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ABSTRACT In order to apply indoor localization systems in real environments it is necessary to provide an
accurate location without implying a high impact on the user’s normal behaviour. To achieve this goal, in this
paper, a combination of battery saving techniques with a system based on WiFi fingerprinting is proposed.
This is done by transferring the location calculation workload to the server, leaving user’s mobile devices
the only responsibility of making periodic WiFi network scans at dynamic intervals based on user activity,
through an application running on background. There are not many studies analyzing energy consumption
of existing localization systems, even though it is an important factor in real applications. In this paper, both
energy consumption and accuracy are analyzed, having an energy consumption of only 0.8 Wh (having a
3.7 V battery) during a 24-hour cycle and an average localization error of 4.51 meters. Worth to mention
that as computation is done on server side the system can be expanded to multiple buildings and floors.
Finally, the dataset used in this paper has been published making possible to test new algorithms in the same
environment.

INDEX TERMS Indoor localization, WiFi fingerprinting, RSSI, battery life, KNN, naive Bayes, dataset.

I. INTRODUCTION
The energy-efficient indoor localization proposed in this
study is framed in the context of a security project,1 in which
the main objective is to reduce the impact of a possible threat
inside a building. For this goal, once the threat is identified,
the system guides users in a dynamic and personalized way,
using their own mobile phones, providing the actions needed
to keep them safe (e.g. finding the most secure exit route,
not necessarily the closest one, which could be blocked).
That is why it is necessary to know at all times not only
where the threat is, but also the people in the building, so that
they can receive the appropriate dynamic indications. Thanks
to the application described in this paper, focused on the
part of indoor localization, it is possible to locate each user

The associate editor coordinating the review of this manuscript and
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1VICTORY: VIsion and Crowdsensing Technology for an Optimal
Response in physical-securitY. http://madeirasic.us.es/victory/

individually inside the building and at the same time do not
significantly affect phone’s battery drain.

Due to the context in which this study is framed, there are a
number of restrictions necessary for the execution of the pre-
sented project, namely: 1) the server must know the location
of each user, in order to provide a customized escape path;
2) the system must allow to add new facilities in real time
to localize users in new areas; 3) the system must be energy
efficient in the user’s device, not being the responsibility of
the user the resolution of the location. To this end, the study
will focus on inferring locations from the server side, leaving
the client side only to efficiently send information to the
server.

The main goal is to implement an energy efficient and
scalable localization system. Therefore in this paper it is pro-
posed and presented a fingerprint-based localization system
with, on one side, novel energy-efficient techniques that adapt
the scanning frequency to the user’s physical activity to save
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energy, and on the other, a server-based localization that
takes all the data processing, leaving the client with only the
requirement to perform and send WiFi scans to the server,
allowing also to update the localization algorithms in real
time and without energy cost in the user devices.

In order to get the most energy-efficient localization sys-
tem given our targeted scenario, this work has taken into
account the energy consumption as well as the accuracy of
the system. Both are aspects that have already been studied
as mentioned in the state of the art in section II, but whose
join combination (energyminimization and location accuracy
maximization) has not been studied before as far as we know.

It should also be noted that there are two restrictions in
order to deploy our system in the real environment. Our
first constraint is that no additional infrastructure can be
installed in the building, which in our case is a university
building, hence all infrastructure-based technologies must be
discarded, such as deploying customized RF-beacons, RFID,
infrared, ultrasound, Bluetooth, short-range FM transmitters,
lights, or magnetic signal modulators [1]. As there are enough
WiFi access points (APs) available to provide internet cov-
erage throughout the building, existing WiFi APs will be
used in their current distribution, which cannot be modified
either. The second restriction is that the router software can
neither be accessed or modified, it is only allowed to be
connected like any other user, so the location will be done
by the client, passively obtaining the WiFi received signal
strength indication (RSSI) that arrives from each AP during
client scanning process through the application of the system,
and communicating it to the server to predict the position
of the user. It also does not support round trip time (RTT),
so only RSSI should be used as a reference of the location.
Due to these constraints, we do not intend to compare our-
selves with the best existing indoor localization system in
terms of accuracy, but rather to achieve a scalable and energy
efficient system that can be successfully implemented in a
real environment, in which will take advantage of existing
APs RSSI.

Since localization algorithms are run on the server side,
the different localization algorithms can be used without
affecting user’s devices. In this work, regression KNN, clas-
sification KNN and Naive Bayes localization algorithms are
tested and compared, showing the results using our collected
dataset. This set of experiments included in our dataset has
been published so that other researchers can reproduce our
experiments and test their solutions on it.

In this paper, four innovations are proposed, namely: 1) the
development of an indoor localization system in a real case,
this being within an university building, deployed and pre-
pared to give locations to multiple users simultaneously and
add additional buildings or floors; 2) an extensive compari-
son between regression KNN, classification KNN and Naive
Bayes applied to indoor localization using WiFi fingerprints;
3) the implementation and study of a combination of state-
of-the-art techniques to significantly reduce the battery con-
sumption caused by the localization system; 4) the release of

a manually collectedWiFi fingerprint dataset at the university
described in this study.

The rest of the paper is organized as follows. In Section II
the related works in fingerprinting and energy saving are
presented. Section III describes the proposed energy-efficient
localization system. Section IV describes the experimental
set-up. Section V shows the results related to localization
performance, comparing KNN and Naive Bayes approaches,
and presents the energy results with the proposed saving
techniques. Finally, Section VI concludes this study.

II. RELATED WORKS IN FINGERPRINTING AND
ENERGY SAVING
Over the last few years several studies have been published
with the purpose of finding the most suitable solution to
provide an accurate localization inside buildings, also reduc-
ing the deployment and maintenance costs. Below some of
the most relevant are shown, first from the point of view of
fingerprinting and then those related to energy consumption.

A. FINGERPRINTING STATE OF THE ART
Different techniques have been studied in order to provide an
accurate position at indoor areas. One of them, is fingerprint-
based technique, that first measures and stores all the APs
RSSI received at different points on the map. Afterwards,
the possible locations are predicted by comparing the RSSI
values of the unknown location with those already measured.

There are different research-level and commercial solu-
tions for indoor localization that have been reviewed in
several papers [2]–[4]. From the multiple approaches (RF
beaconing, inertial, ultrasound, light, etc.) the fingerprint-
ing approach is one of the most extended. For example,
Lymberopoulos and Liu [5] compare the ones presented to
Microsoft Indoor Localization Competitions from 2014 to
2017, which include many techniques based on Fingerprint.

Two of the most widely used techniques with WiFi finger-
print are the following [6]: techniques for comparing captured
fingerprints with new scans, either by calculating the sim-
ilarity between them or with techniques such as K-Nearest
Neighbor (KNN); and techniques that use captured finger-
prints to resolve a Log-distance path loss (LDPL) model
with physical restrictions and wireless propagation, hence
reducing the number of fingerprints required.

The solutions based on comparison of fingerprints are
the most frequently used until now because of the cost of
implementation and the high accuracy of them. Niu et al. [7]
andHossain et al. [8], among others, use KNNorNaive Bayes
technique to determine unknown locations. They propose to
augment the fingerprints, achieving an improvement of up to
4 meters approximately using Naive Bayes for datasets with
a low number of real points, however it does not improve as
much in larger datasets, as it also increases the inference time,
being this crucial to provide locations in real time.

On the other hand, there exist solutions that base their
systems on fingerprint with LDPL models. Even though it is
common to use LDPLmodels without the use of fingerprints,
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studies such as Chintalapudi et al. [9], Lim et al. [10] or
Ji et al. [11], since LDPL models are theoretical, do not
always obtain the best results in real environments, yet it
reduces the number of fingerprints required.

Even though in recent years we have found more appli-
cations of Deep Learning to location systems, these sys-
tems require a time-consuming fingerprint capture process,
as these models require a high number of fingerprints in
order to accurately infer the result. Nevertheless, very precise
results can be achieved, such as the solution proposed of
Abbas et al. [12] who filter the fingerprints and add noise
to improve accuracy, or the study of Chen et al. [13] who
propose a local feature-based deep long short-term memory
(LF-DLSTM) approach for reduce the signal noise.

Our proposal makes use a solution based on comparison of
fingerprints, exploring classification KNN, regression KNN
and Naive Bayes, as it achieves high accuracy when it uses
real fingerprints, and allows updating the dataset and facilities
in real time without the requirement to recalculate models.

B. ENERGY SAVING STATE OF THE ART
Implementing a localization system in a mobile phone
involves the use of its internal sensors, which is an action
demanding significant energy from the battery. Therefore,
it is an important goal to solve the problem of high energy
consumption to avoid the rejection of installing battery-
draining App by users. For this reason, in most real systems,
the energy saving is as significant as its accuracy.

There are some solutions to solve this energy-efficient
problem in continuous user localization. Wang et al. [14]
perform a study of energy saving techniques in existing
mobile crowdsensing, from raw sensing gathering, pass-
ing through inference to data aggregation. A recent survey,
in the context of fingerprinting localization, includes a review
in energy saving methods [6]. He et al. categorizes three
main approaches to save energy: reducing the scanning fre-
quency [15], [16], reducing the number of AP’s used [17],
and replacing WiFi scanning by other RF technologies such
as Zigbee. The use of server-side indoor implementations
to deleverage the load on the mobile-phone is proposed by
Gao et al. [18].
A common solution to save battery, that propose, among

others, Constandache et al. [19] and Lin et al. [20], is to
change the precision of the system according to the need in
each moment, such as, if the user is outdoors and does not
need a high precision, localization based on GSM can be
used, however if he/she needs a higher precision, localization
based on GPS should be used, and if the user is indoors WiFi,
Bluetooth or camera according to the required precision can
be used. For this reason, this solution is useful for systems that
combine indoor and outdoor localization, where precision is
not always a determining factor, and therefore, it is possible
to use one sensor or another depending on the moment and
location. This achieves energy savings of up to 45% accord-
ing to Lin et al. [20].

The energy consumption in the device is given by the
use of the sensor, as it has just been seen, but it is also
influenced by the scanning frequency. As a consequence,
it is possible to reduce the scans made by the sensors in
order to obtain information from them only when necessary.
A number of solutions already studied are based on: using
the accelerometry sensor to adapt the scanning frequency
of this sensor to the activity being carried out by the user,
as proposed by Viet et al. [21], or the solution proposed by
King and Kjærgaard [22] based on switch between light-
weight monitoring and invasive active scanning to allow posi-
tioning and to minimize the impact on the data flow; adapt
frequencies from other sensors, such as WiFi, by exploiting
user movement information and analysing the concentration
of APs, as proposed by Kim et al. [23]; or predict routes using
existing user data to perform fewer scans, combining GPS
with WiFi, as proposed by Thiagarajan et al. [24].

In addition, another important energy consumption in
mobile devices is the use of the CPU, if there are several
mobile applications that make use of sensors, can lead to a
desynchronization, that causes the device to be continuously
using the sensors or waking up the CPU when it is not in use.
For this purpose, there are studies, such as Lane et al. [25],
that propose a technique called Piggyback that consists of
exploiting the use made by other mobile applications of the
sensors, the CPU or data transmission, in order to exploit
opportunities of usage, or as Moamen and Jamali [26] pro-
pose to group the queries made to the sensors for handling on
a single application.

Our proposal to reduce energy consumption combines
the idea of Viet et al. [21] and Kim et al. [23] to adapt
scans to the user’s movements, as well as the approaches of
Constandache et al. [19] and Lin et al. [20], except that
in this case we do not change the precision of the system,
since our system only locates indoors. Nevertheless, if the
system detects that the user is not in the building, it stops
the localization service and reduces the search for APs by
lowering the sample to scan once every 10 minutes.

III. PROPOSED ENERGY-EFFICIENT
LOCALIZATION APPROACH
This section will describe the architecture of the proposed
system, the strategies followed to save energy on the device,
the communication between client and server, and how the
localization on the server is obtained.

A. SERVER/PHONE LOCATION ARCHITECTURE
The system consists of two elements, namely: 1) a mobile
application, to capture the training and testing datasets and
perform passive scans by the user; and 2) a server with an
API deployed with Flask [27], where locations are inferred
by the localization algorithm, saved in a MongoDB [28]
database and transmitted to the user. The figure 1 shows
the flow between the mobile application and the server to
communicate the required information and infer the location.

162666 VOLUME 7, 2019



J. L. Salazar González et al.: Energy-Efficient Indoor Localization WiFi-Fingerprint System: Experimental Study

FIGURE 1. Server/phone architecture-architecture diagram.

First, the user’s mobile device performs passive scans of
WiFi networks when the energy-saving algorithm considers
it opportune. Afterwards, the application performs a secure
POST request to the server in JSON format with the user
details and the scan result. This request is received by the
server, which transforms the result of the WiFi scan to be
passed later by the localization algorithm. Finally, the user’s
details, the result of the WiFi scan and the location provided
by the localization algorithm are stored in a non-relational
database, to show the user a history of their locations and
subsequently carry out any necessary analysis, and the user
is answered with the location obtained by the localization
algorithm in JSON format, indicating both the geographic
coordinates and the floor plan of the building.

The user can retrieve, at any time, his last location and a
history of it from the mobile application since, as mentioned
above, it is stored on the server.

In addition, the system is prepared to detect and report
falls. First capturing the fall through the mobile application,
analyzing the accelerometer signal, sending it later to the
server and notifying through sockets by Socket.IO [29] to
the web dashboard of security staff, or other mobile devices
through notifications by Firebase Cloud Messaging [30] to
issue alerts or request scans of a specific area in case of threat.

B. FINGERPRINT BASED LOCALIZATION PHASES
In order to prepare the algorithm for accurate localization,
the system must go through five learning and tuning phases:
• Survey. Experimentation to register the training dataset
and upload to server,

• Training. Off-line algorithm training and tuning for per-
formance improvement,

• Deployment. Implementation of on-line localization
algorithm on server side,

• Test. Test the localization system generating a position-
ing error map, and

• Validation. Validate the localization system with multi-
ple users along several days.

First of all, a survey is made of the area in which the local-
ization system will be implemented by manually selecting
every 3 meters on average the current location on the mobile
device and performing a number of scans that will be sent to
the server to generate the training dataset, through an Android
application developed for this purpose. Figure 2 and 3 show
the manual selection on the map and WiFi scanning process
respectively.

Subsequently, these data are off-line processed and the
algorithm is trained on the server along with the stored data
in the previous step, performing cross validation to decide the
best parameters for the adjustment of the algorithm as shown
in subsection III-E.

Afterwards, the algorithm trained from the previous step
is deployed on the server with the Flask API, mentioned in
subsection III-A.

Once the model has been trained and deployed, a man-
ual test of the system is carried out. In this test, the area
selected for the localization system is covered and every three
meters on average the location is indicated in the application,
the only difference between survey and testing phase is that
a single scan is carried out with an initial waiting time of
five seconds instead of performing multiple scans. For each
scan at this stage, a WiFi scan and location request are first
made as if it were a real scenario, only this time the manual
location entered is included. Afterwards, the server calculates
the error, saves the result and returns it to the app to display
the average error on the screen, as it can be seen in Figure 4.
When all the area is tested, a testing dataset useful to compare
and adjust the algorithm with new data, is obtained. More-
over a map with the error at each point is generated to find
areas with less precision.

Finally, a validation process is performed between different
groups in order to evaluate the system in a real environment
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FIGURE 2. Survey phase-selection of the actual position.

for a certain number of days with different users. This process
will be described in more detail in the following section.

When these phases are completed, the system is ready for
a real deployment, inferring locations of all users through
the mobile application doing scans with dynamic energy-
efficient intervals of maximum 15 seconds, this scanning
strategy will be described in the following subsection.

C. SCANNING STRATEGIES FOR ENERGY SAVING
IN A PHONE
The last generation of mobile devices usually make intensive
use of sensors, processors, wireless connections and screen,
which leads to high battery consumption. Many manufac-
turers choose to introduce customization layers on the oper-
ating system itself. These layers of customization, which
are discussed in more detail in the results section, are quite
aggressive with those applications that record high battery
consumption.

While it is true that certain applications are part of the
white list of manufacturers (eg. WhatsApp, Facebook, Insta-
gram or the suite of Google applications), it is not the case of
the background-executed application described in this article.
Therefore, it is essential to reduce as much as possible the
consumption of the applicationwith the objective that the user
perceives the least possible impact and, on the other hand, that

FIGURE 3. Survey phase-WiFi scanning to get WiFi fingerprints.

the ‘application killers’ do not kill the process in which the
positioning algorithm is executed.

To avoid that our application can be killed, four vari-
ants have been implemented that allow reducing this energy
impact based on the detection of activity and the probability
that the user is inside a place where the positioning system is
available.

To evaluate more accurately the differential consumption
between the non battery-optimized method presented in this
paper and the different battery saving techniques optimisa-
tions, a simulator that recreates the execution environment of
the positioning algorithm has been implemented. This will
allow to isolate certain undesired operating system processes
that can be executed in the background and, in this way,
prevent other processes from interfering with the study of our
application and the different optimization.

Simulation allows to analyze the behaviour of the appli-
cation in the long term, avoiding interference with other
processes and analyzing this consumption in an accelerated
manner. This simulation made it possible to identify the
consumption over several weeks in a totally realistic manner,
taking into account only the process of localization and the
consumption of the sensors needed to do so.

For the simulation implementation, a process has been
developed in which the necessary connections to the different
external services, geolocation, search and processing of WiFi
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FIGURE 4. Test phase-selection of the actual position.

signals will be simulated. These tasks are really important
when evaluating the expected application consumption.

In addition to these simulations, the consumptionmeasured
on real devices during the testing process were also taken into
account when analyzing the energy cost of the localization
process. Thus, these simulations have been calibrated and
simulated consumption is accurate with real values.

In any case, the simulator has been developed with the
aim of maintaining pessimistic behavior. This ensures that the
energy consumed by the location process in the simulator is
greater than that required in a real device. In this way, it is
possible to obtain energy consumption results that show an
accurate enough baseline to affirm that the battery usage time
in a real devicewill be, at least, that shown in the results of this
comparison. For this purpose, a series of random consump-
tion variables have been introduced, simulating the behavior
of the processes that the operating system performs in the
background. These variables follow a normal distribution,
similar to those analyzed in the background system tasks [31].

The energy saving techniques implemented in this work are
described below. The results of all of them and their impact
on both accuracy and consumption will be presented later in
the results section.

1) NO BATTERY SAVING (ALWAYS RUNNING)
This method is the one described above in the proposed
solution section. In it, the system is scanning every 5 minutes

wireless networks in the device current position. This allows
to determine if there are identified networks in the labelling
process and, in this way, to execute the localization algorithm.
The accuracy of this method is high, as is its response rate,
although its execution has a slight impact on battery con-
sumption and, more importantly, it is always running.

2) ENERGY SAVING TECHNIQUE BASED ON AP LOSSES
Starting from the previous algorithm, a saving method based
on the detection of nearby access points has been imple-
mented. In case there are no access points compatible with
the labelled places, a duty cycle technique is carried out. This
technique is based on the dilation of the scanning periods
according to the circumstances. In this way, if at any given
time the algorithm, when conducting a scan of nearby APs,
determines that there is no recognized APs in labelled place,
the time elapsed until the next scan increase in 3 minutes
(duty-cycle concept). This allows to reduce the number of
scanning processes when the user is in an unlabelled place
until reaching a minimum of one scan every 15 minutes.
At the moment in which a known network is found, the period
will be reduced to the initial scanning time. This technique
has been previously used in the context of outdoor positioning
with the GPS system. In this case, the duty-cycle occurs
when the device loses connection with satellites. This usu-
ally indicates that the user is indoor and, therefore, has no
visibility with the GPS positioning system. To avoid unneces-
sary battery costs, applications or operating systems directly
introduce these rest cycles. In this study, an adaptation of
this procedure is carried out considering the WiFi signals as
beacons to determine whether or not the user is inside an area
with the system deployed.

3) ENERGY SAVING TECHNIQUE BASED ON
DISPLACEMENTS
Finally, as a basic method of saving energy, the displacement-
based energy saving is used. In this case, the system will
only scan WiFi networks when the device is moving. This
displacement will be determined thanks to the accelerometry
sensors installed in the device itself. In our development,
having usedAndroid as operating system, the implementation
relies on the step counter virtual sensor to carry out this task.
Specifically, the system defines ranges of 60 seconds inwhich
is checked whether or not there has been a displacement
during this interval. In this way, if during the last minute
there has not been any displacement, a trigger is programmed
that will stop the WiFi scanning after 10 minutes. If during
those 10 minutes at least one step is detected, the trigger is
removed and the system continues with normal operation.
This technique, in its original version, is used in certain
monitoring wristbands (for example with the Xiaomi miBand
4) to reduce the consumption of these wearables. In the basic
version, the non-detection of steps means entering a mode
of reduced consumption that saves battery power by discon-
necting different software and hardware modules from the
device. This work applies this concept to the WiFi networks
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searching environment for subsequent trilateration. This tech-
nique allows reducing consumption by assuming that when
there is no displacement, it is not possible to change the
position (just as a wearable assume that without displacement
there is no activity).

4) COMBINED ENERGY SAVING TECHNIQUE
Finally, the two previous optimization techniques were
applied in parallel. Thus, the application enters the low
consumption mode when it does not detect displacements,
in addition to adding the duty cycle when there are no access
points recognised in the surroundings.

D. COMMUNICATION PHONE/SERVER
As mentioned in the subsection III-A, a communication is
established between the user’s mobile application and the
server to transmit the necessary data needed to infer user’s
location. Therefore, it is required to carry out a data capture
process previous to the first location request, collecting a cer-
tain number of samples of the available APs signal intensities
for each location. Each of these signal samples, captured at a
particular location, will be called a WiFi fingerprint.

AWiFi fingerprint, denoted as F at the equation 1 with the
position j at database, is composed by a set of received signal
strength indicators (RSSI) for every access points (APs). The
RSSI indicator for the AP at the position i is denoted as si,
the range of i is from 1 to m, being m the number of APs at
database, if the AP at the position i is not found on the scan,
the value of si will be zero.

Fj = (s1, s2, . . . , sm) (1)

RSSI is measured in decibels, and according to Friis path-loss
equation for free-space radio signal propagation the lower
the value of the RSSI, the further away the AP is from the
user. Despite the fact that the range can vary between man-
ufacturers, and that fading interference appear, if the RSSI
values of the APs available in that location are captured,
a fingerprint can be obtained. Fingerprints at a given location,
combined with much more scans in different locations in a
given space, create the database needed to infer the desired
unknown locations in the on-line operation. The fingerprint
is denoted as Fj, where the range of j is from 1 to n, the total
number of fingerprints. This set of n fingerprints, forms our
WiFi fingerprint database as represented in equation 2:

F = (F1,F2, . . . ,Fn). (2)

E. LOCALIZATION APPROACHES ON SERVER SIDE
As mentioned in the subsection II-A, there are different types
of algorithms to solve this problem. Our solution will make
use of KNN algorithm, since, as can be seen afterwards, better
results and performance were obtained with the data collected
during the experimentation. In addition, it allows to apply
changes in the dataset without the need for expensive training
process, sinceKNN is a LazyAlgorithm, it only needs to store
the feature vectors and labels of the classes.

In order for the algorithm to obtain better results, a pre-
processing was applied to the data, scaling and moving each
RSSI individually to a range between zero and one, normal-
izing every RSSI value, taking into account the maximum
and minimum value presented at each AP over the training
dataset, since this range can vary. A device scaling was not
undertaken due to single device training, although it could
be scaled per device as more data is obtained from other
devices. When loss of accuracy with low RSSI has been
found, it was tried to discard RSSI signals below a certain
threshold, as indicated byGansemer et al. [32], yet it made the
accuracy lower in more distant areas from the APs. However,
the solution that did improve these results was, instead of
eliminating signals in the WiFi fingerprint according to a
threshold, eliminate APs with a standard deviation of less
than 5dbm, since they worsen the accuracy and do not provide
relevant information.
The KNN algorithm can be used for both classification

and regression. In both cases, first the distances between the
scan characteristics of the unknown location and the stored
fingerprints are calculated. These distances can be calculated
using a number of metrics, such as Euclidean, Manhattan and
Mahalanobis distances.
Torres-Sospedra et al. [33] made a comparative between

51 metrics, and they obtained the minimum error with the
Sorensen metric, given by the equation 3, where: d(x,Fj)
denotes the distance between the WiFi scan result x (RSS
value) and the WiFi fingerprint Fj at the position j; m is
the number of all APs at the database; xi is the RSSI value
with AP i after the WiFi scan; and Fij denotes the RSSI
value within the WiFi fingerprint for AP i at the fingerprint
position j.

d(x,Fj) =

∑m
i=1 |xi − Fij|∑m
i=1(xi + Fij)

(3)

In our case this metric (equation 3) has a high accuracy
but, as shown in the next section, it does not get the best
result and it is more time consuming than others. Therefore,
after comparing themetrics within our test dataset,Manhattan
distance was chosen experimentally since it presented more
accurate results.

Besides choosing the metric to calculate distances between
characteristics, it is necessary to choose a search algorithm to
find the nearest K-Neighbors efficiently. To this end, there are
different algorithms, such as: Brute Force, which performs a
brute-force calculation between all point pairs in the dataset;
Kd-Tree, based on the data structure with the same name,
which organizes points in a K-dimensional space by parti-
tioning data on the Cartesian axis; and Ball-Tree, based also
on the data structure with the same name, which like Kd-Tree
organizes points in a multi-dimensional space, only that Ball-
Tree partitions the data into a series of nesting hyper-spheres.

After finding the nearest K points, understanding nearest
as the lowest distance using the metric chosen over the char-
acteristics, the result will depends on the type of KNN used:
if a classification algorithm is desired, the predicted location
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is given by the location of the most repeated one among
the selected k-fingerprints; on the contrary, if a regression
algorithm is preferred, the location will be the average value
of the selected k-fingerprints. These k-fingerprints may also
have different weights, such as uniform weights or distance-
based weights, applied during the selection process.

Choosing between classification and regression is an
important factor in this process, and opting between them
depends mainly on the pre-training phase and the domain
of our problem. If scans are carried out at close distances,
a classification model could provide locations for almost the
entire building, since sufficient scans have been carried out
for this purpose, guaranteeing that the location will be located
in controlled and accessible areas, since only captured loca-
tions will be used. On the other hand, if the scans do not cover
the majority of the map or are made with higher distances,
the implementation of a classification model may lead to a
decrease in accuracy as there are many uncovered locations,
however, if a regression model is used, the location will be
given by the average of the closest k-locations, resulting in
non-considered locations, which may be closer to the real
position.

As Torres-Sospedra et al. [33] mention, most studies pro-
pose a 1-NN approach. The choice of k-value is another
important factor in this process, since a low value may lead to
inaccurate and unstable positions, a high value could consider
too many locations and not accurate either. Using a 1-NN
will be useful if one WiFi scan per location is compared,
at classification KNN or, as Yim [34] proposes, if the location
is represented as the average of the scans performed on it.
Therefore, on the one hand, reducing the k-value and the
training set has the advantage of smaller data size, lower
processing requirements and therefore higher speed. On the
other hand, not considering all the possible RSSI values that
can be obtained for that location may become a problem if it
fluctuates enough. In our case, the k-value was empirically
chosen by testing different values on the test set for the
optimum ratio of precision and performance.

IV. EXPERIMENTAL SET-UP
This section will describe the building used to train and test
the system, the structure followed for the datasets, the valida-
tion process and control groups.

A. DESCRIPTION OF THE TESTING BUILDING
The experiments were carried out on the first and ground
floors of the Escuela Técnica Superior de Ingeniería Infor-
mática, in Seville, Spain. The facility has 24.000 m2 approx-
imately, although only accessible areas were studied.

The facility has 72 Cisco Aironet access points distributed
throughout the different modules and exterior corridors,
of which 48 are between the first and ground floors, the rest
are in upper floors or basement, which will not be represented
in the maps as the locating system does not extend to these
areas. The APs, marked black, are distributed by the different

modules, some within classrooms and others in corridors,
the location of these can be seen in the figures 5, 6, 7, 8, 22
and 23.

The distribution of access points on the facility has the goal
of givingWiFi coverage to all areas to provide Internet access.
Hence, they are not specifically designed for this experiment,
nor for any other use of the network other than simple access
to the network, meaning a decrease in accuracy. As the num-
ber of these was not enough, unknown APs whose range
reached the facility were also used. This represents a total
of 460 APs, of which only 160 had a standard deviation of at
least 5 dBm, over all the survey phase, this value was chosen
for this dataset, although it could differ in another environ-
ment. Using this filter, it is possible to ignore distant APs that
do not provide relevant information to the fingerprints, since,
as Moc and Retscher [35] indicate, the relationship between
RSSI and distance may be expressed mathematically as the
logarithmic function of distance, thus the further we move
away from the AP the less the RSSI fluctuates and therefore
the less information is given. In addition, by ignoring these
APs it is also possible to improve inference times by avoiding
unnecessary computations.

As mentioned in the subsection III-A, in order to be able
to predict locations, a pre-training process has been carried
out, in which the facility is covered and every certain number
of meters a number of scans are obtained. For the purpose of
this study, 15 scans were gathered every 3 or 5 meters, these
values were selected according to a trade-off of accuracy and
cost due to their dimensions. These scans were performed
using an application installed on a BQ Aquaris E5 4G, which
transmitted all captured RSSIs along with a location marked
manually on the facility map to the server which stored these
data in a database for further processing and implementation.

B. DATASET DESCRIPTION
The training dataset consists of 7175 fingerprints collected
from 489 different locations (almost 15 fingerprints per loca-
tion). Each fingerprint is stored as a JSON object correspond-
ing to an unique scan with the following values:
• _id: contains an unique identifier for the fingerprint, uses
to differentiate one fingerprint from another.

• avgMagneticMagnitude: average magnetic magnitude
during scanning with the mobile phone sensor, although
this value is not used is provided in case it was useful.

• location: object with the coordinates of the real world in
which the sample was captured.

– floor: number indicating the floor in which the sam-
ple was captured.

– lat: latitude as part of the coordinate at which the
sample was captured.

– lon: longitude as part of the coordinate at which the
sample was captured.

• timestamp: UNIX timestamp in which the sample was
captured.
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FIGURE 5. Infrastructure-APs and fingerprints at floor 0.

FIGURE 6. Infrastructure - APs and fingerprints at floor 1.

• userId: identifier of the user who captured the sample,
this value will be anonymized so that it is not directly
identifiable but remains unique.

• WiFiDevices: list of APs appearing in the sample.

– bssid: unique AP identifier, this value will be
anonymized so that it is not directly identifiable but
remains unique.

– frequency: AP WiFi frequency.
– level: AP WiFi signal strength (RSSI).
– ssid: AP name, this value will be anonymized so

that it is not directly identifiable but can be used to
compare APs with the same name.

The training dataset was compiled by taking samples at
every 3 meters on average with 15 samples per location.
The time at each location was approximately 40 seconds
performing consecutive scans with a bqAquaris E5 4G device
using Android stock 6.0.1 without making any movements
during the process.

The maps shown in the figures 5 and 6 represent the
samples, marked blue, that were taken for the training

FIGURE 7. Dataset-APs and test locations at floor 0. Corridors are marked
in yellow and stairs in green.

FIGURE 8. Dataset-APs and test locations at floor 1. Corridors are marked
in yellow and stairs in green.

phase, the samples were taken in accessible areas, excluding
private offices and classrooms, as they are usually occu-
pied or closed.

In order to test new algorithms, the dataset collected for
this study has been published. This dataset can be accessed
by following this URL [36].

C. TESTING LOCATIONS AND CONTROL GROUPS
The testing dataset consists of two tests with a total
of 390 samples in random locations yet in areas captured
by the training dataset and with different devices, the loca-
tions of the test samples, marked red, can be seen in the
figures 7 and 8. This dataset is grouped by tests and within
it are the captured samples, so both the individual error and
the average error can be obtained, besides recalculating this
error to test different algorithms.

The testing dataset was compiled two days after the train-
ing phase by taking samples at random locations with an
average of 3 meters, performing a single scan per location.
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TABLE 1. Relationship between users and devices.

The samples were taken with two devices, which represent
each of the tests individually, a BQ Aquaris E5 4G device
using Android stock 6.0.1 and a Xiaomi Redmi 4X using
Android 7.1.2 with MIUI 10 Global 9.5.16. Before taking
the sample, 5 seconds were waited without making any
movements.

In order to provide more information about the device used
in each fingerprint of the dataset, the following relationship
between users and devices is given:

As mentioned in the subsection III-B, in addition to test-
ing phase, a validation phase is also performed. For this
purpose, an experimental group made up of 4 teachers and
6 researchers, who kept the application active for a week in
the background andmanually confirmed its location when the
application requested it.

Afterwards, the application was distributed to a second
group made up of 25 students, who left the application active
for 2 or 3 days in the background and, as in the previous
group, manually confirmed its location. The validations of
this group had more variety since they changed classrooms
more frequently as students, although they also collaborated
less as they had no close link with the project.

Finally, a feedback group made up of 4 teachers checked
that the system included the fixes reported by the other two
groups and that everything was working correctly.

The evaluation requests for these groups was automatically
generated by the application using an activity detection algo-
rithm. This algorithm searched for location changes with a
range of 15 meters when at least 15 minutes have been spent
in that range, therefore, when this happened, a notification
was sent to the user asking for an evaluation of that location,
which confirmed or adjusted the location on a map according
to the real location. The location shown for evaluation was
the average location based on the time spent there.

V. RESULTS & DISCUSSION
In this section the results obtained will be analyzed com-
paring the different algorithms and parameters used, and the
chosen option will be discussed.

A. LOCALIZATION RESULTS
With the collected test dataset mentioned in the
subsection III-A, several tests have been carried out to select
the algorithm and its configuration that best suits our envi-
ronment. For this purpose, the use of Naive Bayes, regression
KNN and classification KNN has been compared.

In the figure 9 a CDF (Cumulative Distribution Function)
is shown comparing the results obtained using Naive Bayes,

TABLE 2. Classification using Naive Bayes.

KNN classification and KNN regression. It can be observed
how regression KNN outperforms classification KNN and
Bayes. At the 3rd quantile (75% in CDF), the regression
KNN error is under 5.90 meters, while classification KNN
and Naive Bayes obtain 6.90 and 7.30 meters of error,
respectively.

Since better results are achieved using regression and clas-
sification KNN,we have focused on analyzing and displaying
the results of KNN by combining different characteristics,
named in subsection III-E:
• Search algorithm: Ball-Tree, Brute and Kd-Tree.
• Distance metric: correlation, Euclidean, Manhattan and
Sorensen.

• Weights: uniform or distance-based.
• Number of neighbors: from 1 to 30.
In addition, its CDF, inference time, mean and standard

deviation of the error will be analyzed in order to choose
the optimal combination for this environment. Although the
focus is on KNN, the results obtained using Naive Bayes are
also shown.

1) CLASSIFICATION USING NAIVE BAYES
Supervised learning algorithms based on applying Bayes
theorem for WiFi fingerprint classification have been imple-
mented. While Naive Bayes is not within the scope of this
paper, it has been decided to present the best results obtained
with these algorithms in order to compare them with classifi-
cation KNN results.

Once different models and parameters have been tested,
the results of the table 2 are obtained. According to the
results, the best average error is 5.45 meters with Gaussian
Naive Bayes, followed by Multinomial Naive Bayes with
5.73 meters and Complement Naive Bayes with 8.71 meters.
Even though the best average error is obtained with Gaussian
Naive Bayes, it is slower, averaging around 12.20 millisec-
onds per location, while Multinomial Naive Bayes and Com-
plement Naive Bayes spend 0.73ms and 0.76ms respectively.

2) METRIC COMPARISON ON REGRESSION KNN
In the figure 10 and in the table 3 can be seen that the
algorithm Kd-Tree is the algorithm with the lowest execution
time, secondly Ball-Tree with more than twice the execution
time of Kd-Tree and finally the Brute algorithm, which is
approximately 4 times slower than Kd-Tree.

Afterwards, the average error and the standard deviation of
the error will be analyzed according to four types of metrics:
Correlation, Euclidean, Manhattan and Sorensen. As shown
in the figure 11 and in the table 4, both the mean error
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FIGURE 9. Localization results-KNN and Bayes CDF.

TABLE 3. Localization results-algorithm analysis on regression KNN.

FIGURE 10. Localization results-algorithm time analysis on regression
KNN.

and the standard deviation are better using Manhattan as a
metric, followed by Sorensen with similar results, and finally
correlation and Euclidean with more than five meters of error.
On the other hand, in the figure 12 and in the table 4 it can be
seen that both the Euclidean and Manhattan metrics have the
best times, less than 2 milliseconds per execution, whereas
Correlation and especially Sorensen have higher execution
times.

As the table 5 shows, by comparing the two types of
weights it can be seen that both are quite similar, slightlymore

TABLE 4. Localization results-metric analysis on regression KNN.

FIGURE 11. Localization results-metric error analysis on regression KNN.

TABLE 5. Localization results-weights analysis on regression KNN.

accurate using distance-based weights although faster using
uniform weights.

The figure 13 shows that the average error starts being
the highest with K = 1, goes down to an optimal point at
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FIGURE 12. Localization results - Metric time analysis on regression KNN.

FIGURE 13. Localization results-neighbors error analysis on regression
KNN.

FIGURE 14. Localization results - Neighbors time analysis on regression
KNN.

k = 11, rises smoothly, up to approximately 5 meters of
error and then stabilizes. On the other hand, has a similar
behaviour, except that there is no clear optimal point, the low-
est standard deviation is found at K = 23 and then starts
to increase smoothly. This does not mean that the minimum
error has to be at K = 11, since we are analyzing the mean
error between all algorithms, metrics and distances, which
means that a combination of these could get the minimum
error at a different K. On the other hand, the figure 14 shows
that the execution time starts with its minimum value at K= 1
and then rises smoothly.

Finally, the CDF of the metrics used is analyzed with
its best number of neighbours, weights and algorithm. The

TABLE 6. Localization results-algorithm analysis on classification KNN.

TABLE 7. Localisation results-metric analysis on classification KNN.

TABLE 8. Localization results-weights analysis on classification KNN.

figure 15 shows the CDF comparing: Manhattan with K11,
brute algorithm and weight based on distance; correlation
with K12, brute algorithm and weight based on distance;
Euclidean with K11, brute algorithm and weight based on
distance; and Sorensen with K14, ball-tree algorithm and
weight based on distance.

The CDF at the figure 15 shows two similar groups, on the
one hand with lower error probabilities we find Manhattan
and Sorensen, followed by correlation and Euclidean, being
the latter the worst error, even being similar to the correlation.
The lowest error is achieved by Manhattan, which obtains an
error of less than 5.90 meters in 75% of the cases (CDF lower
than 0.75), followed by Sorensen with an error of less than
6.20 meters, and finally correlation and Euclidean with an
error of less than 7 and 7.10 meters respectively.

3) METRIC COMPARISON ON CLASSIFICATION KNN
As in the previous analysis, the Ball-Tree, Brute and Kd-Tree
algorithms will be compared, except that this time the clas-
sification KNN will be used. The table 6 and the figure 17
show that Kd-Tree gets the best execution time, followed by
Ball-Tree and finally Brute algorithm.

The figure 16 and in the table 7 show thatManhattan obtain
the best result followed by Sorensen with similar results, Cor-
relation and finally Euclidean distance. Analysing execution
time, the table 7 and the figure 18 show that Euclidean get
the best execution time, followed byManhattan, Soresen, and
finally Correlation.

As the table 8 shows, again as in regression KNN, by com-
paring the two types of weights it can be seen that both
are quite similar, slightly more accurate using distance-based
weights.

The figure 19 shows that both the mean error and the
standard deviation behave in almost the sameway, with K= 1
it find the best average of the mean error and the best average
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FIGURE 15. Localization results-regression KNN CDF.

FIGURE 16. Localisation results-metric error analysis on classification
KNN.

FIGURE 17. Localization results-algorithm time analysis on classification
KNN.

of standard deviation, then it continues to rise. From the
other side, the figure 20 shows that the mean execution time
behaves in the same way, with K = 1 the lowest average of

FIGURE 18. Localization results-metric time analysis on classification
KNN.

FIGURE 19. Localization results-neighbors error analysis on classification
KNN.

the execution time is found, then it goes up slightly as the
neighbors increase.

Finally, the CDF of the metrics used is analyzed again, yet
in this case using KNN classification, with its best number
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FIGURE 20. Localization results - Neighbors time analysis on
classification KNN.

of neighbours, weights and algorithm. The figure 21 shows
the CDF comparing: Manhattan with K5, brute algorithm
and weight based on distance; correlation with K14, brute
algorithm and uniform weight; Euclidean with K1, brute
algorithm and weight based on distance; and Sorensen with
K6, ball-tree algorithm and weight based on distance.

The CDF at the figure 21 shows again two similar groups,
except the metrics within the groups have more similar val-
ues here, on the one hand with lower error probabilities we
find Manhattan and Sorensen, followed by correlation and
Euclidean. The lowest error is achieved by Manhattan and
Sorensen, both with an error of less than 6.90 meters in 75%
of the cases (CDF lower than 0.75), and lastly correlation and
Euclidean with an error of less than 7.50 and 7.70 meters
respectively. Note in CDF that some of the tested point loca-
tions exactly matches with the estimated positions, since zero
error is found in about 3-4% of the cases.

4) COMPARISON OF THE RESULTS
As a conclusion, the regression KNN gives better results than
the classification KNN and Naive Bayes in this case. The
best regression result is obtained by K = 11 Manhattan and
weights based on distance, with a mean of 4.51 m and a
standard deviation of 3.90 m in the three types of algorithms,
being Kd-tree the fastest for this choice with 0.66 ms. On the
other hand, with classification KNN the best results are given
with a low number of neighbors, being the best average error
with K = 1, of 5.15 m and 4.75 m of standard deviation,
Manhattan as metric and distance-based weights in the three
types of algorithms, being also Kd-tree the fastest for this
choice with 1.95 ms, to this time the delay caused by the
network traffic has to be added, which in the performed
tests were 6 ms on average from the internal network and
37 ms on average from an external network. The results of
classification KNN, regression KNN and Naive Bayes have
been obtained using scikit-learn [37] library.

These tests have been used to apply them on the map as a
heat map, to obtain the accuracy at each point scanned, so that
it is possible to know where the location is less accurate and
where it gets better results. In the figures 22 and 23 the maps
can be seen coloured as follows: green indicates an error of

less than 5 meters, orange between 5 and 15 meters and red
an error of more than 15 meters. The majority of places with
little accuracy are more distant from the APs, the zones that
are surrounded by APs obtain greater accuracy.

B. ENERGY SAVING RESULTS
This paper develops an indoor localization system based on
WiFi networks that, in addition to accuracy, has taken into
account the energy efficiency of the solution. Since in this
work the user’s mobile device performs an active task in
the trilateration process, reducing the consumption of the
solution is an essential part of achieving high user acceptance.
In the context of the work several optimization systems have
been carried out.

In the successive battery saving methods, it will also be
necessary to determine certain user patterns, such as their
location (inside or outside the tagged area) or their activity
(periods of physical activity such as walking). Since the
simulator runs on a server, these two patterns can not be
faithfully recreated. Instead, a pseudo-random algorithm that
allows generating these periods of activity has been devel-
oped, as well as the entry and exit of the tagged place.
To consider this simulation we have based on the most
repeated behaviour in the place where the experimenta-
tion has been carried out. This is, punctual displacements
throughout the morning and early afternoon, entry to the
place labelled early in the morning, with punctual departures
throughout the day, and a final departure from the early
afternoon.

In parallel, in order to evaluate the realism of the devel-
oped simulation, the original algorithm has been executed
in a Samsung Galaxy Note 8 (having a 3.7 V battery),
with an Android operating system version 9 (updated on
May 1, 2019) and without any other application running in
background. During these tests execution, all battery opti-
mization mechanisms were disabled, as well as adjusting
the brightness of the screen to automatic. The device was
used on a regular basis only to send and receive calls.
E-mail synchronization and other applications using push
notifications were also deactivated. Once the test has been
carried out over 30 days, consumption results between the
real device and the simulation were compared. Both envi-
ronments present different consumption, mainly due to the
fact that in the real device there are hundreds of auxiliary
processes that can only be controlled by the operative system.
However, in Figure 24 can be seen that trends are quite
similar. By hence, it can be verified that the simulator sat-
isfies the necessary requirements to carry out the compara-
tive study of the different saving techniques: a consumption
proportional to that of a real device, possibility of executing
several simulations in parallel and excluding external tasks
consumption.

1) ENERGY SAVING TECHNIQUE BASED ON AP LOSSES
In the first optimization, based on the loss of recognizedWiFi
access points, the number of recharges required throughout
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FIGURE 21. Localization results-classification KNN CDF.

FIGURE 22. Localization results-heatmap floor 0 using regression KNN.

the 30 days of the process in the simulator was 63. The
average daily battery consumption using this optimization
technique was 1.5 Wh. These recharges occurred every
11 hours approximately, so even without making use of any
optimization technique, with the use given to the device,
a user could have themobile for a full day without recharging.
However, the continued use of the device as well as the
reception of notifications and interactions with the screen will
reduce this time drastically.

FIGURE 23. Localization results-heatmap floor 1 using regression KNN.

2) ENERGY SAVING TECHNIQUE BASED ON
DISPLACEMENTS
The second optimization method is based on the pause of
WiFi network scans during periods of user inactivity. The
impact of this method will depend on the level of activity of
the user during the day, which will be based largely on the
type of work that the user performs. In our case, the simulator
has been used to emulate this behaviour in a random way.
The displacements are made continuously for 5 minutes with
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FIGURE 24. Energy consumption comparison between real Samsung
Galaxy Note 8 device and the Samsung Galaxy Note 8 based simulator.

a 20% probability of still walking after these 5 minutes. The
probability of starting a new displacement is 5%. In this case,
the average consumption over the 30 days of evaluation was
1.6 Wh. That is, in this case, the consumption was slightly
higher than that obtained using the technique of optimization
based on the loss of access points. This is due to the fact
that the user, outside the location under location control,
generally performs physical activity such as walking. This
would reactivate the localization system, even if the user is
at home or at any place of recreation.

3) COMBINED ENERGY SAVING TECHNIQUE
Finally, the technique of optimization of consumption based
on the combination of the previous two is developed. The
parallel execution of the two consumption reduction tech-
niques achieves good results in the conditions under which
the executions were tested. This is, in a work environment,
with regular trips throughout the day, with a working day
of 7.5 hours and with loss of recognized access points in
the rest of the day. In this case, as can be seen in figure 25,
the reduction in consumption is drastic. During the evalu-
ation month, average daily consumption went from having
approximately 1.6 Wh, to 0.8 Wh. This is a 50% reduction
with respect to the localization algorithm without any energy
optimization.

In addition, the application of this technique does not
reduce the accuracy or increase the delay in obtaining the
location, so it is concluded that it is the best mechanism to be
implemented in the final solution. The context of the problem
where the localization algorithm is developed must be kept
in mind. The identification of a threat will be the trigger to
determine the location of all users of the building and propose
a safe escape path. This requires having the location of all
users in real time, so the service must run on the devices
of those users for the whole time they are in the building.
A reduced impact on consumption ensures that the user is not
affected by the service and, therefore, does not imply a hand-
icap when implementing the final system. The final solution
with the savings techniques presented ensures the viability
of this solution, reducing the impact of this service to 8%
of the total device energy consumption obtaining during the
simulation process. That is, considering that the normal use
time of a smartphone with a single recharge is approximately

TABLE 9. Localization results-load test with multiple users.

20 hours, the use of the application presented in this work
would reduce it only to 18.5 hours.

C. PERFORMANCE RESULTS
One of the objectives of this system is achieving scala-
bility, therefore, as well as being capable of adding new
areas or buildings, it must be able to support multiple requests
per second. Consequently, we have performed a load test to
check the performance of our server in extreme cases.

The server is installed inside the same building in which
the location is made, thus, the tests were made in the same
one. The most relevant characteristics of the server for this
study are the following:
• RAM: 64 Gb.
• GPU: GeForce GTX 1070 (8 GB) and TITAN Xp
(12 GB)

• CPU: Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz
The load tests have been performed with the tool

Gatling [38], which allows to simulate multiple user requests
following configurable patterns, although in our case we have
used constant users per second to measure performance in
extreme conditions.

In the table 9 can be seen the response time over 700,
1000 and 1200 users per second. Using more than 1200 users
some requests started failing, so the limit with this server
reaches 1200 users per second. It can be seen that as users
increase, the response time increases, this is because the bot-
tleneck is in the CPU, and with 1200 concurrent users reaches
100% of CPU usage. If we had another CPU or balanced
the load to other servers could increase the number of users.
These results were obtained using a KNN with 11 neighbors,
Manhattan as a metric, Kd-Tree as a search algorithm and
weights based on distance, if another configuration was used,
the results could be improved or worsened, however, with the
configuration presented we obtain the best accuracy over our
test set.

In a real case, the users are not constant, as the proposed
energy saving algorithms prevent many requests from being
made, so the results presented are on the most unfavourable
case. For this reason, the proposed system supports more
than 1200 active users with, in the worst case, an average
response time of 243 ms, as mentioned in subsection V-A
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FIGURE 25. Comparison of energy consumption in 24-hour periods for the different battery saving methods developed running on the
simulator during 30 days.

to this response time the delay caused by the network traffic
has to be added, which in the performed tests were 6 ms on
average from the internal network and 37 ms on average from
an external network.

VI. CONCLUSIONS & FUTURE WORK
Offices, shopping malls, schools or universities are just
some of the facilities in which controlling emergency sit-
uations efficiently is critical. To this end, this study has
presented a number of innovations: a real case localization
system, prepared to provide multiple localization responses
simultaneously; an exhaustive comparison of Naive Bayes,
classification KNN and regression KNN, using different met-
rics, search algorithms, number of neighbours and weights;
a combination of energy-efficient techniques applied to an
indoor localization service based on WiFi fingerprint using
Android devices able to run all day long; the publication and
description of the dataset compiled in this study in order to
replicate and compare the experiments performed.

The resulting location system in this study is implemented
in a real environment, with a response capacity of 1200 simul-
taneous users in 243 ms and an average error of 4.51 meters,
with a robust client/server architecture that carries the entire
location load to the server, allowing to completely modify
the localization algorithm or extending the dataset in real
time without affecting the user’s device, since the client only
performs and sends WiFi scans.

Finally, thanks to the energy saving policies implemented
on the original indoor location system, this work reduces the
energy impact to only 8% (0.73 Wh without the service vs
0.8 Wh with the service running). In this way, the user will be

minimally affected by the use of the location application, thus
reducing the possibility of it being uninstalled due to the high
battery consumption. This is a critical risk that, thanks towork
in terms of energy saving, has been successfully mitigated.
Therefore, the additional consumption that our system would
produce in a device with a common 3200 mAh battery would
be 256 mAh per recharge cycle, which would give a battery
time enough for a daily use.

From the experimentation carried out, we have extracted
the applicability of each method from a database of WiFi
fingerprints collected in a real environment. Furthermore,
the saving energy analysis has also been tested under real and
simulated situations. Simulated situations was used in order
to check the robustness of the system under a huge number of
requests.

Since the positioning technique presented in this paper
performs network detection on the user’s own mobile device,
the broadcasting of fake SSIDs from a fraudulent device
present security problems. The exposed methodology is not
individually based on a single point, but the whole scanned
WiFi fingerprints are processed. However, different SSIDs
could be falsely broadcasted with a much different intensity
from the original RSSI, so that this will present problems
for the system. Even so, this is considered as a future work
taking into account the security context in which this system
is applied.

Finally, it should be taken into account that this work
addresses the problem of indoor positioning using an infras-
tructure where the data from the scanned WiFi networks on
the device are sent to the server, where they are processed.
This is done in order to monitor the position of each user
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in emergency case. However, there are approaches to the
same problem where the data is processed entirely in the
device, which increases user privacy but also increases system
response time and the risk of no valid positions for a user in
emergency cases.

Future work will include an analysis of other localization
techniques and experimentation of applicability in serverless
systems, thus verifying the advantages and disadvantages of
each.
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