
Received October 9, 2019, accepted November 1, 2019, date of publication November 7, 2019, date of current version November 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2952246

Employing Dynamic Symbolic Execution
for Equivalent Mutant Detection
AHMED S. GHIDUK 1,2, MOHEB R. GIRGIS3, AND MARWA H. SHEHATA2
1College of Computers and IT, Taif University, Taif 21974, Saudi Arabia
2Department of Math and CS, Faculty of Science, Beni-Suef University, Beni Suef 62521, Egypt
3Department of Computer Science, Faculty of Science, Minia University, El-Minia 61519, Egypt

Corresponding author: Ahmed S. Ghiduk (asaghiduk@yahoo.com)

ABSTRACT Equivalent mutants (EM) issue is a key challenge in mutation testing. Many methods were
applied for detecting and reducing the equivalent mutants. These methods are classified into four classes:
equivalent mutant detection, avoiding the generation of equivalent mutants, higher-order equivalent mutants,
and suggesting equivalent mutants. Higher-order mutation testing (HOMT) is considered the strongest
employed technique in avoiding the generation of equivalent mutants and reduction of their number. In this
paper, a combination of HOMT especially second-order mutation testing (SOMT) and dynamic symbolic
execution (DSE) techniques are applied for the automatic detection and reduction of the equivalent second-
order mutants. First, SOMT is used to reduce the number of equivalent mutants. Second, DSE technique is
applied to classify the SOMs and detect EM. To assess the efficiency of the proposed technique, it is applied
to some subject programs and the results of this technique are compared to the manual results and those of
related works. The results showed that the proposed algorithm is more effective in detecting and reducing
the number of EM. It detects 94% from the equivalent mutants that have manually analyzed. This percentage
is a high percentage comparing with previous studies. Besides, the DEM-DSE technique detects 100% of
equivalent mutants for 9 of the 14 subject programs.

INDEX TERMS Higher-order mutation testing, dynamic symbolic execution, equivalent mutants.

I. INTRODUCTION
Mutation testing (MT) depends on the idea of generating
one or more mutated versions for the source program to use
them in estimating the quality of the test suite. Mutation
testing was founded in the 1970s by DeMillo et al. [1] and
Hamlet [2]. It is classified into two types: first-order mutation
testing and higher-order mutation testing [3], [4].

The mutant (faulty program) may be a first-order
mutant (FOM) or higher-order mutant (HOM). A FOM is
generated by creating only one error in the source pro-
gram while a HOM is generated by creating two or more
errors in the source program. The source program and the
mutated versions are executed by a test suite. If the output
of the source program is dissimilar to the result of the faulty
version (mutant), this mutant is called a ‘‘Killed’’ mutant.
Otherwise, it is called an ‘‘Alive’’ mutant which may be
killed or equivalent one. Error creation is made by applying
the mutation operators to the source program. Some of the

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

mutation operators produce mutants semantically similar to
the source program which called equivalent mutants. These
mutants cannot be killed and a lot of human effort is required
to detect these mutants.

AlthoughMT is a highly effective technique to evaluate the
quality of the test cases, it suffers from some problems such
as equivalent mutant problem, realism problem, and gener-
ating a large number of mutants. One of the most difficult
problems in mutation testing is the EM problem. EM is a
mutant that cannot be killed by any test case. In recent years,
there are many proposed techniques are applied to detect and
reduce the number of equivalent mutants. Madeyski et al. [5]
classified EM problem techniques into three groups:
• Techniques for the detection of equivalent mutants
such as compiler optimization [6], [7], mathematical
constraints [8], program slicing [9], and laser model
checker [10].

• Techniques to reduce the number of equivalent mutants
such as selective mutation [11], program dependence
analysis [12], co-evolutionary [13], and higher-order
mutation testing [3], [5], [14].

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 163767

https://orcid.org/0000-0002-6845-3490
https://orcid.org/0000-0003-3264-185X


A. S. Ghiduk et al.: Employing Dynamic Symbolic Execution for Equivalent Mutant Detection

• Techniques to suggest the equivalent mutants such as
Bayesian-learning based guidelines [15], the impact
coverage [16], and dynamic invariants impact [17].

SOMT approaches [3], [4] and HOMT approaches [5]
are considered significant solutions for the mutation test-
ing problems. SOMT depends on generating second-order
mutants (SOMs) that are created by adding two faults into
the source code. HOMT depends on generating higher-order
mutants (HOMs) that are created by seeding two or more
errors in the source code. SOMT techniques specially and
HOMT techniques generally [3], [4], [18] are considered
the most significant techniques for solving the EM problem.
These techniques combine two or more FOMs to generate
SOM or HOM which reduces the number of mutants by
50% or more and also decreases the number of EM. In addi-
tion, Gong et al. [41] proposed a technique for reducing
the number of mutants by considering the dominance rela-
tion between mutant branches. The results showed that this
technique reduces 80% of mutants on average.

Bearing these ideas in mind, the current study aims to solve
the EM problem through detecting and reducing the number
of second-order EM. For this reason, this paper proposes a
new technique using the SOM testing techniques [18] and the
DSE techniques [19], [20]. Firstly, SOMT is used to reduce
the number of mutants that helps to reduce the number of EM.
Secondly, the idea of the DSE is used to execute the tested
program and its mutants with initial random test inputs and
using symbolic values for these inputs in parallel to collect
some information for each of the tested programs and its
mutants. Such information is represented in the variables
operators, executed code lines, constraint paths, and program
output. This information helps to classify the mutants and
detect the equivalent mutants.

Detecting equivalent mutants in this work depends on
executing the source code and its mutants concretely and
symbolically at the same time (which called DSE) and then
compare between them through the information that collected
about them during that execution. This technique considers
the mutant surely ‘‘Killed’’ when the information is differ-
ent and the mutant is reached. Otherwise, the mutant may
be called ‘‘Equivalent’’ or ‘‘Strong’’. To determine that the
mutant is surely ‘‘equivalent’’ or surely ‘‘strong’’, the tech-
nique re-executes the source code and the mutant with a large
number of test data.

Testing the software application may be executed con-
cretely by using random input values or symbolically by
using symbolic values that generate constraint paths which
are solved to generate new concrete values. The DSE is a
hybrid software verification technique where executes the
symbolic execution along concrete execution. DSE testing
executes a program starting with some random or given input,
collect symbolic constraints using symbolic values along the
execution on inputs at conditional statements, and then uses
a constraint solver to generate the new test inputs. Most
of the previous EM detected problem techniques [21], [22]

TABLE 1. An example of equivalent FOM.

TABLE 2. An example of equivalent SOM.

can detect EM by percentage 45% to 70%. On the contrary,
the proposed technique can detect about 94% from EM that
analyzed manually.

The rest of this paper is organized as follows. Section II
presents related work. Section III presents the main idea
of DSE. Section IV presents the proposed technique for
detecting equivalent mutants. The discussion the setup of the
experiments and their results are presented in Section V. The
conclusion of the paper is presented in Section VI.

II. RELATED WORK
The equivalent mutant (EM) is created once the behavior
of the mutant is identical to the source program and there
is no difference between them. Tables 1 and 2 give exam-
ples of equivalent FOMs and SOMs. Detecting EM needs
high-quality test cases and more human effort. The quality of
any EM technique depends on its ability for detecting most
EM that analyzed manually. The greater the number of EM
detected, the greater the percentage of mutation score.

The process of detecting EM manually is very expensive
and takes a long time. Therefore, various approaches have
been proposed to detect EM automatically. In the last twenty
years, the number of studies that were proposed to solve
the EM problem became increasing. These approaches are
classified into three classes as mentioned above. The most
effective techniques for overcoming EM problem are SOMT
[5], [23] in particular and HOMT [24], [25] in general.
SOMT or HOMT techniques could decrease the number of
mutants and reduce the number of EM.

In 1979, a study proposed by Baldwin and Sayward [6]
detects EM by using a compiler optimization technique. This
approach [6] presented different types of compiler optimiza-
tion rules to detect EM. This approach detected that 10% of
all mutants were EM for 15 tested programs.

163768 VOLUME 7, 2019



A. S. Ghiduk et al.: Employing Dynamic Symbolic Execution for Equivalent Mutant Detection

Offutt and Pan [8], [26], [42] used constraint solving for
detecting EM. These approaches [8], [26], [42] formulated
the EM problem as a constraint problem, analyzed the path
condition of a mutant, and solved the constraint to detect EM.
If no solution is found then EM is detected. The Empirical
results of these approaches showed that using constraint tech-
nique able to detect EM in percentage 47.63% for 11 subject
programs. The same technique was used by Nica andWotawa
[43] to detect the EM in percentage 40%.

The program slicing technique was used to detect EM [9].
The program slicing technique [9] isolated the components of
a program. These components are the computation of a single
variable or set of variables. Detecting EM is achieved by the
generation of a sliced program.

The study proposed by Grun et al. [16] determined the
impact of mutants during the execution to detect EM.
The impact of a mutant was measured using code coverage
and was represented as the difference in the program
behavior between the mutant and the original program.
Schuler et al. [27] used the impact coverage to distinguish
between the equivalent mutant and nonequivalent mutant.
This approach was applied to seven tested programs to test its
efficiency. The percentage of EM ranges from 25% to 70%.

In 2012, a new dynamic method called isolating equivalent
mutant [23] was proposed to classify mutants to possibly
killable or possibly equivalent mutants. This technique based
on using SOM testing to classify the FOMs as possibly
killable or not.

Kintis [37] and Orzeszyna [38] discussed in detail
the proposed methods to handle the equivalent mutant
problem.

III. DYNAMIC SYMBOLIC EXECUTION
So far, there are many techniques used to test software
applications such as random testing techniques [28], [29],
symbolic execution techniques [19], and search-based
techniques [33]–[36], [39], [40]. The DSE [20] is considered
a combination of random testing and symbolic execution
techniques [19], [29]. In random execution, actual values are
used to execute the program. While in symbolic execution,
symbolic values are used instead of actual values to execute
the program. In recent years, the symbolic execution [19]
and DSE [20] techniques are used in software testing for
generating high coverage test suites and for detecting the
errors in software applications. The DSE [20] is considered
a combination of symbolic and concrete execution where
executes the program with initial random inputs and using
symbolic values for these inputs in parallel to collect the
symbolic constraints after that DSE solves these constraints
to generate new test input.

Figures 1 and 2 provide examples of using random testing,
symbolic execution, and DSE to test a simple java source
code. Figure 1 gives a Java source code where the method
F takes two inputs H and G and calculates the output K.
Figure 2 describes how can each of random, symbolic, and
DSE techniques test the source code given in Figure 1.

FIGURE 1. Simple java source.

FIGURE 2. Random and symbolic execution.

Suppose the created random values for F(G, H) are
G= 5, and H= 10; then random testing technique will cover
the true branch as given in Figure 2(a) and the output will be
k = 50.

Suppose the symbolic values for F(G, H) are G = a,
and H = b; then symbolic execution technique will find to
constraints: PC1: a < b for the true branch and PC2: a >= b
for the false branch as given in Figure 2(b). These constraints
can be solved by a constraint solver to find the actual values.

For applying DSE, the program is executed concretely
and symbolically as given in Figure 2. Then, the symbolic
execution generates the path constraint a < b for the path
that was executed randomly. Consequently, DSE negates this
path constraint and solves the new path constraint a >= b to
generate new test input values.

IV. OUR PROPOSED TECHNIQUE (DEM-DSE)
This section describes the proposed technique for Detecting
Equivalent Mutants using Dynamic Symbolic Execution
(DEM-DSE). The technique decreases the number of EM,
detects the EM, and classifies the mutants into two cate-
gories: killed mutants (KM) and EM. The DEM-DSE tech-
nique depends on the combination of the SOM technique
and DSE technique. The proposed DEM-DSE technique uses
MuClipse [30] tool to generate FOMs, our previous SOM
testing technique given in [18] which uses SCWR Algorithm

VOLUME 7, 2019 163769



A. S. Ghiduk et al.: Employing Dynamic Symbolic Execution for Equivalent Mutant Detection

FIGURE 3. Gen-SOMs. Algorithm.

FIGURE 4. DEM-DSE Algorithm.

to generate the SOMs, and applies the idea of DSE [20] to
detect the equivalent mutants.

DEM-DSE technique is performed as follows.
Firstly, Gen-SOMs Algorithm given in Figure 3 generates

the FOMs for the java tested program using MuClipse tool
and then applies the SCWR Algorithm [18] to generate its
SOMs. It receives as input the source program and it gives
as output its SOMs. SCWR Algorithm [18] has two features;
it reduces the number of the mutants to about 60% comparing
to FOMs and also reduces the number of EM mutants to less
than half compared to FOMs.

Secondly, DEM-DSE algorithm given in Figure 4 which
receives as input the source program and its SOMs, then
instruments the source program and its SOMs using symbolic
values.

Thirdly, the instrumented program and the instrumented
SOMs are executed with initial test inputs which are cre-
ated randomly to collect some information for each of them.
This information is represented in the following: the cov-
ered operators, the path constraints, the executed code lines,
the output of the program or SOM, and reachability for
each mutant [31]. To classify the SOMs, the information of
the source program and the information of each SOM are
compared correspondingly.

FIGURE 5. DEM-DSE architecture.

Finally, the DEM-DSE technique classifies the mutants
according to the following set of rules.

• Rule 1: if M is a killed mutant according to operators
only then M is an equivalent mutant (EM).

• Rule 2: if M is a killed mutant according to all conditions
(output, path, operators, and constraints) then M is a
naïve mutant.

• Rule 3: if M is a killed mutant according to output
only or output and any other condition then M is a
normal mutant.

• Rule 4: otherwise M is a strong mutant.

A mutant is operators, constrains, executed path, or output
based-killed if the executed operators, executed path, exe-
cuted constrains, or output of the source program is different
from the corresponding of the mutant.

The mutant is equivalent if it is killed by the operators
only (Rule 1) (e.g., FOM#1 and SOM#1 given in Tables 6(A)
and 6(B), respectively). The mutant is naïve if it is killed by
all the four methods (operators, constrains, executed path,
and output) (Rule 2) (e.g., FOM#33 and SOM#2 given in
Tables 6(A) and 6(B), respectively). The mutant is normal
if it is killed by output with or without another method
(Rule 3) (e.g., FOM#3 and SOM#3 given in Tables 6(A)
and VI(B), respectively). Otherwise, the killed mutant is
called a strong mutant (Rule 4) (e.g., FOM#2 (killed by
operators and constraints). Although the classification based
only on the rules (1-4), to be sure that an ‘‘alive’’ mutant is
surely ‘‘strong’’ or surely ‘‘equivalent, we execute this mutant
with more and more test cases that are randomly created.
These test cases can be generated using any other technique
such as evolutionary algorithms [39] or genetic algorithms
[34], [36], [40].

The details of the proposed technique and the experimental
study are discussed in the following section.

V. EXPERIMENTAL SETUP AND RESULTS
This section gives the details of the conducted experiment
to assess the proposed DEM-DSE technique for detect-
ing equivalent first and second-order mutants (EFOMs and
ESOMs).

Figure 5 shows the architecture of the DEM-DSE
technique, which consists of three modules: FOMs genera-
tion module which applies MuClipse [30], SOMs generation

163770 VOLUME 7, 2019



A. S. Ghiduk et al.: Employing Dynamic Symbolic Execution for Equivalent Mutant Detection

TABLE 3. Subject programs.

module which applies SCWR Algorithm [18], and SOMs
classification module which applies DSE [20].

A. EXPERIMENTAL SETUP
1) SUBJECT PROGRAMS
In this experiment, a set of Java programs was selected from
the previous studies for conducting the experiment to evaluate
the proposed technique. This set contains two forms of pro-
grams, small-sized programs which consist of one class such
as Triangle, Mid, Remainder, CalDay, Maxim, CPrime, Bub,
Bisect, Power, and Doubly-Linked-List; and large-sized pro-
gramswhich consist of more than one class such as Commons
from which WordUtils and NumberUtils classes are selected,
Joda-time from which DateTime class is selected, Pamvotis
from which Simulator is selected, and Xstream from which
Xstream and Quick Writer are selected.

Table 3 presents the subject programs details: the
‘‘Subject Program’’ column represents the program title; the
‘‘Reference’’ column represents the studies that used these
set of programs; the ‘‘Scale’’ column represents the number
of classes, and code lines in each subject program, and ‘‘#
Test Cases’’ represent the number of test cases used to test
the programs. Portion of the test cases is created randomly
and the others are created using the DSE technique. Whereas,
the initial test cases are created randomly and the rest test
cases are created by solving the collected constraints.

2) MUTATION TOOL
In the experiment, the MuClipse tool [30] is applied.
MuClipse is a mutation testing tool for Java programs.
MuClipse tool depends basically on the implementation of
the MuJava tool [32] that is a very popular mutation testing
tool. MuClipse tool helps the testers in generating themutants
and running the tests against these mutants.

MuClipse tool [30] uses two mutation operator types
to generate the FOMs. The used mutation operators are
Class- Level and Traditional-Level operators. The tradi-

TABLE 4. Traditional- level operators.

tional operators only are used in the experiment because
the proposed algorithm compares the operators that were
used in the tested program and its mutants that are rep-
resented in six types of Traditional-Level operators. The
Traditional-Level operators’ types are (see Table 4) as fol-
lows: Arithmetic operator, Relational operators, Conditional
operators, Shift operators, Logical operators, and Assign-
ment operators.

3) EXPERIMENT PROCEDURE
The experiment was performed as follows:

1) Set the configuration of mutation operators feature of
MuClipse to Traditional-Level operators; then apply it
on the tested program to generate FOMs.

2) Apply the SCWR Algorithm [18] on the FOMs to
create SOMs.

3) Run the DEM-DSE algorithm to classify the mutants
and detect EM automatically considering the four pro-
posed rules (Rules 1, 2, 3, and 4).

4) To assess the effectiveness of the proposed technique,
the results are compared to the manual results and also
to the results of the related work [21].

In the following, an example is given to illustrate the
experiment procedure and the algorithm on each of FOMs
and SOMs.

First, let the tested program is a Java program which reads
three integers and finds the maximum value as given in
Figure 6(a). This program needs three inputs to be executed.

Second, the MuClipse tool is applied to generate FOMs as
given in Figure 6(b) and then generate SOMs by the SCWR
Algorithm [18] as given in Figure 6(c).

Third, the DEM-DSE algorithm is executed on the tested
program example, FOMs and SOMs. To classify the mutants
to ‘‘alive’’ or ‘‘killed’’ the DEM-DSE technique collects
some information which are variable operators, executed
code lines, constraint paths, program outputs for each input
that satisfies the reachability condition [31]. The tech-
nique classifies ‘‘killed’’ mutant into ‘‘naïve’’, or ‘‘normal’’,
and the ‘‘alive’’ mutant into ‘‘equivalent’’, or ‘‘strong’’.

VOLUME 7, 2019 163771



A. S. Ghiduk et al.: Employing Dynamic Symbolic Execution for Equivalent Mutant Detection

FIGURE 6. (A) Tested program example. (B).FOM. (C).SOM.

This classification depends on the collected information dur-
ing the execution of the tested program, FOM, and SOM. For
example, let the inputs of the tested program example given
in Figure 6(a) are a = 7, b = 9, and c = 5.
After the execution of tested program example, FOM, and

SOM given in Figures 6(a), (b) and (c), respectively, the col-
lected information for the tested program is:

Operators: {>; > }
Constraints: {b > max; c <= max }

Code lines: {1, 2, 3, 4, 6}
Output: 9
The collected information for the FOM is:
Operators: {++; >;> }
Constraints: {b > max; c <= max }
Code lines: {1, 2, 3, 4, 6}
Output: 9
The collected information for the SOM is:
Operators: {++; >; >; – }
Constraints: {b > max–; c <= max }
Code lines: {1, 2, 3, 4, 6}
Output: 9
Then, the technique applies DSE and solves the constraints

b <= max and c > max where max = a (i.e., b<= a and
c >= a). After solving these constraints, the new inputs
can be a = 10, b = 8, and c = 12. After the execu-
tion of tested program example, FOM, and SOM given in
Figures 6(a), (b) and (c), respectively, using the new inputs,
the collected information for the tested program is:

Operators: {>; > }
Constraints: {b <= max; c > max }
Code lines: {1, 2, 4, 5, 6}
Output: 12
The collected information for the FOM is:
Operators: {++; >; > }
Constraints: {b <= max; c > max }
Code lines: {1, 2, 4, 5, 6}
Output: 12
The collected information for the SOM is:
Operators: {++; >; >; – }
Constraints: {b <= max–; c > max }
Code lines: {1, 2, 4, 5, 6}
Output: 12
According to the output, code lines, and constraint

(post-decrement operator – in ‘‘b <= max–’’ and ‘‘b >

max–’’ are neglected because they don’t change the con-
straint) FOM and SOM are alive mutants which may be
equivalent mutants or strong ones. According to operators
FOM and SOM are killed. Therefore, FOM and SOM are
equivalent mutants. By themanual checking of thesemutants,
these FOM and SOM are equivalent mutants.

The results of the tested program example are reported
in two tables: Tables 5(A) and 5(B) that present informa-
tion comparison between the tested program example and its
mutants using initial random data (R) and new data (N) gen-
erated by DSE. The mutant is called ‘‘killed’’ when its infor-
mation is different from the tested program information and
‘‘alive’’ mutant otherwise. In addition, Tables 6(A) and 6 (B)
present the mutants classification.

From Tables 5 and 6, the MuClipse generated 52 FOMs
which are manually classified into 41 ‘‘killed’’ mutants and
11 ‘‘equivalent’’. When applying our algorithm, we found 11
‘‘equivalent’’ and 41 ‘‘killed’’ that are classified into ‘‘Naïve’’
and ‘‘Normal ‘‘. Also for SOMs, the number of SOMs is
26 which are classified manually into 2 ‘‘equivalent’’ and
24 ‘‘killed’’ mutants. After execution of our algorithm, these

163772 VOLUME 7, 2019



A. S. Ghiduk et al.: Employing Dynamic Symbolic Execution for Equivalent Mutant Detection

TABLE 5. Information comparison between Tested program and its FOMs. TABLE 6. (a). FOMs Classification. (b). SOMs classification.

VOLUME 7, 2019 163773



A. S. Ghiduk et al.: Employing Dynamic Symbolic Execution for Equivalent Mutant Detection

TABLE 7. Number of FOMs and SOMs.

mutants are classified automatically into 2 ‘‘equivalent’’ and
24 ‘‘killed’’. We noted from these results that using SOMs
approaches [18] reduces in the number of equivalent mutants
to less than half and applying DSE is able to detect approxi-
mately 100% of both of the examined first- and second-order
equivalent mutants in this tested program example.

B. EXPERIMENTAL RESULTS
To demonstrate the competence of our study in classifying
the mutants and detecting equivalent mutants, we compare
our results with the manual results and with the previous
results [21] as in section IV.B.4. The empirical results of our
study illustrate that our technique can classify mutants auto-
matically into killed (normal and naïve) and alive (equivalent
and strong). In addition, it decreases the number of SOMs
mutants to less than half compared with FOMs see Table 7.
Besides, it identifies approximately 94% of EM that man-
ually detected where our algorithm automatically detected
224 ESOMs from 238 ESOMs that analyzed manually. This
percentage is considered a high percentage comparing with
the previous results of Kintis, and Malevris [21] which can
detect approximately 70% of equivalent mutants.

1) GENERATING FOMs AND SOMs
We used 14 tested programs between small-sized programs
with one class and large-sized programs with many classes
and lines of code. We first apply all traditional-level mutation
operators of theMuClipse tool on each tested program to gen-
erate the FOMs. After generating FOMs, we apply the SCWR
Algorithm [18] to generate SOMs for these FOMs.We record
the number of FOMs and SOMs for each program and the
reduction ratio of SOMs comparing with FOMs in Table 7.
The results given in Table 7 showed that the number of SOMs
is reduced by approximately 50% comparing to number of
FOMs.

2) CLASSIFYING SOMs MANUALLY
Generating SOMs by SCWR Algorithm [18] reduces the
number of mutants by a high percentage (app. 50%) and this

TABLE 8. SOMs classification manually.

TABLE 9. SOMs classification automatically.

reduction leads to a reduction in the number of the EM. In this
stage, we manually classify SOMs into ‘‘killed’’ and ‘‘Equiv-
alent’’. The results given in Table 8 show that 238 ESOMs
were manually detected of a total of 5577 SOMs.

3) CLASSIFYING SOMs AUTOMATICALLY
We classify in this stage SOMs automatically by our
DEM-DSE algorithm. The empirical results are recorded
in Table 9. Our algorithm classifies mutants into ‘‘alive’’
mutants which are classified into ‘‘equivalent’’ and ‘‘strong’’
and ‘‘killed’’ mutants which are classified into ‘‘normal’’ and
‘‘naïve’’ depending on the rules described in section IV. The
results illustrated that our algorithm is able to classify SOMs
and detects ESOMs. Our technique classifies the 5577 SOMs
mutants into 224 equivalent mutants, 98 strong mutants, 2187
normal mutants, and 3068 naïve mutants (Table 9).

4) EVALUATE THE EFFECTIVENESS oF OUR
DEM-DSE TECHNIQUE
In this stage, we evaluate our technique based on the manual
results and the previous results [21]. Table 10 shows the

163774 VOLUME 7, 2019



A. S. Ghiduk et al.: Employing Dynamic Symbolic Execution for Equivalent Mutant Detection

TABLE 10. The number of esoms that analyzed manually and by
DEM-DSE.

FIGURE 7. EM Detection ratio.

ratio of the detected ESOMs comparing with the manually
analyzed ESOMs. The results in Table 10 and Figure 7 show
that our technique is able to detect 224 ESOMs from 238
ESOMs analyzed manually. In other words, our technique is
more effective than others in detecting ESOMs that manually
analyzed by a percentage of 94%. This percentage is high
compared with the previous techniques in [21] such that the
previous approach [21] detected the ESOMs with approxi-
mately 70% of the examined equivalent mutants. In addition,
the DEM-DSE technique detects 100% of equivalent mutants
for 9 of the 14 subject programs.

From the above discussion, one can conclude that the EM
problem can be handled as a static analysis problem or as a
dynamic execution based problem.Nica andWotawa [43] and
Pan [42] used static analysis to handle this problem. While in
our work, we handled this problem as a dynamic execution
problem. We recommend other researchers to do more work
in this area using dynamic execution because it overcomes
many challenges of static analysis.

The proposed method executes the target program against
randomly generated test values. Then, it collects the set

of covered constraints. By solving the complementary con-
straints (where, x >= y is the complementary constraint of
x < y) of the collected ones, the method can find new test
values that cover the complementary path of the covered path.
By iterating this process, all branches of the target program
will be covered.

C. THREATS TO VALIDITY
1) EXTERNAL VALIDITY
The key external threat to validity is applying dynamic sym-
bolic execution to real programs because of the compli-
cation of the path constraints that are hard to be solved.
This problem can be eventually overcome using powerful
constraints solver. Furthermore, control flow dependence and
state explosion can be external threats to validity. Therefore,
the impacts of control flow dependence and state explosion
on the proposed method will be studied in future work.
Besides, the subject programs are small-sized programs and
are not large enough to argue that these programs are suffi-
ciently representative of the overall population of programs.
Although these programs are of small size, these programs
have been used in several previous experimental studies and
they have identical constructions as the large-sized programs.
Therefore, the suggested method has the capability to address
the large-sized or real programs.

2) INTERNAL VALIDITY
The key internal threats to validity is the construction of
stillborn mutants. Although we manually discarded these
mutants, this procedure is a time-wasting procedure and could
be inaccurate.

VI. CONCLUSION
This paper introduced a new technique for detecting the
equivalent mutants. This technique is a combination of
second-order mutation testing and dynamic symbolic execu-
tion technique. The aim of this technique is detecting the
equivalent mutants automatically instead of manual detec-
tion. This leads to a reduction in the time and effort which
are consumed in manual detection. Using second-order muta-
tion testing helped in decreasing the number of mutants
to less than half and therefore the number of equivalent
mutants is reduced. Also, using a dynamic symbolic exe-
cution technique helped in detecting the equivalent mutants
and classifying the mutants to killed (which are classified
into normal or naïve) or alive (which classified into equiv-
alent or strong). The results proved that the proposed tech-
nique is an effective technique in detecting approximately
94% of equivalent mutants that were determined manually.
This percentage is a high percentage comparing with the
previous EM detecting techniques [21], [22, [26]. In addition,
the DEM-DSE technique detects 100% of equivalent mutants
for 9 of the 14 subject programs. In the future work, we will
focus on using dynamic symbolic execution for generating
test data for killing higher-order mutants. Besides, the future

VOLUME 7, 2019 163775



A. S. Ghiduk et al.: Employing Dynamic Symbolic Execution for Equivalent Mutant Detection

work will study the impacts of control flow dependence, state
explosion, stubborn mutants, and dominator mutants on the
proposed method.

REFERENCES

[1] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, ‘‘Hints on test data
selection: Help for the practicing programmer,’’ Computer, vol. 11, no. 4,
pp. 34–41, Apr. 1978.

[2] R. G. Hamlet, ‘‘Testing programs with the aid of a compiler,’’ IEEE Trans.
Softw. Eng., vol. SE-3, no. 4, pp. 279–290, Jul. 1977.

[3] M. Polo, M. Piattini, and I. García-Rodríguez, ‘‘Decreasing the cost of
mutation testingwith second-ordermutants,’’ Softw. Test., Verification Rel.,
vol. 19, no. 2, pp. 111–131, Jun. 2009.

[4] M. Kintis, M. Papadakis, and N. Malevris, ‘‘Evaluating mutation testing
alternatives: A collateral experiment,’’ in Proc. 17th Asia Pacific Soft. Eng.
Conf. (APSEC), Nov./Dec. 2010, pp. 300–309.

[5] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Józala, ‘‘Overcoming the
Equivalent mutant problem: A systematic literature review and a com-
parative experiment of second order mutation,’’ IEEE Trans. Softw. Eng.,
vol. 40, no. 1, pp. 23–42, Jan. 2014.

[6] D. Baldwin and F. G. Sayward, ‘‘Heuristics for determining Equivalence
of program mutations,’’ Yale Univ., New Haven, CT, USA, Tech Rep. 276,
1979.

[7] A. J. Offutt and W. M. Craft, ‘‘Using compiler optimization techniques to
detect Equivalent mutants,’’ Software Test., Verification Rel., vol. 4, no. 3,
pp. 131–154, 1994.

[8] A. J. Offutt and J. Pan, ‘‘Detecting Equivalent mutants and the feasible
path problem,’’ inProc. 11th Annu. Conf. Comput. Assurance (COMPASS),
Jun. 1996, pp. 224–236.

[9] R. Hierons, M. Harman, and S. Danicic, ‘‘Using program slicing to assist
in the detection of Equivalent mutants,’’ Softw. Testing, Verification Rel.,
vol. 9, no. 4, pp. 232–262, Dec. 1999.

[10] L. du Bousquet and M. Delaunay, ‘‘Towards mutation analysis for Lustre
programs,’’ Electron. Notes Theor. Comput. Sci., vol. 203, no. 4, pp. 35–48,
Jun. 2008.

[11] E. S. Mresa and L. Bottaci, ‘‘Efficiency of mutation operators and selective
mutation strategies: An empirical study,’’ Softw. Testing, Verification Rel.,
vol. 9, no. 4, pp. 205–232, Dec. 1999.

[12] M. Harman, R. Hierons, and S. Danicic, ‘‘The relationship between pro-
gram dependence and mutation analysis,’’ inMutation Testing for the New
Century, W. E. Wong, Ed. Norwell, MA, USA: Kluwer, 2001, pp. 5–13.

[13] K. Adamopoulos, M. Harman, and R. M. Hierons, ‘‘How to overcome
the Equivalent mutant problem and achieve tailored selective mutation
using co-evolution,’’ in Genetic and Evolutionary Computation (Lecture
Notes in Computer Science), vol. 3103. Berlin, Germany: Springer, 2004,
pp. 1338–1349.

[14] M. Papadakis and N. Malevris, ‘‘An empirical evaluation of the first and
second order mutation testing strategies,’’ in Proc. 3rd Int. Conf. Softw.
Testing, Verification, Validation Workshops, Apr. 2010, pp. 90–99.

[15] A.M. R. Vincenzi, E. Y. Nakagawa, J. C. Maldonado, M. E. Delamaro, and
R. A. F. Romero, ‘‘Bayesian-learning based guidelines to determine Equiv-
alent mutants,’’ Int. J. Soft. Eng. Knowl. Eng., vol. 12, no. 6, pp. 675–689,
Dec. 2002.

[16] B. J. M. Grün, D. Schuler, and A. Zeller, ‘‘The impact of Equivalent
mutants,’’ Proc. Int. Conf. Softw. Testing, Verification, Validation Work-
shops, Denver, CO, USA, Apr. 2009, pp. 192–199.

[17] D. Schuler, V. Dallmeier, and A. Zeller, ‘‘Efficient mutation testing by
checking invariant violations,’’ in Proc. 18th Int. Symp. Softw. Testing
Anal., New York, USA, Jul. 2009, pp. 69–80.

[18] A. S. Ghiduk, M. R. Girgis, and M. H. Shehata, ‘‘Reducing the cost of
Higher-Order Mutation Testing,’’ Arabian J. Sci. Eng., vol. 13, no. 12,
pp. 7473–7486, Dec. 2018.

[19] L. Clarke, ‘‘A system to generate test data and symbolically execute pro-
grams,’’ IEEE Trans. Softw. Eng., vol. SE-2, no. 3, pp. 215–222, Sep. 1976.

[20] K. Sen, D. Marinov, and G. Agha, ‘‘CUTE: A concolic unit testing engine
for C,’’ in Proc. ESEC/FSE, Sep. 2005, pp. 263–272.

[21] M.Kintis andN.Malevris, ‘‘Using data flow patterns for Equivalentmutant
detection,’’ in Proc. IEEE Int. Conf. Softw. Test., Verification, Validation
Workshops, Mar./Apr. 2014, pp. 196–205.

[22] M. Kinits, and N. Malevris , ‘‘Identifying more Equivalent mutants via
code similarity,’’ in Proc. 20th Asia–Pacific Softw. Eng. Conf. (APSEC),
Dec. 2013, pp. 180–188.

[23] M. Kintis, M. Papadakis, and N.Malevris, ‘‘Isolating first order Equivalent
mutants via second order mutation,’’ in Proc. IEEE 5th Int. Conf. Softw.
Test., Verification Validation, Apr. 2012, pp. 701–710.

[24] Y. Jia and M. Harman, ‘‘Higher order mutation testing,’’ Inf. Softw. Tech-
nol., vol. 51, no. 10, pp. 1379–1393, Oct. 2009.

[25] A. O. Akinde, ‘‘Using higher order mutation for reducing Equivalent
mutants in mutation testing,’’ Asian J. Comput. Sci. Inf. Technol., vol. 18,
no. 3, pp. 13–18, 2012.

[26] A. J. Offutt and J. Pan, ‘‘Automatically detecting equivalent mutants and
infeasible paths,’’ Softw. Test., Verification Rel., vol. 7, no. 3, pp. 165–192,
Sep. 1997.

[27] D. Schuler and A. Zeller, ‘‘(Un-)covering equivalent mutants,’’ in Proc. 3rd
Int. Conf. Softw. Testing, Verification Validation, Apr. 2010, pp. 45–54.

[28] W. J. Duran and C. S. Ntafos, ‘‘An evaluation of random testing,’’ IEEE
Trans. Softw. Eng., vol. SE-10, no. 4, pp. 438–444, Jul. 1984.

[29] T. Y. Chen, H. Leung, and I. K. Mak, ‘‘Adaptive random testing,’’ in
Advances in Computer Science—ASIAN Higher-Level Decision Mak-
ing (Lecture Notes in Computer Science), vol. 3321. Berlin, Germany:
Springer, 2004, pp. 320–329.

[30] (2008). MuClipse Internet. [Online]. Available: http://muclipse.
sourceforge.net

[31] M. Harman, Y. Jia, and W. B. Langdon, ‘‘Strong higher order mutation-
based test data generation,’’ in Proc. 13th Eur. Conf. Found. Conf. Found.
Softw. Eng., Sep. 2011, pp. 212–222.

[32] Y.-S. Ma, A. J. Offutt, and Y.-R. Kwon, ‘‘MuJava: An automated class
mutation system,’’ Softw. Test., Verification Rel., vol. 15, no. 2, pp. 97–133,
Jun. 2005.

[33] A. S. Ghiduk, ‘‘Using evolutionary algorithms for higher-order mutation
testing,’’ Int. J. Comput. Sci., vol. 11, no. 2, pp. 93–104, Mar. 2014.

[34] A. S. Ghiduk, M. J. Harrold, and M. R. Girgis, ‘‘Using genetic algo-
rithms to aid test-data generation for data-flow coverage,’’ in Proc. 14th
Asia–Pacific Softw. Eng. Conf., Dec. 2007, pp. 41–48.

[35] A. S. Ghiduk, ‘‘Automatic generation of object-oriented tests with
a multistage-based genetic algorithm,’’ J. Comput., vol. 5, no. 10,
pp. 1560–1569, Oct. 2010.

[36] A. S. Ghiduk and M. R. Girgis, ‘‘Using genetic algorithms and dominance
concepts for generating reduced test data,’’ Informatica, vol. 34, no. 3,
pp. 377–385, 2010.

[37] M. Kintis, ‘‘Effective methods to tackle the equivalent mutant problem
when testing software with mutation,’’ Ph.D. dissertation, Dept. Inform.,
Athens Univ. Econ. Bus., Athina, Greece 2016.

[38] W. Orzeszyna, ‘‘Solutions to the equivalent mutants problem: A system-
atic review and comparative experiment,’’ M.S. thesis, School Comput.,
Blekinge Inst. Technol., Karlskrona, Sweden, 2011.

[39] W. Q. Zhang, D. W. Gong, and X. J. Yao, ‘‘Evolutionary generation of test
data for many paths coverage based on grouping,’’ J. Syst. Softw., vol. 84,
no. 12, pp. 2222–2233, Dec. 2011.

[40] X. Yao, D. Gong, and G. Zhang, ‘‘Constrained multi-objective test data
generation based on set evolution,’’ IET Softw., vol. 9, no. 4, pp. 103–108,
Aug. 2015.

[41] D. Gong, G. Zhang, X. Yao, and F. Meng, ‘‘Mutant reduction based
on dominance relation for weak mutation testing,’’ Inf. Softw. Technol.,
vol. 81, pp. 82–96, Jan. 2017.

[42] J. Pan, ‘‘Using constraints to detect equivalent mutants,’’ M.S. thesis, Dept.
ISSE, George Mason Univ., Fairfax, VA, USA, 1994.

[43] S. Nica and F. Wotawa, ‘‘Using constraints for equivalent mutant detec-
tion,’’ Electron. Proc. Theor. Comput. Sci., vol. 86, pp. 1–8, Jul. 2012.

AHMED S. GHIDUK received the B.Sc. degree
from Cairo University (Beni-Suef Branch), Egypt,
in 1994, the M.Sc. degree from Minia Univer-
sity, Egypt, in 2001, and the Ph.D. degree from
Beni-Suef University as a joint work with the
College of Computing, Georgia Institute of Tech-
nology, Atlanta, GA, USA, in 2007. He is an
Associate Professor with the Department of Math-
ematics and Computer Science, Faculty of Sci-
ence, Beni-Suef University, Egypt. He is currently

an Associate Professor with the College of Computers and Information
Technology, Taif University, Saudi Arabia. His research interests include
software engineering, search-based software engineering, software testing,
mutation testing, higher-order mutation testing, weak mutation testing, test
data generation, requirements engineering, and genetic algorithms.

163776 VOLUME 7, 2019



A. S. Ghiduk et al.: Employing Dynamic Symbolic Execution for Equivalent Mutant Detection

MOHEB R. GIRGIS received the B.Sc. degree
from Mansoura University, Egypt, in 1974,
the M.Sc. degree from Assuit University, Egypt,
in 1980, and the Ph.D. degree from the University
of Liverpool, England, in 1986. He is currently
an Associate Professor with Minia University,
Egypt, where he is also a Professor. His research
interests include software engineering, informa-
tion retrieval, genetic algorithms, and networks.
He is a member of the IEEE Computer Society.

MARWA H. SHEHATA received the B.Sc. and
M.Sc. degrees from Beni-Suef University, Egypt,
in 2009 and 2014, respectively, where she is cur-
rently pursuing the Ph.D. degree. She is currently a
Lecturer with the Department of Mathematics and
Computer Science, Faculty of Science, Beni-Suef
University. Her research interests include software
engineering and higher-order mutation testing.

VOLUME 7, 2019 163777


	INTRODUCTION
	RELATED WORK
	DYNAMIC SYMBOLIC EXECUTION
	OUR PROPOSED TECHNIQUE (DEM-DSE)
	EXPERIMENTAL SETUP AND RESULTS
	EXPERIMENTAL SETUP
	SUBJECT PROGRAMS
	MUTATION TOOL
	EXPERIMENT PROCEDURE

	EXPERIMENTAL RESULTS
	GENERATING FOMs AND SOMs
	CLASSIFYING SOMs MANUALLY
	CLASSIFYING SOMs AUTOMATICALLY
	EVALUATE THE EFFECTIVENESS oF OUR DEM-DSE TECHNIQUE

	THREATS TO VALIDITY
	EXTERNAL VALIDITY
	INTERNAL VALIDITY


	CONCLUSION
	REFERENCES
	Biographies
	AHMED S. GHIDUK
	MOHEB R. GIRGIS
	MARWA H. SHEHATA


