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ABSTRACT In the recent decade, the development of 3D scanners brings the expansion of 3D models,
which yields in the increase of demand for developing effective 3D point cloud retrieval methods using only
unorganized point clouds instead of mesh data. In this paper, we propose a meshing-free framework for point
cloud retrieval by exploiting a bidirectional similarity measurement on local features. Specifically, we first
introduce an effective pipeline for keypoint selection by applying principal component analysis to pose
normalization and thresholding local similarity of normals. Then, a point cloud based feature descriptor is
employed to compute local feature descriptors directly from point clouds. Finally, we propose a bidirectional
feature match strategy to handle the similarity measure. Experimental evaluation on a publicly available
benchmark demonstrates the effectiveness of our framework and shows it can outperform other alternatives
involving state-of-the-art techniques.

INDEX TERMS Point cloud retrieval, 3D shape retrieval, bidirectional feature match.

I. INTRODUCTION
With the development of 3D data acquisition technologies,
point clouds can be generated faster with low cost [1], [2],
which leads to rapid growth of the 3D point data stored in
databases. As such, automatically organizing and retrieving
the 3D models from databases becomes essential to various
of applications in diverse fields such as computer graphics
and computer vision. There has been a surge of interest in
methods for retrieval of 3D models [3]–[9] from databases.
Most of the existing methods employed feature descriptors
(global or local) to describe 3D objects, where the 3D objects
are usually represented in the form of triangular/polyhedral
meshes. Although creating meshes from point clouds is a
well-studied topic [10], [11], sometimes it can be quite com-
plex due to the lack of connectivity of higher-level informa-
tion about the underlying surface [11], [12], especially when
the input point cloud data has missing parts. Therefore, it is
necessary to develop 3D shape retrieval methods which can
conduct retrieval directly with unorganized point clouds (i.e.,
without surface reconstruction).

The associate editor coordinating the review of this manuscript and
approving it for publication was Utku Kose.

Measuring the similarity between 3D objects is an essen-
tial and fundamental task in 3D shape retrieval. A com-
mon strategy in shape similarity assessment is to evaluate
the similarity score between the shapes in terms of dis-
tances with associated feature descriptors. Various similar-
ity/distance measures [13], [14] have been proposed and
widely applied in 3D object retrieval tasks, such as the Lp
distance, the Hausdorff distance, and the earth mover’s dis-
tance. Meanwhile, the term dissimilarity is often conceived in
terms of similarity [3], [15]. Despite the success of applying
similarity measures in mesh retrieval tasks, the evaluation of
the effectiveness in 3D point cloud retrieval has been sparsely
treated so far.

In this paper, we tackle the problem of 3D point cloud
retrieval by extending the bidirectional similarity mea-
sure [16] to build a meshing-free framework. At first,
an effective keypoint detection procedure is conducted, where
each point cloud is normalized by using PCA [17] and key-
points for feature extraction are detected by thresholding
the local similarity of normals. Then, we utilize point cloud
based RoPS [18] descriptor to compute the feature descriptor
directly from point clouds. Finally, as the main contribution,
we estimate the similarity between point clouds by a bidi-
rectional similarity measurement, which is extended from the
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FIGURE 1. A general overview of our 3D point cloud based retrieval framework. (a) we illustrate the pipeline for keypoint selection and RoPS feature
extraction, where each point cloud’s coordinates are normalized by the diagonal of the point cloud’s bounding box and aligned using PCA based pose
normalization. Keypoints for feature extraction are then detected by thresholding local similarity of normals (i.e., points with a high variation of normals
within a local area are selected as keypoints). The RoPS feature descriptor is computed at each keypoint. (b) The shaded part presents a bidirectional
feature match mechanism: first, KD-trees are created from candidate and query features respectively, and search of nearest neighbor (NN) features over
KD-trees for each keypoint is conducted for the query and each candidate. Second, the bisimilarity of NN features between candidates and the query
are evaluated to define the best-buddies similarity (BBS) score. Finally, candidates are ranked in descending order according to the BBS score.

distance measurement of best-buddies similarity (BBS) [16]
for similarity measurement in the feature domain of 3D
point clouds. Figure 1 illustrates the overall procedure of
our 3D point cloud retrieval framework. We demonstrate in
the experiment that our 3D point cloud retrieval framework
achieves competitive performance compared against methods
based on alternative similarity measures and the state-of-
the-art descriptors. It is important to note that our proposed
framework is an efficient, easy-to-apply point cloud retrieval
method rather than a learning-based method which is data-
dependent.

II. RELATED WORK
Giving a 3D object as a query, a content-based 3D object
retrieval system analyzes the query and retrieves ranked 3D
objects from the collections of a 3D dataset according to
measured similarity. The key components here is to design
a discriminative feature descriptor and a similarity measure
for 3D objects, which have been widely studied [3], [4], [19].
Global or local features can be employed to measure the
similarity between two 3D objects. Global features have the
ability to encode an entire object with a single vector, and we
refer to [3] as a survey article for an overview of 3D retrieval
methods based on global features. However, such methods
ignore the shape details and the research efforts in recent
years have focused on developing more discriminative local
features which are distinctive and robust against occlusion
and clutter [19]. The local features are based on local geomet-
ric features extracted from interest points/keypoints, which
hold rich information that allow for effective description and
matching. The similarity search is usually performed in the
extracted feature domain. In this section, we review the most
related two key components in 3D object retrieval: 3D local
feature descriptor and similarity measure.

A. 3D LOCAL FEATURE DESCRIPTOR
The local feature descriptors are closely related to 3D
keypoint detectors, which identify appropriate points that

are distinctive. A number of 3D keypoints detectors have
been proposed [20], [21]. Although various feature descrip-
tors have been proposed according to specific applications
such as 3D object recognition, 3D retrieval, it is difficult
for the users to choose an appropriate feature descriptor for
specific purposes [19]. In general, a good feature descriptor
should be highly descriptive to provide a comprehensive
and predominant representation of local surface, and also
should be computationally efficient, compact and robust to
a common nuisances such as noise and varying point cloud
resolution [18], [19]. A large variety of 3D local feature
descriptors have been proposed, including spin images [22],
fast point feature histograms (FPFH) [23], signature of his-
tograms of orientation (SHOT) [24], rotational projection
statistics (RoPS) [18], and TriSI [25]. Comprehensive evalu-
ations of local feature descriptors can be found in [19], [26].
Among these, RoPS descriptor is reported to be robust against
a set of variations including noise, clutter, occlusion, and can
further achieve superior performance for feature matching in
terms of precision and recall [18], [19]. On the other hand,
the bag-of-words (BOW) approach is popular for process-
ing the raw features, which demonstrates superior retrieval
performance for both articulated and rigid objects [27], [28].
Such method extracts local feature descriptors from 3D
objects which are later grouped in clusters (e.g., using
k-means) and represent them into histograms which become
the feature vector of the 3D objects. BOW framework com-
bined with RoPS descriptor outperforms competitive meth-
ods in the SHREC’17 contest [7] on non-rigid 3D point cloud
retrieval task.

B. SIMILARITY MEASURE
The goal of feature matching in feature-based 3D object
retrieval is to find keypoint correspondences across 3D
dataset for given keypoints and the according local feature
descriptors. The performance mainly depends on the simi-
larity measure used to compute the distance between pairs
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of descriptors [3], [15]. The basic similarity measures are
the Manhattan/L1 and Euclidean/L2 distance [29], mostly
due to their simplicity and computational efficiency. Other
distance measures have also been widely applied in 3D object
retrieval, such as the Hausdorff distance applied to [30],
the earth mover’s distance applied to [31], and bipartite
graph matching applied to [9]. Investigations have also been
made to measure the dissimilarity between non-rigid 3D
models. For instance, Memoli and Sapiro [32] introduce a
theoretical framework to compare 3D shapes based on the
Gromov-Hausdorff distance directly. Moreover, Johnson and
Hebert [22] use a linear correlation coefficient to match the
spin images of the scene with the spin images of the models.
Hetzel et al. [33] match multidimensional histogram features
of two 3D models using the chi-squared test to recognize 3D
object.

Dekel et al. [16] introduce a robust, parameter-free,
bidirectional similarity measure for template matching and
achieved state-of-the-art performance on template matching.
BBS measures the similarity between two image patches
by counting best-buddies pairs (BBPs) which are a pair of
patches from each image, if two patches are the nearest
neighbor of each other.

Benefiting from RoPS feature descriptor and inspired by
BBS, our 3D point cloud retrieval framework takes account
both accuracy and computational efficiency.

III. METHODOLOGY
As it has also been concluded in Fig. 1, our 3D point cloud
retrieval framework includes three main parts: (1) pose nor-
malization, (2) keypoint and feature descriptor extraction, (3)
bidirectional feature match, which will be introduced in detail
respectively in this section.

A. POSE NORMALIZATION
The goal of this procedure is to place the point clouds into
a canonical coordinate to alleviate the variation concerning
transformations such as rotation, translation, and scaling of
the objects. Specifically, we first normalize the coordinates
of the points by setting the length of the diagonal of the
point cloud’s bounding box to 1. After the normalization,
the eigenvectors are calculated to identify the dominant direc-
tion which holds the largest possible variance and the point
clouds are aligned with the principal axes. Figure 2a shows
the pose normalization procedure and Fig. 2b shows some
examples after pose normalization.

B. KEYPOINT AND FEATURE DESCRIPTOR EXTRACTION
Instead of using randomly selected points or grid sampled
points as keypoints for feature extraction, we design a simple
technique to select distinctive keypoints directly from point
clouds, where the variation of local normals defines the ‘‘dis-
tinctiveness’’.

Let P = {p1, . . . , pi, . . . , pn} be points of a certain point
cloud, and the normal Eni at pi is calculated using k-neighbor-
hood of p. For each pi, we calculate the variation of local

FIGURE 2. (a) An input point cloud (left), is scaled using the diagonal of
the point cloud’s bounding box, centering at the origin (middle), and
rotated according to the principal axes to have consistent orientation for
the same category (right). Vectors in red, blue, and green are the
eigenvectors of the covariance matrix. (b) Example point clouds of
ants (articulated) and tables (non-articulated) in different initial poses
(top row). The normalized results (bottom row).

normals Vi within a sphere (local space) with support radius
r . The variation is defined by averaging the cosθj between pi
and each neighbour point pj, which can be easily calculated
from the inner product of normal vectors,

V =
1∑n

m=1 1
(
dj ≤ r

) ∑
j:dj≤r

cosθj, (1)

where smaller V indicates larger variation, dj = ‖pj − pi‖2
and cosθj = Eni · Enj. 1(.) is an indicator function to turn
true/false into 1/0. Keypoints are selected by setting a thresh-
old th on the variation,

pi =

{
is keypoint, if Vi < th
is not keypoint, otherwise.

(2)

Furthermore, it is essential to prevent object-specific features
from filtering out (e.g., although the flat surface of a chair or
a table has a low variation of local normals, it is a distinctive
feature for both objects). For this reason, we add a constraint
that besides Eq. 2, if Eni dominates the local space, we select pi
as a keypoint. An example of keypoint selection with/without
the additional constraint is shown in Fig 3. It is worth pointing
out that there is a trade-off between the retrieval accuracy and
computational cost with respect to the number of extracted
keypoints. To balance it, we uniformly sample the remain-
ing points shown in Fig. 3 with a grid sampling parameter
grid_size.

We utilize point cloud based RoPS [18] descriptor to cal-
culate the feature descriptor directly from point clouds. The
RoPS descriptor is based on unique, repeatable, and robust
local reference frame (LRF). The idea is, at first, an LRF
is constructed for each keypoint. Points within the local
space (with support radius equals to rrops) are aligned with
the LRF to achieve invariance against rigid transformations
(i.e., rotations and translations). The points within the local
space are then rotated drops times around the three coordinate
axes respectively. For each rotation, the points are further
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FIGURE 3. An example of keypoint extraction with/without constraint. Support radius r is set to 0.013. (a) An example of point cloud of table.
Without constraint: (b) the threshold of V , th = 0.8, (c) th = 0.2. With constraint: (d) th = 0.8, (e) th = 0.2.

projected onto three 2D planes (i.e., xy, yz and xz). Then each
plane is divided into some bins (binrops) and five statistics
including low-order central moments and entropy are calcu-
lated from each histogram. Finally, the RoPS descriptor is
generated by concatenating all these statistics of all rotations
and projections. Influence of the parameters will be discussed
in Section IV.

C. BIDIRECTIONAL FEATURE MATCH
The goal of this section is to calculate the similarity between
features of a query and a candidate point cloud by exploiting
best-buddies similarity (BBS) [16]. The difference is, our
method counts the best-buddies pairs (BBP) bidirectionally
between features of query and candidate in terms of the RoPS
descriptors. The BBS is originally designed for 2D template
matching.

Let Q = {qn}Nn=1 denoting the features of the query point
cloud with N keypoints and C = {cm}Mm=1 be features of
a candidate point cloud with M keypoints, where qn, cm ∈
R3×3×5×drops . KD-trees denoted by TQ and TC are created
from the features of the query and the candidate point cloud
respectively. Then for each qn and cm, its NN can be found by
searching TC and TQ respectively. qn and cm form one BBP
if and only if cm is the nearest neighbor of qn in the KD-Tree
TC , and vice versa. Formally,

BBP(qn, cm,TQ,TC )

=

{
1, NN(qn,TC ) = cm ∧ NN(cm,TQ) = qn
0, otherwise,

(3)

where NN(qn,TC ) returns the NN of qn in KD-tree TC . The
similarity function BBS can be further defined as

BBS(Q,C) =
N∑
n=1

M∑
m=1

BBP(qn, cm,TQ,TC ). (4)

The BBS score is computed for each candidate C in the
database by counting the number of BBPs between Q and C .
Finally, the candidates are ranked in descending order accord-
ing to their BBS scores. Figure 4 illustrates an example of
BBPs between a query and a candidate point cloud. Despite
the non-rigid deformation of the object, BBPs include many
inlier matches to show the effectiveness.

IV. EXPERIMENT
In this section, we comprehensively discuss the effect of
parameters and the performance of the proposed framework

FIGURE 4. (a) Keypoints extracted from query (left) and candidate (right)
point cloud. (b) The BBPs between the query and candidate point cloud.
Each BBP is illustrated by a line in a random color.

compared to other alternatives. Conventional similarity mea-
sures and competitive descriptors such as SHOT [24], SI [22]
and TriSI [25] are taken into account.

A. EXPERIMENTAL SETTING
We evaluate our method with different settings on McGill 3D
shape dataset [34], which is a well-known non-rigid 3D shape
benchmark built for retrieval purpose. The McGill dataset
contains 456 objects from 19 classes (classes with articulating
parts such as ‘ants’, ‘crabs’, ‘humans’ etc., and classes with-
out articulation such as ‘tables’, ‘cups’, ‘birds’ etc.,). We ran-
domly select three objects from each class to form a query set
of 57 objects in total. For performance evaluation, we utilize
mean average precision (mAP) and average retrieved time.
mAP is computed by first sorting point clouds in descend-
ing order of relevance for each query, and then averaging
average precision (AP) calculated from each query. Mean
retrieval time is the average elapsed time taken to extract the
features (keypoint + descriptor) and compute the relevance
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FIGURE 5. Retrieval examples from the McGill dataset. (a) Input queries. (b) Top-8 results retrieved by the proposed method. The retrieved objects
are ranked from left to right decreasingly in terms of BBS score, which is presented in the bottom of each result. Cross and check marks show the
correctness of the results. A retrieval result is treat to be failed if its class label differs from the query.

of per query. For evaluation, we implement a prototype of
our framework in MATLAB. As to the RoPS descriptor,
we modify the MATLAB code1 to compute RoPS descriptors
from point clouds directly. The MATLAB code of SHOT
descriptor is provided by the authors and the MATLAB code
of SI, TriSI are available online 23. All experiments are
conducted on a computer with an Intel Core i7 2.9 GHz and
20GB of RAM.

Our framework depends on several major parameters: the
support radius r , the threshold th on V , and the grid_size
which are used for keypoint selection and simultaneously
the RoPS descriptor parameters: the support radius rrops,
the number of rotations drops, and the number of partition
bins binrops. We set r = 0.013, threshold th = 0.8, grid_size
= 0.05, rrops = 15, drops = 3, and binrops = 3 by default
in this paper which balances the effectiveness and efficiency
well, according to the analysis in Section IV-E.

B. QUALITATIVE ANALYSIS
To justify the effectiveness of the proposed method, in this
section, we visually demonstrate the results of the bidirec-
tional feature match. First, we show some retrieval results
in Fig. 5. As it can be observed, the retrieved top-8 objects
all belong to the same class of their corresponding queries
except ‘‘tables’’, which is likely to be mistaken for ‘‘chairs’’.

Furthermore, we analyze the BBPs between the objects in
the same/different classes in Fig. 6. As it can be observed
clearly that the number of BBPs between the same class

1http://yulanguo.me/img/RoPS.rar
2http://www.csse.uwa.edu.au/~ajmal/code/calcSpinImages.m
3http://yulanguo.me/img/TriSI.rar

(top row) is larger than the number of BBPs between different
class (bottom row), which well demonstrates the ability of
bidirectional feature match to distinguish object in the class
of the query from candidates in other classes.

C. QUANTITATIVE ANALYSIS
In Table 1, we report the quantitative results of our method.
By applying our keypoint extraction, the mAP improves by
0.6% ∼ 0.8% compared to the keypoint extraction based on
random sampling (5% of the points are randomly selected
to be keypoints ) or grid sampling (grid_size = 0.05).
The analysis of keypoint extraction further discussed in
Section IV-E. Furthermore, bidirectional feature matching
achieves the best performance compared to other similarity
measures.

To further analyze the retrieval results in detail, a confusion
matrix of the retrieval results is visualized in Fig. 7. Based on
the APs of three queries per class, the confusion matrix shows
the mAP of each class with respect to all classes. It can be
observed that most of the diagonal cells achieve the highest
values compared to other cells in the same row, showing the
correctness of the retrieval. The highlighted off-diagonal cells
correspond to incorrectly retrieved results. As an example of
failure, the mAP of query class ‘octopuses’ (5th row) with
respect to the retrieval results of ‘spiders’ (9th column) is
35.3%, which is greater than the ground truth ‘octopuses’
(5th column)(26.2%). Also, the mAP of ‘snakes’ (7th row),
‘dinosaurs’ (15th row), and ‘tables’ (last row) differ from
the ground truths. In the case of ‘dinosaurs’, the mAP of
‘four-limbs’ is greater than the ground truth by 20%. This
may be attributed to the fact that the dinosaurs also have
four-limbs.
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FIGURE 6. Illustration of BBPs between objects in same/different classes. For each pair, query and candidate point clouds are presented
side-by-side and connected by lines representing BBPs. In the top row, query and candidate belong to the same class. (a) fishes, (b) humans
and (c) tables. In the bottom row, objects are in different classes. (d) fishes vs. birds, (e) humans vs. snakes, and (f) tables vs. cups.

FIGURE 7. Confusion matrix of the retrieval results by our method. Each
cell shows the mAP of each query class from the top row to the bottom
row, which is calculated by averaging the APs of the three queries per
class. The class specified statistics of the retrieval results are presented in
each column.

D. COMPARISON AGAINST OTHER SOLUTIONS
We design comparative alternatives by combining several
state-of-the-art feature descriptors with classic single direc-
tional similarity measures. For feature descriptor, we studied
SHOT [24], spin images [22] and TriSI [25]. Table 1 presents
a comprehensive performance evaluation of the proposed
framework, compared to other solutions. For SHOT, spin
images and TriSI, we utilize trianglemeshes constructed from
the original point clouds for feature extraction, the support
radius setting follows the RoPS descriptor.

We can make several observations from Table 1. First,
bidirectional distance achieves the best performance com-
pared to other similarity measures for all descriptors. How-
ever, the calculation of bidirectional distance takes longer
time compared to single directional similarity measures. Sec-

ond, solutions with SI and SHOT descriptors are the most
efficient while solutions with RoPS and TriSI cost more time.
Lastly, BBS combinedwith RoPS descriptor and our keypoint
detection clearly outperforms other solutions in terms of
mAP. Despite that, the proposed method costs more mean
retrieval time mainly because of the extraction of query’s
RoPS descriptor.

E. EFFECT OF MAJOR PARAMETERS
In this section, we explore the effect of each parameter brings
to the performance of our retrieval framework. Parameters
r , th, grid_size of keypoint extraction procedure, rrops, drops,
binrops of RoPS descriptor extraction are studied. The results
are concluded in Fig. 8 and Fig. 9 respectively. In Fig. 8,
besides the proposed keypoint extraction, we also consider
both random sampling with a fixed number of keypoints and
grid sampling with parameter gridsize. From the first column
of Fig. 8, we can see that different settings of the support
radius r and the threshold value th affect the performance
to a certain extent. The best performance achieved when
r = 0.013 and th = 0.8. From the second column of Fig. 8,
we can see that our keypoint extraction method improves
the performance of the proposed framework while keeping
efficiency. It decreases the mean retrieval time by 15 seconds
when the grid_size = 0.03. It is worth pointing out that
the number of keypoints directly affects the effectiveness and
efficiency of the proposed framework. Moreover, as decreas-
ing the grid_size will cost more computational resources and
make the method impractical, we set the grid_size = 0.05
in this paper for practical comparison. By observing the third
and the fourth columns of Fig. 8, we can see that the BBS
significantly outperforms classic measures combining either
of the keypoint sampling methods and descriptors.

The parameter tuning of RoPS descriptor can also affect
the whole performance.We compare the proposed framework
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TABLE 1. Performance evaluation of the proposed framework against comparative methods with respect to mAP and mean retrieval time. Techniques
utilized in our framework are highlighted in blue. The computational time is mainly cost in the stage of extracting the feature descriptor of the query.

FIGURE 8. Effects of the parameters of keypoint extraction on mAP (top row) and mean retrieval time (bottom row). In the first column, r varies from
0.01 to 0.015 and th varies from 0.1 to 0.9. In the second column, the proposed keypoint extraction method is compared to grid sampling, with grid_size
varies from 0.3 to 0.8. In the third and the fourth columns, similarity measures are compared by combing with different keypoint sampling methods. The
percentage of random sampling method varies from 0.01 to 0.05.

with different settings in terms of mAP and mean retrieval
time. First, we study the effect of support radius (rrops),
which determines the amount of local space that is encoded
by the RoPS descriptor [18]. More specifically, we test the
performance by varying support radius (from 5 to 30 point
cloud resolution) while the other parameters remain fixed:
drops = 3 and binrops = 3 for the RoPS descriptor. The
result in Fig. 9(a) shows that mAP of the proposed framework
improved significantly when the support radius of RoPS is
increased from 5 to 15, and the performance degraded when
the support radius of RoPS is further increased from 15 to 30.
Moreover, a large support radius enables the RoPS descriptor
to provide more information (descriptiveness) of the object,
but suffer from high computational cost. In Fig. 9(a), it can be
seen that the mean retrieval time of the proposed framework
with large RoPS support radius (rrops = 30) is 2.5 times
greater than the one with small support radius (rrops = 5).

Second, we test the performance of the proposed framework
by verifying the number of rotations (drops), while keeping
the other parameters fixed (rrops = 15, binrops = 3) for
RoPS extraction. The results are shown in Fig. 9(b), where
the mAP of the proposed framework increases when the drops
is increased from 1 to 3 and decreases when drops = 4,
and increased again from 5 to 6. Same as the support radius,
increasing the number of rotations encodes more information
of local space into the RoPS descriptor, which will cost more
computational resources. Lastly, we tune binrops which is
another important parameter of RoPS descriptor while the
others are set to rrops = 15 and drops = 3. Contrast to rrops
and the drops, binrops does not affect the cost of the proposed
framework as shown in Fig. 9(c). As shown in Fig. 9 (c),
the performance of the proposed framework degrade steadily
when binrops increases from 3 to 13. We therefore choose the
support radius rrops = 15, the number of rotations drops = 3,
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FIGURE 9. Effects of the parameters of RoPS descriptor on mAP (top row) and mean retrieval time (below row). The
support radius rrops varies from 5 to 30, the number of rotations drops varies from 1 to 6, and the number of partition bins
binrops varies from 3 to 13.

and the number of partition bins binrops = 3 to balance the
trade-off between the effectiveness and efficiency.

V. CONCLUSION
We presented a meshing-free 3D point cloud retrieval frame-
work based on the bidirectional feature match, which is to
extend the best buddies similarity measurement to the fea-
ture domain of 3D point clouds. Moreover, we introduced
effective keypoint extraction by using PCA-based pose nor-
malization and thresholding local-normal-similarity. Besides,
we exploited point cloud based RoPS feature descriptor to
encode 3D point clouds. The entire pipeline, including key-
point selection, feature computation, and similarity measure-
ment, is highly effective and makes our framework practical
for robust 3D point cloud retrieval tasks. The experimen-
tal results demonstrate the effectiveness and validate that
the proposed framework can outperform other alternatives
involving state-of-the-art techniques. As the computational
cost of our proposed framework mainly lies in the feature
descriptor extraction, it is important to develop more efficient
yet effective 3D feature descriptor in the future.
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