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ABSTRACT Simultaneous Localization and Mapping (SLAM) plays an important role in the computer
vision and robotics field. The traditional SLAM framework adopts a strong static world assumption for
analysis convenience. How to cope with dynamic environments is of vital importance and attracts more
attentions. Existing SLAM systems toward dynamic scenes either solely utilize semantic information, solely
utilize geometry information, or naively combine the results from them in a loosely coupled way. In this
paper, we present SOF-SLAM: Semantic Optical Flow SLAM, a visual semantic SLAM system toward
dynamic environments, which is built on RGB-D mode of ORB-SLAM2. A new dynamic features detection
approach called semantic optical flow is proposed, which is a kind of tightly coupled way and can fully
take advantage of feature’s dynamic characteristic hidden in semantic and geometry information to remove
dynamic features effectively and reasonably. The pixel-wise semantic segmentation results generated by
SegNet serve as mask in the proposed semantic optical flow to get a reliable fundamental matrix, which
is then used to filter out the truly dynamic features. Only the remaining static features are reserved in the
tracking and optimization module to achieve accurate camera pose estimation in dynamic environments.
Experiments on public TUM RGB-D dataset and in real-world environment are conducted. Compared
with ORB-SLAM?2, the proposed SOF-SLAM achieves averagely 96.73% improvements in high-dynamic
scenarios. It also outperforms the other four state-of-the-art SLAM systems which cope with the dynamic

environments.

INDEX TERMS Computer vision, robotics, semantic, simultaneous localization and mapping.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) constructs
a map of the surrounding world using the data collected by
the platform operating SLAM system, and simultaneously
locates itself within the map. The sensors carried by the
platform to observe the outside world can be various, such as
monocular camera, stereo camera, RGB-D camera and lidar.
When the sensors are visual sensors, the system is called
visual SLAM system. Visual SLAM system is a fundamental
and essential module for various kinds of upper applications,
such as service robots, augmented reality and autonomous
driving cars, where there is a need to estimate camera pose
and reconstruct the three-dimensional model of the envi-
ronment. In the last few decades, the visual SLAM prob-
lem has drawn considerable attention from many researchers
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and there has emerged many excellent visual SLAM sys-
tems, such as MonoSLAM [1], PTAM [2], ORB-SLAM [3],
ORB-SLAM?2 [4], LSD-SLAM [5], SVO [6], DSO [7]. These
excellent works can achieve satisfactory performance when
the environment is static or the dynamic elements are in
minority so that they can be classified as outliers [8], using
robust modules like RANSAC and robust cost function. How-
ever, the dynamic characteristic of environment is universal
in practical applications and sometimes dynamic elements
even occupy a large proportion of the scene, such as city
streets where there are always moving people or cars. Due
to the static world assumption, the accuracy of the standard
SLAM systems mentioned above in such high-dynamic envi-
ronments is reduced so greatly that the results may be totally
unreliable.

Fig.1(a) shows a high-dynamic scene, where there are two
people walking around. When applying ORB-SLAM?2 in this
scene, almost half of the extracted ORB features lie on the
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two moving people, as is shown in Fig.1(b). These dynamic
features can’t be filtered out as outliers because their number
is not in a minority. Due to the effect of these dynamic
features, the estimated trajectory is totally unusable. As we
can see in Fig.1(c), the blue dotted line is the trajectory
estimated by ORB-SLAM?2 in the scene shown in Fig.1(a),
while the black dashed line is ground truth, their shapes
are totally different. This means that the system has failed
and can’t provide reliable camera position and environment
information. The failure is due to the static-world assumption
of SLAM system which usually can’t be satisfied. Therefore,
extension for the standard SLAM system to cope with high-
dynamic environment is needed.

(b) Almost half of the features lie on
dynamic objects.

I
(a) A high-dynamic scene.
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(c) Comparison of camera trajectory between ORB-SLAM?2 estimation result
and ground truth.

FIGURE 1. In a high-dynamic scene, the camera trajectory estimated by
ORB-SLAM?2 is totally unusable.

There has emerged many approaches focusing on enhanc-
ing the accuracy of standard SLAM system in dynamic envi-
ronments. We will review these methods in the following part.

A. RELATED WORK

In visual SLAM systems toward high-dynamic environ-
ments, features are usually classified into two groups, static
and dynamic features. Only static features are reserved to
enhance the accuracy in high-dynamic environments. Vari-
ous approaches are used to detect dynamic features in the
scene and these approaches can be roughly classified into
three types: dynamic features detection depending solely on
geometry information, dynamic features detection depending
solely on semantic information and dynamic features detec-
tion through naive combination of the results from geometry
calculation and semantic information in a loosely coupled
way.
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In geometric approaches, the most relevant are as follows.
Kundu et al. [9] construct the fundamental matrix from robot
odometry to define two geometric constraints, one of which is
derived from the epipolar geometry. According to the epipolar
geometry constraint, a matched feature in the subsequent
frame is most likely to be considered as dynamic if it resides
too far from the epipolar line. The key in this kind of method
is the estimation of the fundamental matrix, if a relatively
reliable fundamental matrix can be acquired, then most of
the dynamic features can be easily detected. The fundamental
matrix can be acquired using purely visual method, such as
the 5-point algorithm [10] or 8-point algorithm [11]. If other
motion sensors are available, like inertial measurement unit
(IMU), the camera motion can also be easily calculated
through double integration of IMU data. Lin and Wang [12]
detect dynamic features based on the observation that the
existence of dynamic features in the calculation of pose esti-
mation will significantly degrade the accuracy of the SLAM
system. When a new feature is tracked, two local SLAMs
are calculated, one without adding the newly detected feature
while the other one with this feature under the assumption that
this new feature is stationary. Instead of making hard decision
to classify the feature as dynamic or static, the differences of
the two results are temporally integrated using binary Bayes
filter. After a fixed number of updates, this new feature can be
classified as static if the log odds ratio is larger than a prede-
termined threshold, otherwise the feature is classified as mov-
ing. Utilizing the reprojection error to detect dynamic features
is another kind of geometric approach. Zou and Tan [13]
classify map points as dynamic or static at every frame by
analyzing their triangulation consistency. They project fea-
tures from the previous frame into the current frame and
measure the reprojection error of the tracked features. The
error should be small if the map point is static, otherwise the
map point is classified as dynamic. Wang et al. [14] take cur-
rent RGB image, previous image and current depth image as
input, they firstly cluster the depth image into several objects,
extract features in current RGB image and count the number
and percentage of features on each object. Then features cor-
respondences between current RGB image and previous RGB
image are used to calculate fundamental matrix, which is sub-
sequently used to filter out outliers, the number and percent-
age of remaining inliers on each object are counted again. The
remaining inliers are used to calculate fundamental matrix
one more time and the following procedure is the same as
before. At last a moving objects judgment model is designed
based on the statistical characteristics obtained above, and
once an object is considered as moving, all features on it are
eliminated. Sun et al. [15] adapt the codebook learning and
inference mechanisms form to deal with the SLAM problem
in dynamic environments. Their motion removal approach
consists of two online parallel process : the learning process
that builds and updates the foreground model; the inference
process that pixel-wisely segments the foreground with the
built model. Fan et al. [16] construct a camera motion model
for the moving platform, then decompose the motion model
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into two parts: translation and rotation. At last, two con-
straints are proposed to locate the dynamic regions.

Approaches that solely depend on semantic information
are straightforward. According to human’s common sense
and experience, the dynamic objects are usually people, car,
etc., which can move by itself. With the quick development
of deep learning in recent years, computer vision tasks such
as object detection and semantic segmentation can be solved
excellently and the accuracy can even outperform human.
In SLAM system, when a new frame is coming, by applying
advanced CNN architectures like YOLO [17], SSD [18],
SegNet [19], Mask-RCNN [20], the semantic label of the
extracted features can be acquired. Then features lying on
semantically dynamic objects such as people or cars are
considered dynamic and removed. Zhong ef al. [21] use
object detection network SSD to detect movable objects,
such as people, dog, cat and car. For instance, once a person
is detected, it is regarded as a potentially moving object
whether it is walking or standing and all features belong to
this region are removed. Zhang et al. [22] use YOLO to get
semantic message, they consider features which are always
located on the moving objects as unstable and filter them out.
Wang et al. [23] propose a step-wise approach that consists
of object detection and contour extraction to extract semantic
information of dynamic objects in a more computationally
efficient way. Xiao er al. [24] use SSD object detection
network running in a separate thread to get prior knowledge
about dynamic objects, and the features on dynamic objects
are then processed through a selective tracking algorithm in
the tracking thread, to significantly reduce the error of pose
estimation.

Some recent works combine the dynamic detection results
from geometry calculation and the semantic information.
Yu et al. [25] use SegNet to get pixel-wise semantic label
in a separate thread. If a feature is segmented to be ‘““per-
son”, further moving consistency check is then conducted
using epipolar geometry constraint. If the check result is
dynamic, then all features with the semantic label “person”
will be classified as dynamic and removed. This method
actually treats features with label “person” as a whole and
takes the intersect of two results: only features are both
semantically and geometrically dynamic are considered as
dynamic. Bescos et al. [26] combine the results of semantic
segmentation from Mask R-CNN and multi-view geometry.
They actually take the union of the two results: features
either semantically dynamic or geometrically dynamic are all
considered as dynamic.

B. MOTIVATION

The dynamic SLAM systems mentioned above do enhance
the accuracy to some extent. However, they remove dynamic
features either solely depend on geometry information, solely
depend on semantic information, or naively combine the
dynamic features removal results of them. Intuitively, geom-
etry information and semantic information in these systems
are loosely coupled. If we can find a way to make them
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tightly coupled, the dynamic features will be removed more
effectively, which will lead to further improvement in system
accuracy.

C. CONTRIBUTION AND OUTLINE

In this paper we propose a visual semantic SLAM sys-
tem toward dynamic environment, i.e. Semantic Optical
Flow SLAM (SOF-SLAM), which is built on ORB-SLAM?2.
This framework aims at making the system more accurate
in dynamic environments. The proposed SOF-SLAM sys-
tem can highly reduce the influence of dynamic objects in
the environment using our dynamic features detection and
removal approach, i.e., semantic optical flow, which detect
dynamic features with geometry and semantic information in
a tightly coupled way.

Our contribution can be summarized as follows: the
proposed SOF-SLAM fully utilizes the complementary char-
acteristic of motion prior information from semantic seg-
mentation and motion detection information from epipolar
geometry constraint, while the existing SLAM systems either
solely depend on semantic information or geometry infor-
mation, or naively combine the results of them to remove
dynamic features. The dynamic features detection algorithm
proposed in our SOF-SLAM, i.e., semantic optical flow,
utilizes the semantic segmentation information to aid the
calculation of epipolar geometry rather than simply results
combination. Therefore our system can remove dynamic fea-
tures more reasonably and effectively, which lead to more
accurate results.

The rest of the paper is structured as follows: the pro-
posed SOF-SLAM is described in Section 2. First, the sys-
tem overview is presented, Second, a brief introduction to
semantic segmentation of potentially dynamic features is
given and its limitation is discussed. Third, how to seg-
ment real dynamic features with geometry constraint is pre-
sented, as well as its limitation. Subsequently we introduce
the semantic optical flow algorithm, which detects the true
dynamic features effectively. Section 3 evaluates the accu-
racy of our system on TUM RGB-D dataset and compares
our system with the state-of-the-art SLAM systems toward
dynamic environments. The qualitative experiments in real
world are carried out as well. Finally, a summary is provided
in Section 4.

Il. SEMANTIC OPTICAL FLOW SLAM

In this section, the proposed SOF-SLAM system will be intro-
duced in detail. The dynamic feature detection and removal
method is the main aspect of the illustration.

A. SYSTEM OVERVIEW

The overview of the proposed SOF-SLAM can be seen in
Fig.2. First, the procedure of ORB features extraction is
conducted just the same as in original ORB-SLAM2, where
both static and dynamic features are extracted. Then our pro-
posed dynamic features detection approach, semantic optical
flow, can remove dynamic features effectively. The remaining
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FIGURE 2. Overall-architecture for SOF-SLAM. Local mapping and loop closing threads are the same as ORB-SLAM2. The former one is
used to maintain a local map of the surroundings and achieve best camera pose estimation within it, while the latter one is applied to
detect loops and conduct loop correction to eliminate accumulated error. We integrate our dynamic features detection approach,
semantic optical flow, into the tracking thread, by which dynamic features are effectively removed and only static features are fed to

the following tracking procedure.

static features are reserved to engage in the following pose
estimation of new frame in the tracking thread. The map
point creation and map maintenance of local mapping thread,
and the loop detection and loop correction procedure of loop
closing thread keep the same as the original ORB-SLAM?2.
Semantic optical flow is the most important module of our
framework, so we will concentrate on the discussion of this
module.

B. SEMANTIC OPTICAL FLOW

The flowchart of semantic optical flow for dynamic features
detection and removal is shown in Fig.3. On one hand, current
RGB image is used to extract ORB features. On the other
hand, current RGB image and previous RGB image, with the
aid of the semantic segmentation result of current RGB image
which is generated by SegNet running in another separate
thread, are used to calculate semantic optical flow. The cor-
respondences generated by semantic optical flow are utilized
to get a reliable fundamental matrix, which is subsequently
used to detect truly dynamic features effectively.

In our dynamic features detection approach, i.e. semantic
optical flow, semantic prior and multiple view geometry are
unified in a tightly coupled way to achieve effective dynamic
features detection. Next we will demonstrate semantic optical
flow in details from three aspects: the analysis of motion prior
from semantic segmentation, the analysis of multiple view
geometry constraint in dynamic features detection, and the
way to utilize semantic and geometry information effectively
in a tightly coupled form.

1) MOTION PRIOR FROM SEMANTIC SEGMENTATION
In the semantic segmentation thread, we use SegNet encoder
decoder network to get pixel-wise semantic segmentation of
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FIGURE 3. Flowchart of semantic optical flow for dynamic features
detection and removal.

each input image. The architecture of SegNet consists of two
main modules: a encoder network and a decoder network.
The encoder network consists of 13 convolution layers. Each
encoder layer has a corresponding decoder layer, hence the
decoder network has 13 layers as well. The input image is first
fed to the encoder network, and each encoder in the encoder
network performs convolution with a filter bank to produce a
set of feature maps, which then pass through the processes of
batch normalization, ReLU (Rectified Linear Unit) activation
function and max-pooling. The feature maps produced by
the encoder network are then fed to the decoder network.
The decoder in the decoder network up-samples the input
feature maps using the memorized max-pooling indices from
the corresponding encoder feature maps. The up-sampling
procedure can produce sparse feature maps. These feature
maps are then convolved with a trainable filter bank to pro-
duce dense feature maps. A batch normalization step is then
applied to each of these maps. The high dimensional feature
representation at the output of the decoder network’s final
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decoder is fed to a trainable soft-max classifier, which can
produce the semantic label of each pixel.

We adopt the caffe implementation of SegNet to produce
pixel-wise semantic segmentation. The SegNet model we use
is trained on PASCAL VOC dataset, it can segment 20 classes
in total (airplane, bicycle, bird, boat, bottle, bus, car, cat, chair,
cow, dining table, dog, horse, motor bike, person, potted
plant, sheep, sofa, train, monitor).

According to the semantic label of the pixel, we can get
some prior information about its motion characteristics. For
example, if the label of the pixel is “person’, which means
the pixel lies on a person, we may assume that this pixel is
dynamic with high confidence, as person tends to be moving
in our common sense. If the label of the pixel is “dining
table”’, we may assume this pixel to be static with high
confidence. If the label of the pixel is ““chair”, the situation
is different. Chairs can’t move by itself, so it should be
static under normal circumstance, but it is movable with the
influence of other objects, such as the activity of people, so it
is not suitable to make the decision whether the pixel on chairs
is static or dynamic with high confidence. We consider pixels
on this kind of object as “potentially dynamic”.

Using SegNet, we can get some prior knowledge about the
motion characteristic of the pixel, which is useful to boost the
accuracy of the SLAM system in dynamic environment. One
commonly used method of utilizing the prior knowledge of
motion, is using the semantic segmentation results as masks
to remove dynamic features. This idea is straightforward
and is a simple but useful way to improve the accuracy of
localization in dynamic environment. However, there are two
limitations. We will then analysis them in detail.

First, as has been mentioned above, the prior knowledge of
each pixel can be roughly divided into three categories: static,
potentially dynamic and dynamic. Static features are reserved
and dynamic features are removed in naive semantic SLAM,
but as for potentially dynamic features, there are two ways to
deal with them, either treat them as static or dynamic. Both
ways can be troublesome.

Fig.4 shows a scene containing potentially dynamic
objects. In this scene, there are two monitors and two chairs,
whose properties we can get from the segmentation of SegNet
should be potentially dynamic, while the actual motion char-
acteristics of them are: the two monitors are static, the chair
with wheel on the left is moving due to the man sitting on it,
the chair on the right is static. If we treat features lying on
all these objects as dynamic and remove them, the accuracy
of localization will be worse, this is because there are lots
of static features lying on the two monitors and the chair,
the features lying on their corners are extremely distinctive,
which means that this kind of features can provide accurate
and reliable correspondences between consecutive frames.
The decrease of the number of static features, especially the
removal of distinctive features, will lead to worse accuracy.
If we treat features lying on these objects as static and reserve
them, the accuracy of localization will also be affected due to
the dynamic features on the left chair. In other words, relying
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(a) ORB features extracted by ORB-
SLAM2.

(b) Semantic Segmentation
results by SegNet.

(c) Dynamic features filtering result.

FIGURE 5. An example of filtering dynamic ORB features by using
semantic segmentation results naively as masks.

solely on semantic segmentation, some dynamic parts of the
scene can’t be properly handled.

Second, despite the great accuracy improvement of seman-
tic segmentation due to the advanced CNN architectures
emerging in recent years, the ambiguity of segmentation
result near the boundary of objects is still unavoidable.

Fig.5 shows an example of filtering dynamic ORB features
by using semantic segmentation results naively as masks. In
Fig.5(a), the ORB features extracted by ORB-SLAM?2 are
evenly distributed in the image, we can see that there are
lots of ORB features lying on the person, which is the main
dynamic component in this scene. These dynamic features
will decrease the localization accuracy of the SLAM system.
Fig.5(b) shows the semantic segmentation results generated
by SegNet, in which red, pink, blue and dark represent pixel
label of chair, person, monitor and void respectively. In com-
monly seen semantic SLAM solution, the part of the image
whose semantic label is person will be used as a mask to
remove dynamic ORB features. The removal effect is shown
in Fig.5(c), we can see that most of the dynamic ORB features
lying on the person are removed, while there are still some
features on the waist, leg and hand of the person reserved.
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This is due to the incomplete segmentation of the person,
which can be easily observed in Fig.5(b). One ORB feature
on the hand of the person is segmented to have a semantic
label of “void”. Some ORB features on the waist and leg
are mistaken to be “chair”’. Wrong semantic label leads to
the reservation of dynamic features, which prevent the system
from further localization accuracy improvement.

In SLAM problem toward dynamic environment,
the semantic segmentation results from SegNet do help the
removal of dynamic features, but the segmentation results
are in fact independent from motion situation of the scene.
That is, the segmentation result should be same whether an
object in the scene is dynamic or not. So another source of
information which can reflect the real motion situation of the
scene is needed.

(a) The relationship between a static
map point and its corresponding
image points in two consecutive

frames.

(b) The ideal epipolar constraint.

FIGURE 6. Epipolar constraint of a static feature in multiple view
geometry.

2) MULTIPLE VIEW GEOMETRY CONSTRAINT
Geometric constraints leveraging epipolar geometry prop-
erties can be used to check whether a feature is
dynamic or static. A static feature should satisfy epipolar con-
straint in multiple-view geometry, while a dynamic feature
will violate the standard epipolar constraint. Fig.6(a) shows
the relation between the corresponding image points in two
consecutive frames. X is a static map point, which is imaged
in two consecutive frames, x| at frame /; and x; at frame /.
Cy and C; are the optical center of camera for /1 and I
respectively, the line joining C; and Cj is called baseline.
The baseline and map point X determine a plane 7, which is
called the epipolar plane. Plane 7 intersects with image plane
11 and I at line L; and L, respectively. L; and L, are called
epipolar lines. The point of intersection of the baseline with
the image plane is called epipole, i.e. e and e, in Fig.6.
Suppose now that we only know x; in /1, we want to find
its correspondence x; in I, as is shown in Fig.6(b). Without
depth information, we only know that the map point X lies
in the ray back-projected from xj, therefor we only know
that xp lies in epipolar line L;. This geometry constraint
actually describes the mapping from a point in one image to
a corresponding epipolar line in another image, the mapping
relationship can be described by fundamental matrix F:

pyFp1 =0 (D
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p1 and py are the homogeneous coordinates of the corre-
sponding image points x and x, respectively. Given a point x1
in I1 and the fundamental matrix F, (1) provides a constraint
that x, must satisfy if map point X is a static map point.
Therefore we can use this constraint to classify whether the
map point corresponding to an ORB feature is dynamic or not.
However, because of the existence of the unavoidable uncer-
tainty in feature extraction and the estimation of fundamental
matrix F, the two image points of a static map point may
not strictly satisfy (1). Intuitively, image point x, doesn’t lie
exactly on the epipolar line determined by image point x|
and fundament matrix F, but lies very closely to it, just like
x2 in Fig.7. So we can compute the distance D between x»
and the corresponding epipolar line L,. If D is smaller than
a predefined threshold, then the image point is considered as
static, otherwise it is considered as dynamic.

FIGURE 7. A static feature should resides close to the epipolar line with
all kinds of error and uncertainty.

The key in the epipolar geometry is the estimation of
fundamental matrix F:

h fL 5B
F=\|fi f5 fo (2)
i fs Jfo

F can be calculated with at least five pairs of feature cor-
respondences, but usually the classic eight-point-algorithm
is used. Take the matched image points x1, x; in Fig.6 for

example, we can write their homogeneous coordinates:
pr=@i,vi, ), p2=(uv,1) 3

(u1, v1), (u2, v2) are the pixel coordinates of x; and xo
respectively. we can get (4) by combining (1)(2)(3):

n £ B U
w,vi,D|fa f5 f6 v | =0 4
fi s fo 1

Let f denote a vector which contains all elements of Fun-
damental matrix F:

f = fofsfas 5o Sos 1 foo o) ©)
By expanding (4), we can get a equation about variable f :
(uiuz, uyvy, ur, viug, viva, vi, iz, vz, Df =0 (6)

There are nine unknown elements in f, but due to the scale
free characteristic of Fundamental matrix F, the degree of
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freedom of f can be reduced to be 8. Therefore if we have
8 pairs of image points correspondences between two con-
secutive frames, we can calculate F by solving the equation
set consisting 8 equations in the form of (6) .

As for finding corresponding image points between two
consecutive frames, optical flow is a convenient and effec-
tive way. To reduce the effect of wrong correspondences,
RANSAC is adopted. In fact, this method has the chicken-
and-egg characteristic. In order to detect dynamic features
using epipolar geometry constraint, the fundamental matrix
F should be estimated first. On the other hand, we have to
use the correspondences of static map points in consecutive
frames to estimate the fundamental matrix F. Therefore there
is a limitation in the procedure of calculating optical flow:
most features in the scene have to be static so that RANSAC
can reduce the effect of the few remaining dynamic features.

3) DYNAMIC FEATURES DETECTION IN TIGHTLY COUPLED
FORM

In order to overcome the above drawbacks of solely using
semantic segmentation prior or multiple view geometry con-
straint to cope with dynamic features, our proposed seman-
tic optical flow utilizes semantic and geometry information
in a tightly coupled way to detect dynamic ORB features.
Here we use “tightly coupled way” to contrast with the
traditional methods which also combine geometry informa-
tion and semantic information to remove dynamic features.
We consider these traditional methods as “loosely coupled
ways’’. This is because these traditional methods firstly uti-
lize geometry or semantic information to detect dynamic
features separately, then the two results are combined through
a voting module. There are two voting strategies: if two
separate results are both dynamic, the final result is dynamic
[25], or if either one of the separate results are dynamic,
the final result is dynamic [26]. We firstly use semantic infor-
mation to get a relatively reliable fundamental matrix F, then
F is used to detect truly dynamic features through geometry
constraint. In our approach, fundamental matrix serves as the
bridge that links these two sources of information in a unified
framework and only one decision is made whether a feature
is dynamic or not. The detailed procedure is explained in the
following part.

First, we use SegNet to get the motion prior, then when
calculating optical flow from current frame to last frame of
current frame, the motion prior is used as mask to remove
correspondences of features that are dynamic and potentially
dynamic. Only reliable correspondences are reserved, as is
shown in Fig.8. The correspondences of semantically static
features rather than all correspondences are then used to
calculate the fundamental matrix F.

With the fundamental matrix F calculated above, epipolar
line constraint is utilized to find truly dynamic features. In our
implementation, we chose 1 pixel as the threshold, the feature
in current frame, whose corresponding feature in last frame is
more than 1 pixel apart from the epipolar line, is considered
as truly dynamic.
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(b) Dynamic features removal eff;ct
of our method.

(a) Dynamic features removal effect
of naive semantic method.

FIGURE 9. Comparison of the dynamic features removal effects between
naives semantic method and our method.

Fig.9(a) shows the dynamic features removal result of
naive semantic method which solely utilize semantic segmen-
tation result. Fig.9(b) shows the dynamic features removal
effect of our semantic optical flow method. First, we can
see that almost all features lying on the moving person
are removed. Comparing with naive semantic method, our
method overcomes the incomplete and inaccurate segmenta-
tion characteristic of SegNet. Second, the distinctive features
on the two monitors and the chair on the right are confirmed to
be static, while the features on the left chair, which has wheels
and is moving with the person, are confirmed as dynamic.

Ill. EVALUATION

We have carried out an experiment of our SOF-SLAM system
in public TUM RGB-D dataset to evaluate its performance in
dynamic environments. First, we compare our SOF-SLAM
framework with the original RGB-D ORB-SLAM?2 system
and naive semantic ORB-SLAM?2 to verify the improvement
of our system. Naive semantic ORB-SLAM?2 is a system we
build on ORB-SLAM?2, which solely uses the semantic infor-
mation generated by SegNet to remove semantically dynamic
ORB features, and can be used as reference to clarify that
the dynamic features removal approach of our system is more
effective. Besides, we compare our approach with the state-
of-the-art SLAM systems in dynamic environments using
possible results published in the original papers. Further, we
demonstrate the performance of our system in a laboratory
environment.

A. EVALUATION ON TUM RGB-D DATASET

The TUM RGB-D dataset provides lots of sequences which
were captured at 30Hz and a resolution 640x480. The
ground truth trajectories are given by a high-accuracy
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FIGURE 10. Trajectory comparison in low-dynamic sequence.

motion-capture system which is equipped with eight 100Hz
cameras. We chose sequences that contain dynamic elements
to carry out the experiment, i.e., sequence s_static, w_rpy,
w_static, w_xyz. In the five chosen dynamic sequences of
TUM RGB-D dataset, people are the main dynamic elements.
The word before the underline of the sequence name denotes
the state of people in the scene: “s” means sitting and
“w” means walking. The word after the underline of the
sequence name denotes the motion of the camera. Sequence
s_static is a representation of low-dynamic environment,
while the remaining four sequences are representations of
high-dynamic environments.

We run ORB-SLAM?2, naive semantic ORB-SLAM?2 and
our system on the five chosen dynamic sequences. The cam-
era trajectories estimated by these three systems are plotted
together with ground truth in one figure. We project the 3D
trajectories into 2D plane, and utilize the 2D trajectories
to exhibit the accuracy of these systems qualitatively and
intuitively. If an estimated trajectory coincides with ground
truth trajectory more perfectly, the corresponding system is
more accurate. The comparison results are shown in Fig.10
and Fig.11. In low-dynamic sequence s_static, the trajec-
tories of three systems are all very close to ground truth.
In the high-dynamic sequences, our proposed SOF-SLAM
and naive semantic ORB-SLAM?2 are close to the ground
truth, while the difference between trajectory estimated by
ORB-SLAM2 and ground truth is very large. That is because
the dynamic elements in low-dynamic environment can be
classified as outliers by ORB-SLAM?2 and eliminated by the
robust modules in SLAM system, such as RANSAC and
robust kernels. However, in the high-dynamic scenes, the out-
liers detection method in ORB-SLAM?2 is no longer appli-
cable. In contrast, the proposed semantic optical flow and
the semantic information itself are very helpful for dynamic
features detection and removal.

Further qualitative comparison of these three systems is
carried out to verify the effectiveness of the SOF-SLAM.
We calculate the RMSE of ATE(Absolute Trajectory Error)
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FIGURE 11. Trajectory comparison in high-dynamic sequence.

as the qualitative evaluation metric for our experiment. For
each approach we run all the sequences five times to get
median, mean, minimum and maximum RMSE results, which
can reduce the impact of system’s non-deterministic nature.
The results are shown in Table 1.

According to the results in Table 1, we can see that in low-
dynamic sequence s_static, the results of the three approaches
are actually very close. In the remaining four sequences
representing high-dynamic environment, both our system and
naive semantic ORB-SLAM?2 makes great accuracy improve-
ment comparing the original ORB-SLAM?2, nearly all results,
including median, mean, minimum and maximum RMSE,
are reduced by an order of magnitude. That is because the
semantic information is very helpful to remove dynamic fea-
tures, and great accuracy improvement is achieved. However,
the semantic information itself owns uncertainty just like we
have stated in section II. In high-dynamic conditions, still
some dynamic features can’t be removed effectively. The
semantic optical flow proposed in this work fully take advan-
tage of feature’s dynamic characteristic hidden in semantic
and geometry information, the dynamic features are further
removed effectively. Therefore, our system achieves the high-
est localization accuracy.

In Table 2, we show the improvement in the form of
percentage. Comparing against the original ORB-SLAM?2,
every RMSE statistical result of our system in high-dynamic
sequences achieves more than 90% improvement, among
which the highest one reaches 98.49%. The improvement
of our system against naive semantic ORB-SLAM2 is
also shown in Table 2, the average accuracy improve-
ment of median, mean, minimum and maximum RMSE
achieves 50.18%, 60.65%, 44.40% and 63.33% respectively.
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TABLE 1. Comparisons of RMSE [m] in dynamic sequences of TUM RGB-D dataset for ORB-SLAM2, naive semantic ORB-SLAM2 and our approach.

ORB-SLAM2 Naive Semantic ORB-SLAM2 Ours

Sequence
Median Mean Min Max Median Mean Min Max Median Mean Min Max
s_static 0.012 0.012 0.010 0.012 0.010 0.010 0.010 0.011 0.010 0.010 0.007 0.012
w_halfsphere 0.497 0.576 0.375 0.826 0.056 0.112 0.038 0.310 0.029 0.029 0.024 0.034
w_rpy 0.916 0.976 0.828 1.210 0.386 0.323 0.211 0.406 0.027 0.027 0.023 0.030
w_static 0.437 0.429 0.394 0.445 0.016 0.016 0.015 0.016 0.007 0.007 0.006 0.007
W_Xyz 0.771 0.726 0.590 0.800 0.041 0.096 0.019 0.202 0.018 0.018 0.017 0.020

TABLE 2. Accuracy improvement of naive semantic ORB-SLAM2 against orb-slam2, our approach against orb-slam2 and our approach against naive

semantic ORB-SLAM2.

Improvement of naive Semantic Improvement of our approach Improvement of our approach
Approach against ORB-SLAM?2 against ORB-SLAM?2 against naive semantic ORB-SLAM2
Sequence
Median Mean Min Max Median Mean Min Max Median Mean Min Max
s_static 18.98% 14.93%  833%  1330% | 13.87% 12.98%  30.00%  3.40% -6.31%  -2.30%  23.64% -11.42%
w_halfsphere | 88.68%  80.57%  89.93%  62.43% | 94.25% 94.97% 93.61% 95.91% | 49.17% 74.13% 36.57%  89.10%
w_Ipy 5791%  66.87%  74.57%  66.46% | 97.03% 97.20% 97.26%  97.49% | 92.93% 91.54% 89.24%  92.53%
w_static 96.34%  96.33%  96.12%  96.38% | 98.49%  98.48%  98.49% 98.43% | 58.61% 58.64%  60.93% = 56.52%
W_Xyz 94.73%  86.82%  96.78%  74.72% | 97.71% 97.53%  97.16% 97.45% | 56.49% 81.23% 11.62%  89.93%

Fig.12 shows the comparison of three system in the form of
bar chart intuitively.

Besides, we also compare our approach with the state-
of-the-art SLAM systems in dynamic environment, using
possible results from the original papers. DS-SLAM [25],
DynaSLAM [26], Detect-SLAM [21] and the system pro-
posed by Zhang et al. [22] are adopted for comparisons.
All the four papers mentioned above are developed upon
ORB-SLAM?2, and they use RMSE ATE as quantitative met-
ric to compare with original ORB-SLAM?2 to show their
great accuracy in dynamic environment. However, there is no
comparison between them. Our proposed SOF-SLAM is built
upon ORB-SLAM?2 as well, so we choose median RMSE
ATE of our system to carry out accuracy comparison with
them. The results are shown in Table 3. As we can observe,
the accuracy of our system is far better than DS-SLAM [25],
Detect-SLAM [21], the system proposed by Zhang et al. [22],
and is on par with DynaSLAM [26]. However, we notice that
the results of ORB-SLAM?2 in same sequence are different
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between these papers and ours. The results of original ORB-
SLAM?2 in [21], [25] is very close with what we get when we
run ORB-SLAM2 in the same sequence, while the results in
[22], [26] are far better than what we get. This may be due to
the difference of evaluation details of RMSE or some other
difference of experiment condition. Therefore, in order to
verify the effectiveness of our system objectively, we choose
the relative RMSE reduction (i.e. relative accuracy improve-
ment) of each system with respect to the original ORB-
SLAM?2 as the evaluation metric. The relative metric is more
reasonable as it can eliminate the accuracy difference caused
by other factors which are not related to the dynamic features
processing algorithm. The new comparison result is shown
in Table 4, we can see that the accuracy improvement of
our system is only lower than DS-SLAM in low-dynamic
sequence s_static, and is better in the remaining four high-
dynamic sequences. The reason why DS-SLAM is better
than ours in the low-dynamic sequence, is that DS-SLAM
adopts the intersect of dynamic features detection results of
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FIGURE 12. Comparison of median, mean, minimum and maximum RMSE in the intuitive form of bar chart for

ORB-SLAM2, naive semantic ORB-SLAM2 and our system.
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FIGURE 13. Comparison of relative accuracy improvement in dynamic environments between our system
and DS-SLAM, DynaSLAM, Detect-SLAM, the system by L. Zhang et al.

geometry method and semantic method which means features
are tend to be reserved while our method tends to remove
features. In low-dynamic environment, dynamic features are
few and their effect are easy to be eliminated, so more features
lead to higher accuracy. As for the other three systems, our
system is better than them in all five sequences. In gen-
eral, our system achieves the best results in the four high-
dynamic sequences. Fig.13 shows the accuracy superiority
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of our system against the state-of-the-art SLAM systems in
dynamic environment intuitively in the form of bar chart.

B. EVALUATION IN REAL ENVIRONMENT

Experiment in real-world environment is also carried out
to demonstrate the effectiveness of our system. The RGB
images and corresponding depth data are captured by MYNT
depth camera. In our real-world experiment scene, there are
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TABLE 3. Comparisons of RMSE [m] for our system against the state-of-the-art in dynamic sequences of TUM RGB-D dataset.

Sequence DS-SLAM DynaSLAM Detect-SLAM L. Zhang et al. Ours
s_static 0.0065 - - - 0.010
w_halfsphere 0.0303 0.025 0.0514 0.0636 0.029
w_Ipy 0.0442 0.035 0.2959 - 0.027
w_static 0.0081 0.006 - - 0.007
W_Xyz 0.0247 0.015 0.0241 0.0336 0.018

TABLE 4. Comparisons of relative RMSE [m] reduction for our system against the state-of-the-art in dynamic sequences of TUM RGB-D dataset.

Sequence DS-SLAM DynaSLAM Detect-SLAM L. Zhang et al. Ours
s_static 25.94% - - - 13.87%
w_halfsphere 93.76% 92.88% 90.72% 64.31% 94.25%
w_rpy 48.97% 94.71% 66.94% - 97.03%
w_static 97.91% 93.33% - - 98.49%
W_Xyz 96.71% 96.73% 97.62% 87.92% 97.71%

i "
(a) ORB features extraction with
ORB-SLAM2.

o

1
) ORB features extraction with our
system.

®

FIGURE 14. Comparison of the ORB features extraction situation between
ORB-SLAM2 and our system. The dynamic features in walking people are
removed with our method.

two people walking around, and the camera moves clockwise
into a circle.

Fig.14 shows the comparison of ORB features extraction
situation between ORB-SLAM?2 and our system in our real-
world experiment scene. In Fig.14(a), there are lots features
extracted by ORB-SLAM?2 lying on the two walking people,
while in Fig.14(b), almost all features extracted by our system
are on the static background.

Fig.15 shows comparison of estimated camera trajectory
between ORB-SLAM?2 and our system. The yellow trajectory
estimated by our system perfectly forms a closed loop just
as how the camera moves, which qualitatively reflects the
accuracy of our system, while the blue trajectory estimated
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real laboratory environment experiment
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FIGURE 15. Qualitative comparison of estimated camera trajectory
between ORB-SLAM2 and our system.

by ORB-SLAM2 is unable to return to the origin at end due
to the existence of dynamic ORB features.

IV. CONCLUSION AND DISCUSSIONS

In this paper, we have presented a semantic visual SLAM
system, i.e. SOF-SLAM, building on ORB-SLAM2. We add
a separate thread running SegNet to get pixel-wise semantic
segmentation and a new approach called semantic optical
flow is proposed to detect and remove dynamic features
effectively. Our system can overcome the drawback of solely
utilizing either semantic or geometry information, and avoid
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naively combine them. We utilize them in a tightly cou-
pled way, which lead to more reasonable dynamic features
removal. To verify the effectiveness of our SOF-SLAM which
integrates semantic optical flow, we carry out experiments
in public TUM RGB-D dataset and in real laboratory envi-
ronment. The results show that, our system achieves great
improvement on original ORB-SLAM?2 in localization accu-
racy. In high-dynamic sequences, our system shows averagely
96.73% accuracy improvement against the original ORB-
SLAM?2. In addition, the comparison with the four state-of-
the-art SLAM systems in dynamic environments shows that
our system achieves the highest relative RMSE reduction with
respect to the original ORB-SLAM?2.

However, there are still more ongoing works on our system.
Our system may be improved in two aspects. First, our sys-
tem only utilizes the information of two consecutive frames,
current frame and last frame, to detect dynamic features in the
current frame. We are considering using more image frames,
which may provide more abundant temporal information,
to determine the motion characteristic of features. Second,
our system currently adopts a hard decision way to decide
whether a feature is dynamic or not. Further improvement
may be achieved by adopting a probabilistic framework to
calculate the probability of features being dynamic, which
will make our system more robust.
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