall RMSE of θ . (b) Overall RMSE of ϕ. (c) Overall RMSE
of γ . (d) Overall RMSE of η.

The DOA-polarization parameters of the two signals
are (θ1, ϕ1, γ1, η1) = (22.5◦, 22.5◦, 22.5◦, 22.5◦), (θ2, ϕ2,
γ2, η2) = (112.5◦, 67.5◦, 67.5◦, 67.5◦), respectively.
The Overall RMSE curves in the above two simulations

are plotted in FIGURE 5 and FIGURE 6, respectively.
We can see that in the overdetermined case CPD-FCM-ALG,
CPD-FCM-QN(ALG), and CPD have almost identical
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performance, which is slightly better than that of ESPRIT.
MUSIC has the best performance when there are sufficiently
large number of snapshots and high SNR. However, when the
number of snapshots is small, MUSIC does not perform as
well as other methods. This can be explained as follows: the
performance of MUSIC mainly relies on how accurate the
noise subspace can be estimated, while the noise subspace is
usually calculated via the eigenvalue decomposition(EVD) of
the covariance matrix of the array signal. When the number
of snapshots is small, the covariance matrix may be poorly
estimated due to finite sampling effect, which leads to inac-
curate estimation of noisespace and poor performance of
the algorithm. In addition, we see that CPD-FCM-QN(Rand)
only works when the number of snapshots is small. This is
because in this method, the CM property is exploited as a
soft constraint (or as a regularization term), which only works
when the number of snapshots is small.

Next, we consider DOA and polarization estimation under
full CM constraint in the underdetermined case. In this case,
MUSIC and ESPRIT are not included in the comparison.
We mainly consider the following two settings: (i) a highly
underdetermined case R = 6; (ii) an extremely underdeter-
mined case R = 8. The corresponding parameter settings are
listed in TABLE 3 and TABLE 4, respectively.

TABLE 3. Simulation setting of DOA and polarization parameters in the
highly underdetermined case: N = K = 3, R = 6.

TABLE 4. Simulation setting of DOA and polarization parameters in the
extremely underdetermined case: N = K = 3, R = 8.

We let SNR vary from 0 dB to 40 dB. The Overall RMSE
curves versus SNR for the above two settings are plotted in
FIGURE 7 and FIGURE 8, respectively.

FIGURE 7. Overall RMSE of θ , ϕ, γ and η versus SNR in the highly
underdetermined case with full CM constraint: N = K = 3, R = 6,
T = 1000. It shows that only CPD-FCM-ALG and CPD-FCM-QN (ALG) yield
accurate estimates at medium and high SNR levels. (a) Overall RMSE of θ .
(b) Overall RMSE of ϕ. (c) Overall RMSE of γ . (d) Overall RMSE of η.

FIGURE 8. Overall RMSE of θ , ϕ, γ and η versus SNR in the extremely
underdetermined case with full CM constraint: N = K = 3,R = 8,
T = 1000. It shows that only CPD-FCM-ALG and CPD-FCM-QN (ALG) yield
accurate estimates at high SNR levels. (a) Overall RMSE of θ . (b) Overall
RMSE of ϕ. (c) Overall RMSE of γ . (d) Overall RMSE of η.

From FIGURE 7 and FIGURE 8 we have observed that the
proposed CPD-FCM-ALG algorithm yields accurate DOA
and polarization estimates in highly and extremely under-
determined cases, if SNR is sufficiently high, while uncon-
strained CPD does not provide correct results. Note that
in the considered cases the unconstrained CPD uniqueness
conditions do not hold. We also observe that the optimiza-
tion based CPD-FCM-QN algorithm provides correct results
when it is initialized by the results of CPD-FCM-ALG.
The optimization improves the results of CPD-FCM-ALG.
However, CPD-FCM-QN dose not yield reasonable estimates
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when it is randomly initialized. The above observation has
clearly shown the interests in the proposed CPD-FCM-ALG
algorithm.

B. RESULTS UNDER PARTIAL CM CONSTRAINT
Here we consider DOA and polarization estimation under
partial CM constraint. First, we testify the effectiveness of
the proposed CPD-FCM-ALG method against CRB as a
benchmark. We fix the number of snapshots to T = 1000 and
let SNR vary between 0dB and 100dB, the results are given in
FIGURE 9.Then, we fix SNR to 20dB and let T vary between
200 and 1000, the results are given in FIGURE 10. We can
see that with the increase of SNR or the number of snapshots,
the accuracy of CPD-FCM-ALG approaches CRB.

FIGURE 9. Overall RMSE and CRB versus SNR with full CM constraint:
N = K = 3, R = 2, R1 == 1, T = 1000. (a) Results with the first source.
(b) Results with the second source.

FIGURE 10. Overall RMSE and CRB versus T with full CM constraint:
N = K = 3, R = 2, R1 == 1, SNR = 20dB. (a) Results with the first source.
(b) Results with the second source.

Nowwe consider the scenario where only part of the source
signals are of CM property.Wemainly examine the following
two cases: (i) a highly underdetermined case R = 6, R1 = 4;
(ii) an extremely underdetermined case R = 8, R1 = 5.The
corresponding DOA and polarization parameters are set as
TABLE 3 and TABLE 4, respectively.

We let SNR vary from 0 dB to 40 dB. The Overall RMSE
curves versus SNR for the above two settings are plotted in
FIGURE 11 and FIGURE 12, respectively.

From FIGURE 11 and FIGURE 12 we observed that the
proposed CPD-PCM-ALG algorithm yields accurate DOA
and polarization estimates in highly and extremely under-
determined cases, if SNR is sufficiently high. On the other
hand, the unconstrained CPD dose not provide accurate DOA
and polarization estimates. First we note that CPD-PCM-QN
(RAND) with randomly initialization fails to provide correct

FIGURE 11. Overall RMSE of θ , ϕ, γ and η versus SNR in the highly
underdetermined case with partial CM constraint: N = K = 3, R = 6,
R1 = 4, T = 1000. It shows that only CPD-PCM-ALG and CPD-PCM-QN
(ALG) yield accurate estimates at medium and high SNR levels. (a) Overall
RMSE of θ . (b) Overall RMSE of ϕ. (c) Overall RMSE of γ . (d) Overall
RMSE of η.

FIGURE 12. Overall RMSE of θ , ϕ, γ and η versus SNR in the extremely
underdetermined case with partial CM constraint: N = K = 3, R = 8,
R1 = 5, T = 1000. It shows that only CPD-PCM-ALG yield accurate
estimates at high SNR levels. (a) Overall RMSE of θ . (b) Overall RMSE of ϕ.
(c) Overall RMSE of γ . (d) Overall RMSE of η.

results in both case. When it is initialized by the results of
CPD-PCN-ALG, we note that CPD-PCM-QN (ALG) yield
accurate result in the highly underdetermined case, however,
the improvement is not much. We also observed that in the
extremely underdetermined case CPD-PCM-QN (ALG) can
not generate correct results even it is initialized by the results
of CPD-PCM-ALG. This is because in the implementation
of CPD-PCM-QN (ALG), we do not incorporate the
orthogonality.
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In the above simulations, we observe the proposed
algorithms are faster than the unconstrained CPD.

V. CONCLUSION
In this study, we have proposed two algebraic algorithms for
CPD with two types of CM constraints: CPD-FCM-ALG and
CPD-PCM-ALG, which correspond to two scenarios where
the sources signals are fully and partially CM, respectively.
The proposed algorithms first exploit the analytic CM algo-
rithm to compute the sources matrix, and then use the CPD
structure to calculate the rest factor matrices, form which we
can obtain the DOA and Polarization parameters. We have
shown, through analysis and simulations, that the proposed
algorithms have more relaxed uniqueness conditions than
unconstrained CPD. In comparison with the optimization
based quasi-Newton algorithm, which is shown to be unstable
and sensitive to initialization, the proposed algorithms are
faster and stable, and can be used to effectively initialize the
optimization based algorithms.
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