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ABSTRACT Many methods for estimating frequency components of stationary signals in power systems
are based on the Discrete Fourier Transform. These methods have a fixed frequency resolution which
depends on the sampling frequency and the number of samples of the signal, making it difficult to estimate
interharmonics. This paper presents an algorithm for estimating harmonics and interharmonics of power
system signals using the signal sparse decomposition technique with an overcomplete dictionary. Discrete
Trigonometric Transforms have been analyzed for building this dictionary. The l-fold method has also been
applied to the dictionary, which has allowed the adjustment of the frequency grid of the output spectrum. The
algorithm proposed is called Harmonics and Interharmonics components Estimation based on Signal Sparse
Decomposition, and it was assembled using a dictionary formed by atoms of Discrete Cosine and Discrete
Sine Transforms of type II. Three synthetic signals containing harmonic and interharmonics distortions with
different noise conditions were used to test the algorithm. The proposed method presented better results in
the estimation of harmonic and interharmonics than Discrete Fourier Transform, Matrix Pencil Method and
Fast Matching Pursuit algorithms. The results demonstrated robustness to noise and adequate estimation of
the interharmonics when the frequency grid is adjusted correctly.

INDEX TERMS Discrete trigonometric transform, harmonics and interharmonics estimation, overcomplete
dictionary, power quality signal analysis, signal sparse decomposition.

I. INTRODUCTION
Harmonics and interharmonics disturbances in electrical sys-
tems increase as new electronic power devices are connected
to the power system [1]. The time-varying, switching circuits,
static converters, frequency inverters for speed adjustment of
motors, electric-arc furnaces, and other asynchronous pulsed
loads generate these distortions [2]. The integer multiples of
the power system fundamental frequency are the harmonic
components, while interharmonics are those components
in fractional multiples of the fundamental frequency [3].
The existence of harmonic components leads to the thermal
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overheating effect on energy conductors, decreasing the life-
time of electrical appliances and causing interferences in
AC grid systems [4]. In turn, the interharmonics compo-
nents generate effects such as flickering in lighting systems
and computer monitors, sub-synchronous oscillations, and
voltage fluctuations [1], [2], [5].

Currently, IEC 61000-4-7 defines the methodology for
estimating harmonics and interharmonics in power sys-
tems [6]. This standard establishes that the voltage and cur-
rent of an electric system must be sampled using 200 ms
windows (12 full cycles at 60 Hz or 10 at 50 Hz). These sam-
pled signals are processed by the Discrete Fourier Transform
(DFT), which calculates the energy of the signal’s frequency
components and makes the estimation of harmonics and
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interharmonics possible. The frequency resolution obtained
using the DFT under the conditions imposed by the standard
is 5 Hz, which corresponds to the inverse of the time win-
dow’s size. Only the frequency components multiples of 5 Hz
are correctly identified and the set of the detectable frequency
components is called grid of frequencies for the DFT. When
some frequency components do not correspond precisely to
any element in the grid, the DFT algorithm causes a scattering
of the energy for these components to adjacent frequencies
on the grid, this phenomenon is known as the spectrum
leakage [2]. The picket-fence effect is another phenomenon
which occurs when grid resolution limits the detection of
components in specific frequencies [7]. These effects prevent
the precise identification of frequency components which
are not multiples of 5 Hz. However, the grouping methods
proposed in IEC 61000-4-7 [6] guarantee that the total energy
of harmonics and interharmonics components is estimated
accurately. The proper identification of these components
enables the design of filters for interharmonic compensation
and flicker mitigation [8], [9]. In [10], Lin proposes an algo-
rithm for harmonics and interharmonics estimation based on
grouping methods. However, this algorithm cannot estimate
correctly adjacent harmonics and interharmonics.

Several methods for estimating individually interharmonic
components are proposed in the literature. An algorithm
called Dispersed Energy Distribution (DED) has been pro-
posed by [1]. This method allows estimating the interharmon-
ics components apart, by calculating the frequency deviation
according to the energy distribution in the spectrum. The
Multi-interharmonic Spectrum Separation and Measurement
(MSSM) method, proposed in [11], does an asynchronous
sampling of the signal so that all its components are treated as
interharmonics. This method identifies peaks in the spectrum
obtained by DFT, separates the spectral content for each peak
and estimates the parameters of each component.

The Variational Mode Decomposition (VMD) technique
is also used to decompose power system signals in fre-
quency components [12]. This technique separates the input
signal into a discrete number of sub-signals with sparse
characteristics, by assuming that each sub-signal is compact
around a central frequency [13]. The main advantage of this
method is its ability to detect interharmonics and to estimate
time-varying spectral components. However, it is necessary
to define parameters such as bandwidth and the number of
frequency components to be extracted from the signal.

The method presented in [5] uses an optimization algo-
rithm known as Firefly Algorithm (FA) to estimate the ini-
tial parameters applied to the Recursive Least Square (RLS)
algorithm, which evaluates amplitudes and phases of the
time-varying signal adaptively. Despite presenting adequate
results, the FA-RLS algorithm has limited precision, and the
definition of the parameters is a challenge in the case of
time-varying signals.

Recently, a method based on the solution of a generalized
eigenvalue using Matrix Pencil Method (MPM) has been
proposed in [14]. MPM is similar to Prony’s method, but

less sensitive to noise [15]. MPM can estimate the frequency,
amplitude and relative phase of the frequency components
present in a power system signal, regardless of a fixed fre-
quency grid, and responding appropriately to noisy signals
with about 25 dB of SNR. Furthermore, MPM is capable of
estimating damping coefficients and voltage drops. However,
this method has a high computational load in the order of
O(N 3), where N is the number signal samples.
In the last decade, numerous applications in signal pro-

cessing have used the Sparse Signal Decomposition (SSD)
technique with Overcomplete Hybrid Dictionary (OHD)
for detection and classification of modulated signals [16],
analysis of ultrasound signals [17], [18], automatic target
recognition in radar images [19], denoising and analysis of
biomedical signals as electrocardiogram (ECG) [20], [21]
and electroencephalogram (EEG) [22], among others. In the
analysis of signals in power systems, [23] presents a study
for compression and denoising of signals with power quality
disturbances, while [24] does the detection and classification
of these disturbances. Both use an overcomplete dictionary
formed by three matrices: one of unitary impulses delayed
in time, one generated by Discrete Cosine Transform (DCT)
and another generated by Discrete Sine Transform (DST).
The method has presented better performance in the tests
carried out when compared to the Wavelet Transform (WT)
and DCT methods. However, [23] and [24] do not justify the
choice of DCT-II andDST-II to compose theOHD.Moreover,
coefficients are not compensated, which leads to inaccurate
results once samples are time-shifted by a half sampling time.

Another recent method based on SSD is the Fast Match-
ing Pursuit (FMP) presented by [25]. This method identifies
harmonics and interharmonics components using an iterative
decomposition based on Matching Pursuit with an overcom-
plete sinusoidal dictionary. Firstly, FMP finds an approxi-
mated frequency by Fast Fourier Transform (FFT) and relates
it with the dictionary. Then, an optimization algorithm is
applied to estimate the actual phase and frequency of the
signal. The FMP method proved to be insensitive to spectral
leakage. However, [25] does not set a tolerance limit, and for
a small value the algorithm extracts nonexistent harmonic and
interharmonics components of the signal.

This work proposes a new algorithm for estimating har-
monics and interharmonics components in signals acquired
from power systems. The proposed algorithm is based on
the SSD technique using an overcomplete dictionary com-
pounded by DCT and DST matrices. The different types of
DCT and DST are presented, and their characteristics regard-
ing the decomposition of signals with harmonic distortion are
discussed. This discussion is important to justify the choice
of the pair DCT-II and DST-II to form the OHD adopted
in the proposed algorithm. This algorithm is called Har-
monics and Interharmonics components Estimation based on
Signal Sparse Decomposition (HIESSD). The overcomplete
dictionary was assembled using an l-fold overcomplete sys-
tem [26]. It makes possible to get a finer frequency resolution
than by the DFT algorithm, which is 5 Hz considering the

VOLUME 7, 2019 163959



T. de Almeida Prado et al.: Algorithm Based on Sparse Decomposition for Estimating Harmonic and Interharmonic Components

acquisition criteria set out in IEC 61000-4-7 [6]. TheHIESSD
algorithm estimates the amplitude, phase, and frequency of
harmonics and interharmonic components individually with
a frequency resolution of up to 0.5 Hz from signals collected
in 200 ms sampling windows. We have also evaluated the
efficacy of the HIESSD method with acquisition windows
smaller than defined in IEC 61000-4-7, of up to 125 ms
(7.5 cycles of the fundamental frequency).

The purpose of this work is to present the feasibility of
developing an algorithm based on SSD for the estimation
of harmonics and interharmonics components, comparing its
performance against the DFT, MPM and FMP algorithms
with simulated signals containing these harmonic compo-
nents and with the addition of Gaussian noise. Thus, in this
work, tests with real signals obtained in power systems will
not be performed. We are also not considering possible devi-
ations from the fundamental frequency that exist in real elec-
trical systems. The current version of HIESSD algorithm is
intended for off-line analysis of stationary signals.

In Section II are presented the SSD technique, the different
kinds of dictionaries built from harmonic bases, the construc-
tion of an OHD using Discrete Trigonometric Transforms
(DTT) and the l-fold system, and the HIESSD for harmon-
ics and interharmonics estimation. Section III presents the
analysis of compound dictionaries by even DTTs and demon-
strates the application of the HIESSD method to synthetic
signals containing harmonic and interharmonic distortions.
The results are compared with the DFT, MPM and FMP
methods. In Section IV, the conclusions and future works are
presented.

II. METHOD
The signals with harmonic and interharmonic distortions
are characterized by the limited number of frequency com-
ponents and can be represented sparsely in the frequency
domain. This feature makes this problem ideal for applying
SSD using an OHD consisted of harmonic bases. This section
describes the detailing of the SSD technique; the reasonable
harmonics bases to compose the OHD; the dictionary con-
struction and; the HIESSD algorithm proposed to estimate
harmonics and interharmonics components.

A. SPARSE SIGNAL DECOMPOSITION
SSD is an atomic decomposition technique that seeks to
represent arbitrary signals with as few coefficients as pos-
sible. In this regard, it is necessary to use a dictionary,
which consists of a library of simple waveforms called
atoms. Accordingly, a linear combination of suitably selected
atoms from a dictionary 8 ∈ RN×M may represent any
discrete-time signal x ∈ RN [27], as shown by Eq. (1):

x =
M∑
m=1

αmφm = 8α, (1)

where α ∈ RM is the vector of sparse coefficients resulting
from the signal decomposition, αm is a coefficient of the
vector α and, φm corresponds to an atom in the dictionary.

If M = N and the atoms are orthogonal, the dictionary
represents a transformation basis (Fourier,Wavelet, DCT, and
others) and is said to be complete. However, when M > N ,
the dictionary presents non-orthogonal atoms, which contains
redundant information. This redundancy brings robustness to
the decomposition process. Dictionaries in this category are
called overcomplete.

The operation to estimate the coefficients α from the signal
x using the dictionary 8 is called atomic decomposition and
may be treated as an optimization problem represented by
Eq. (2):

α̂ = min
α
‖α‖0 subject to x = 8α, (2)

where ‖ · ‖0 is the norm `0 which counts nonzero elements in
a vector [28]. In the case of signals contaminated with noise,
the problem of Eq. (2) can be relaxed to:

α̂ = min
α
‖α‖0 subject to ‖x−8α‖2 ≤ ε, (3)

where ε > 0 represents an error tolerance [28].
In the case of an overcomplete dictionary, the system of

equations x = 8α is underdetermined and presents infinite
solutions. The solution to this optimization problem is NP-
hard because it is difficult to find the most sparse represen-
tation [27]. The solution can be obtained by approximation
methods that refine the current estimate of the vector of
sparse coefficients iteratively, modifying those that would
bring about significant improvements in signal approxima-
tion [28]. There are several methods to solve the problem of
Eq. (3). We have chosen the Orthogonal Matching Pursuit
(OMP) algorithm [29] for this work. This choice is due to
its robustness and performance in the separation of signal
components [27].

B. HARMONIC BASES DICTIONARIES
The construction of a dictionary suitable to the characteris-
tics of the signals is significant to SSD performance [27].
The dictionary must be composed of analytical functions or
parameterized waveforms containing the same characteristics
of the signals. This dictionary supports the SSD in return-
ing an appropriate sparse representation [23]. The stationary
signals can have adequate sparse representations using fre-
quency dictionaries, which can be represented by the Fourier
dictionary.

The Fourier dictionary consists of atoms constructed
from sine and cosine functions, according to the following
equations:

φc,k = cos(ωk t) φs,k = sin(ωk t). (4)

The frequencies of each atom are calculated byωk = 2πk/N ,
where k = 0, . . . ,N/2 for the cosine function and k =
1, . . . ,N/2 − 1 for the sine function. The default Fourier
dictionary is complete (M = N ) and its frequency res-
olution 1fDFT is given by the ratio of the sampling fre-
quency fs and the number of signal samples (N ). The default
Fourier dictionary has 1fDFT = 5 Hz when it is respected
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the signal sampling criterion defined in IEC 61000-4-7 [6].
This frequency resolution can be refined by assembling an
overcomplete Fourier dictionary. This is achieved by letting
ωk = 2πk/(lN ), where k = 0, . . . , (lN )/2 for the cosine
function and k = 1, . . . , (lN )/2 − 1 for the sine function,
and l is an integer greater than 1. This method is called l-fold
overcomplete system and its frequency grid has resolution
1fDFT = fs/(lN ) [26]. Each atom of the Fourier dictionary
consists of complete cycles of cosines and sines. This feature
allows the decomposition of stationary signals in components
with integer multiple frequencies of 1fDFT .
The SSD of stationary signals can also be performed by

dictionaries built by DTTs [26] which is the name given to the
set of 16 transformations composed by eight DCTs (DCT-I to
DCT-VIII), and eight DSTs (DST-I to DST-VIII) [30]. This
variety of DCTs and DSTs results from different combina-
tions of symmetry and edge conditions of their atoms [31].
Each atom can be symmetric or asymmetric at the initial and
final limit points. The point of symmetry can be precisely on
a sample (odd symmetry/anti-symmetry) or at the midpoint
between two samples (even symmetry/anti-symmetry) [32].
Figure 1 illustrates the four possible cases.

FIGURE 1. Examples of the symmetry types: (a) odd symmetry; (b) odd
anti-symmetry; (c) even symmetry; and (d) even anti-symmetry [32]. The
vertical line is the reference of the symmetry.

DCTs and DSTs from I to IV are known as even DTTs
and are characterized by the symmetry point at both bound-
aries being similar (one sample or the center between two
samples). The DCTs and DSTs from V to VII are called odd
DTTs. These transforms have atoms with different points of
symmetry at the boundaries [32]. The number of samples
must match to DTT type [31]. The monitoring devices in
power systems acquire the signals with 128, 256 or 512 sam-
ples per cycle [33]. Therefore, the odd DTTs are not suitable
to decompose these signals. DCTs and DSTs from I to IV
can decompose signals with an even number of samples in a
period. Eqs. (5) and (6) build the atoms of these DTTs [31].

[DCTβ ]i×j =

√
2
N
ς cos

(
(i+1i)

(
j+1j

)
π

N

)
, (5)

[DSTβ ]i×j =

√
2
N
ς sin

(
(i+1i)

(
j+1j

)
π

N

)
, (6)

where β is the type of DTT (I to IV), ς = 1 except in the
conditions shown in Table 1, i is the time variable, j is the

frequency variable, and 1 indicates the time or frequency
shift. These variables define the symmetry type of DTT, and
the values adopted in each case are detailed in Table 1.

TABLE 1. Even DTT features [31].

The frequency resolution 1fDTT for all even DTTs is given
by fs/(2N ), which is twice the resolution obtained by DFT
for signals with N samples. The frequency grid for each even
DTT depends on the type of selected DTT because of the
symmetry. Therefore, DCTs and DSTs can also be classified
regarding the symmetry type of the atom in the frequency
domain. Eq. (7) calculates the frequency grid for DCTs and
DSTs of type I or II, while Eq. (8) calculates for type III or IV
transforms [30].

fgrid = k1fDTT k = 1, 2, 3, 4, . . . (7)

fgrid =
(
k +

1
2

)
1fDTT k = 1, 2, 3, 4, . . . (8)

Eq. (7) shows that the grid frequencies are multiples of
1fDTT and match with the harmonics frequencies of the sig-
nals in the electrical systems. However, the atom frequencies
in DTT dictionaries Type III or IV are shifted by 1fDTT /2.
Consequently, the frequencies contained in this frequency
grid do not match with the harmonic frequencies, which
makes these DTTs unsuitable for decomposing harmonic
components in electrical systems signals.

Although DCT-I and DST-I have the suitable frequency
grid for signal of sizeN , the DST-I has odd asymmetry in both
ends, which is implied in samples with the null value in the
symmetry points [32], as can be observed in Figure 1b. Hence,
the DST-I is suitable only for decomposing signals whose
initial and final sample has a null value but is not suitable
for harmonic analysis of phase-shifted signals. Accordingly,
DCT-II and DST-II meet the appropriate conditions for ana-
lyzing signals with harmonic and interharmonic distortions:
(I) processing an even number of samples; (II) the frequency
grid of the atoms is composed by integer multiples of 1fDTT ,
which is the half of1fDFT for the same acquisition conditions;
(III) meeting the requirements of even symmetry at both ends,
which allows us to analyze phase-shifted signals.

C. DICTIONARY DESIGN
The dictionaries for this work have been built according to
Eq. (9). We used DCT/DST pairs of the same type to ensure
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suitable conditions of symmetry and frequency grid.

8β =
[
DCTβ |DSTβ

]
. (9)

The frequency resolution of the dictionary can be increased
by using a l-fold overcomplete system [26]. Therefore, there
are lN values in the frequency grid and Eqs. (5) and (6)
are evaluated dividing the argument of the trigonometric
functions by l. Thus, it is possible to reduce the interval in
the frequency grid and to increase the range of frequencies
available in the output spectrum. Thus, a more significant
number of frequency components can be accurately esti-
mated. Eq. (10) calculates the frequency resolution in this
l-fold overcomplete dictionary,

1fDTT =
fs
2lN

. (10)

The value of 1fDTT reduces for integer values of l > 1. l can
be adjusted according to the accuracy required in the harmon-
ics and interharmonics estimation. Consequently, the number
of atoms in the dictionary increases l times. The size of this
overcomplete dictionary is N×2 lN .

D. HIESSD ALGORITHM
The HIESSD algorithm can estimate harmonics and inter-
harmonics components in the power system signals using
different levels of resolution in the frequency grid. The
HIESSD algorithm consists of two stages. In the first stage,
the algorithm builds the overcomplete dictionary with the
number of atoms suitable for the signal’s characteristics. The
second stage is responsible for estimating the harmonics and
interharmonics components present in the signal. For this
purpose, a sequence of steps is performed: (I) the decom-
position of the signal to obtain the coefficients of the sparse
vector; (II) the correction of these coefficients according to
the characteristics of the dictionary used; (III) the calculation
of the frequency components from these coefficients; (IV)
and the application of a hard-threshold to drop the frequency
components resulting from the noise in the signal.

The dictionary assembly needs the definition of these
parameters: the type of DTT basis (β), the number of samples
for the signal (N ) and a scale-up factor to increase the reso-
lution of the frequency grid (l). As shown in Section II-B,
the DCT/DST II pair will be used, since it exhibits proper
characteristics for this application. Therefore, β is set to II in
Eqs. (5), (6) and (9). The amount of signal samples depends
on the sampling frequency and the number of cycles of the
signal to be analyzed. The choice of N and l influences the
frequency resolution, and their values can be defined in order
for 1fDTT (Eq. (10)) to result in the desired resolution.

The second stage of the HIESSD algorithm starts after
the assembly of 8. The OMP algorithm works iteratively,
operating on the following information [29]: (I) the iterations
counter k; (II) the vector of sparse coefficients α̂; (III) the
residue rk = (x − 8α̂); (IV) and set Sk which represents
the solution support α̂ (it contains the indices of the columns
8 which form the signal x). At each iteration, the OMP

algorithm searches in 8 the atom φm that results in the best
approximation of the residue, which is done by calculating the
inner product between the rk and all atoms of the dictionary.
The resulting index is stored in Sk , and the coefficient related
to that atom is calculated by α̂k+1 = minα‖x−8Sk+1 α̂‖. The
coefficient value is put in α̂, and rk+1 is updated. The process
is repeated until the stop criterion ‖rk‖ ≤ ε is reached.
The value of ε is determined by the square root of the ratio
between the variances of the noise and x.

The OMP algorithm performs the decomposition of the
signal x and returns the vector α̂ = [ c | s ]T , which contains
the coefficients resulting from the sparse decomposition. The
vectors c = [c0, c1, . . . , cN−1]T and s = [s1, s2, . . . , sN ]T

are related to the atoms of the matrices DCTII and DSTII ,
respectively. Each frequency component is formed by a parcel
in cj and another in sj. However, these values cannot be used
directly for estimating the frequency components, due to the
time shift in DTT-II. The compensation of these coefficients
should be carried out from the Eqs. (11) and (12). These
equations are obtained by the substitution of Eqs. (5), (6)
and (9) in (1), rearranging the terms on the right side of the
equality and isolating time-dependent terms (i).

0j =

√
2
N

(
cj cos

(
jπ
2N

)
+ sj sin

(
jπ
2N

))
, (11)

9j =

√
2
N

(
sj cos

(
jπ
2N

)
− cj sin

(
jπ
2N

))
. (12)

After correcting the α̂ coefficients, the amplitude Aj and
the phase θj of each spectral component of x is respectively
calculated by Eqs. (13) and (14)

Aj =
√
02
j +9

2
j , (13)

θj = arctan
(
−9j

0j

)
. (14)

The last step in the HIESSD algorithm is the removal of
the influence of white Gaussian noise on the signal. This is
achieved by applying a hard-threshold to the frequency com-
ponents. The limit value τ used as the threshold is determined
by employing the theorem known as near-minimaxity for
upper-risk limits and known scale values [34], [35], accord-
ing to Eq. (15). Therefore, only components with amplitude
greater than τ are maintained, and the other components are
dropped.

τ = 2σ
√
2 log(N )
√
N

, (15)

where σ is the standard deviation of the noise. Although the
OMP algorithm already eliminates themost of the noise in the
signal, the use of this thresholdwas necessary to remove some
frequency components found by the OMP whose amplitude
is close to the noise level. The structure of the HIESSD is
displayed in the flowchart of Figure 2.
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FIGURE 2. Struture of the HIESSD algorithm.

III. RESULTS
This section presents the evaluation of the performance of the
HIESSD algorithm in estimating harmonics and interharmon-
ics components of power systems signals. We compare these
results with those obtained by processing the same signals
using the DFT, MPM and FMP algorithms.

We assembled the overcomplete dictionary8 as described
in Section III-A, and each atom corresponds to sine and
cosine components with frequencies from 0 Hz to 7680 Hz,
in a grid with the frequency resolution of 2.5/l Hz. The
HIESSD algorithm returns frequency, amplitude and phase
information of each harmonic and interharmonic component
present in the signal. We assess the quality of the estimates
using the Mean Absolute Error (MAE) of each frequency
component. The MAE is used for comparing methods under
the following conditions: (I) signals not contaminated with
noise; (II) signals in the presence of Gaussian white addi-
tive noise with signal-to-noise (SNR) ratios of 10, 20 and
40 dB; (III) different frequency grids using the l-fold method;
and (IV) reduced signals sampling window. Initially, all
signals tested have been sampled as recommended by IEC
61000-4-7 [6] with a 200 ms sampling window. The sampling
rate has been set at 256 samples per cycle which results in a
sampling frequency of 15360 Hz and N = 3072. The N and
l parameters were altered for tests with a reduced sampling
window.

The analyzed signals are typically in power system instal-
lations and contain only harmonic distortions or com-
bine harmonics and interharmonics components. The results
and discussions are presented in order of signal com-
plexity: (I) over-excited transformer [36]; (II) single-phase
DC source [37]; (III) three-phase inverter [38]; and
(IV) synchronous machine [39].

A. ANALYSIS OF DICTIONARIES FORMED BY EVEN DTTS
Although the DCT-II/DST-II pair presents characteristics
more suitable for decomposing power energy signals, one of

TABLE 2. Frequency components resulting by decomposing the signal of
Eq. (16) using 8I , 8II , 8III and 8IV with HIESSD algorithm.

the objectives of the present work is to assess how these sig-
nals are decomposed using dictionaries built from other even
DTT pairs. We have used an electrical current signal with
known harmonic distortion to evaluate the performance of the
dictionaries formed by even DTT in the decomposition pro-
cess. The signal used here is usually found in electrical dis-
tribution systems when the voltage level exceeds the nominal
voltage values of a power transformer. This over-excitation
causes an increase in the magnetizing current of the trans-
former and, consequently, harmonic distortion. The magne-
tizing current in a transformer with 30% of over-excitation
is approximately 0.18 pu (per-unit) relative to the third har-
monic and 0.11 pu referring to fifth harmonic [36]. Therefore,
the test signal has been generated by the Eq. (16)

x[n] = sin(ωn)− 0.18 sin(3ωn)+ 0.11 sin(5ωn), (16)

where ω = 2π601t for a power system in 60 Hz, 1t is
the sampling time and n = 0, 1, . . . ,N − 1. Following the
requirements in IEC 61000-4-6 [6], the sampling window is
200 ms (12 full cycles of 60 Hz), and the sampling rate is
256 samples per cycle, resulting in 1t = 1/15360 s. The
sparse decomposition has been performed using the OMP
algorithm. Table 2 presents the results obtained applying the
four possible dictionaries to estimate the harmonic compo-
nents of the signal defined by Eq. (16).

The frequency grids for 8I and 8II coincide with the
exact frequencies in the signal. Consequently, the estimation
of the frequency components is suitable using these dictio-
naries. When we have used 8III and 8IV , their frequency
grids do not match the frequencies contained in the signal.
Hence, the energy of each frequency component is distributed
into the adjacent frequencies, resulting in estimation errors.
Therefore, DCT/DST III and IV are not suitable for decom-
posing harmonic signals.

The process of analog-to-digital conversion typically uses
sampling circuits based on Phase-Locked-Loop (PLL) tech-
nique, ensuring the beginning of the sampled signal always
at the same phase [33]. Thus, all sampled signals have an
exact number of full cycles, but the signal’s phase is not
guaranteed to be zero. Moreover, even if the sampled signal
has phase zero; this does not mean that all the frequency
components of the signal also have zero phase. Therefore,
to evaluate the 8I and 8II regarding symmetry conditions,
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the signal of the Eq. (16) has been modified by adding a
phase of 30 degrees to each frequency component. In this
new experiment, two factors have been evaluated to settle
the quality of the decomposition process for each dictionary:
(I) the residue between the reconstructed signal and the test
signal; and (II) the accuracy of the frequency components.

Figure 3 shows the comparison between the test signal and
the reconstructed signals by the coefficients obtained from8I
and 8II , and the residue of both reconstructions. Although
the reconstructed signals do not have notable differences
(Figure 3a), high values on the edges for the residue were
observed when we used 8I (Figure 3b).

FIGURE 3. Comparison between the over-excited transformer current
signal reconstruction from the coefficients obtained applying SSD method
with 8I and 8II : (a) signal reconstructed; (b) residue.

When comparing the frequency components obtained by
applying the decomposition using 8I and 8II , the results
are even more apparent. The OMP algorithm has correctly
identified all three frequency components of the signal when
using the dictionary8II . However, when using the dictionary
8I , the OMP algorithm has identified about 700 components.
This is due to some frequency components of the signal
being out of phase, and the initial and final samples of the
signal are different from zero, while all atoms of 8I referred
to DST have the initial and final samples equal to zero.
Since, in this case, the signal is composed of sine compo-
nents phase-shifted by 30 degrees, the OMP algorithm cannot
match correctly the atoms of 8I to the signal’s frequency
components and, consequently, more atoms are needed to
reduce the residual error. Figure 4 presents the frequency
spectrum obtained for each dictionary. The high number of
frequency components in signal’s decomposition compro-
mises the sparsity of the coefficient vectorα, and the incorrect
frequency and amplitude estimations of harmonic component
make the spectral analysis for 8I unfeasible.

B. SINGLE-PHASE DC SOURCE
The use of nonlinear loads connected to the power sys-
tem is the leading cause of distortions in current wave-
forms [37]. Power converters are examples of widely used
nonlinear loads, causing the introduction of harmonic and

FIGURE 4. The frequency spectra of the over-excited transformer current
signal resulting from the signal decomposition (a) using the dictionary
82; and (b) using the dictionary 81.

interharmonic components. Eq. (17) calculates the supply
current from a DC source by an uncontrolled single-phase
rectifier. The current signal of a DC source contains odd har-
monics components with amplitudes inversely proportional
to the harmonic order and alternating phases.

Ih =



+
2
√
2

h
IDC h = 1, 5, 9, 13, . . .

−
2
√
2

h
IDC h = 3, 7, 11, 15, . . .

0 h = 0, 2, 4, 6, . . .

(17)

where IDC is the maximum value of the current load. In this
experiment, the signal from Eq. (17) has been used as the test
signal, setting IDC = 1/(2

√
2) to obtain normalized values.

As this signal has only frequency components that are inte-
ger multiples of the power system frequency, this signal can
be easily decomposed into sines and cosines by DFT based
methods when it is noise free. For this reason, we consider
the DFT performance as the benchmark to bematched for this
signal. However, signals sampled from real systems typically
contain noise. Therefore, we added to the signal a white
Gaussian noise with an SNR of 40 dB. The results of the
decomposition of this signal by the HIESSD, DFT, MPM and
FMP algorithms are shown in Table 3.

We observed that the performance of the HIESSD and
DFT is similar for frequency, amplitude, and phase estimates,
while MPM and FMP resulted in higher phase MAE for most
estimated harmonics. Besides, FMP identified 485 compo-
nents by using the same threshold value as in other methods.
Meanwhile, the MPM identifies only the eight frequency
components of the signal without the application of the
hard-threshold. The HIESSD and DFT algorithms identi-
fied, respectively, 48 and 1537 components, requiring the
application of the hard threshold to eliminate the frequency
components that appear due to noise. However, thesemethods

163964 VOLUME 7, 2019



T. de Almeida Prado et al.: Algorithm Based on Sparse Decomposition for Estimating Harmonic and Interharmonic Components

TABLE 3. Estimations of the harmonic components of the supply current from a DC source added with a white Gaussian noise with SNR=40 dB. The
harmonic components have been estimated by the HIESSD, MPM, DFT and FMP algorithms.

TABLE 4. Performance of the HIESSD, MPM, DFT and FMP algorithms for estimating harmonic components in the current of a six-pulse three-phase
rectifier on different conditions of noise. The symbol (*) indicates that the harmonic component was not estimated.

also resulted in only eight frequency components when we
have set τ = 0.0011.

C. THREE PHASE INVERTER
Three-phase AC-DC converters are widely used in industrial
facilities. A six-pulse three-phase rectifier generates harmon-
ics components typically with frequency and amplitude given
by Eq. (18)

h = 6j± 1, j = 1, 2, 3, . . . ,

Ih =
1
h
I1, (18)

where I1 is the fundamental current. In [38], the authors pre-
sented a test signal which corresponds to the typical current
in a six-pulse rectifier with a 10 degrees trigger angle. The
signal’s frequency components and the values estimated by
the HIESSD, DFT, MPM and FMP algorithms (under varied
noise conditions) are presented in Table 4.

The presence of components with minimal amplitude hin-
ders the estimation process so that these components are
not estimated. Considering τ = 0.0013 for a noise with
SNR = 40 dB, 0.011 for SNR = 20 dB and 0.034 for
SNR = 10 dB, we can see that the HIESSD and DFT have
estimated the frequency components limited by the value of τ .
Meanwhile, the MPM have removed frequency components
with the amplitude greater than τ . As we raised the noise
level, some components were not estimated, increasing the

inaccuracy of the results. Altough the FMPmethod identified
the same frequency components as HIESSD and DFT algo-
rithms, errors increased according to the noise level. In addi-
tion, FMP identified an average of 300 frequency components
for SNR = 40 dB, 24 components for SNR = 20 dB and
27 components for SNR = 10 dB.

D. SYNCHRONOUS MACHINE
Synchronous machines are sources of interharmonic currents
due to a non-sinusoidal variation of the mutual inductance of
the rotor-stator assembly and of the unbalance in the rotor
phase windings [39]. We have used the stator current signal
defined in [39] to simulate this condition. The stator current
signal is composed of the fundamental component in 60 Hz,
two subharmonic components at 24 and 48 Hz, and five
interharmonic components at 96, 264, 384, 588 and 708 Hz.
These frequency values are not in the frequency grid of the
DFT and HIESSD algorithms for l = 1.

However, when we set l = 5, the frequency resolution of
the HIESSD increases to 0.5 Hz. Consequently, all frequency
components of the stator current signal can be identified cor-
rectly. Figure 5a shows the real frequency spectrum of the test
signal. The fundamental component (60 Hz) has been omit-
ted for a better view. Figure 5b presents the interharmonics
components estimated by the HIESSD. We do not recog-
nize notable errors when compared to the real spectrum.
Nevertheless, we can observe the picket-fence effect in the
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FIGURE 5. The estimated frequency spectra resulting from the signal
decomposition of the stator current of a synchronous machine without
noise. (a) Reference; (b) from the HIESSD with frequency resolution set to
0.5 Hz; (c) from the DFT; (d) from the MPM; (e) from the FMP.

spectrum estimated by the DFT algorithm which is displayed
in Figure 5c. Energy scattering can be noticed in all inter-
harmonics components. This effect hinders the identification
of the frequency components. Figure 5d presents the spec-
trum estimated by MPM algorithm, which is similar to the
result obtained by the HIESSD algorithm when no noise
is present on the test signal. The FMP algorithm estimated
182 non-existent harmonics and interharmonics, as shown
in Figure 5e.
Tuning the frequency resolution to 0.5 Hz increases the

number of atoms by five times in the overcomplete dictionary,
which increases the decomposition time of the signals. How-
ever, we have obtained suitable results setting the frequency
resolution to 1 or 2 Hz. The resolution of the frequency grid
was adjusted to 1 Hz by setting the sampling window to
166.67 ms and l = 3. We used a 125 ms sample window
(7.5 full cycles) and l = 2 to set the frequency resolution to
2 Hz.

The results for estimating the harmonic and interharmonic
components of the test signal with SNR = 40 dB using the
HIESSD algorithm with frequency resolutions of 0.5, 1 and
2 Hz are shown in Table 5. We note that the results are
similar, all frequency components are identified correctly, and
the MAE in amplitude estimations are in the order of 10−4.
Table 6 also shows the results obtained by theMPM and FMP
algorithms. The two smaller amplitude components are not
identified byMPM,while the other components are estimated

TABLE 5. Frequency components estimation from the HIESSD algorithm
for the stator current of a synchronous machine using different frequency
resolution conditions.

with errors in frequency and amplitude in the order of 10−2

and 10−4, respectively. The FMP algorithm identified the
eight components, but with larger errors than MPM and also
identified an average of 435 non-existent frequency compo-
nents.

Comparing the results in Table 5 and Table 6, we can
observe that the HIESSD algorithm estimates correctly all
frequency components of the signal, while the MPM algo-
rithm does not identify the two smaller components and
the FMP estimated over 400 frequency components and the
expected components presented larger errors than other meth-
ods. The threshold level adjusted at 0.001 pu for 40 dB in the
HIESSD algorithm proved to be efficient because all compo-
nents of the signal have been estimated without interference
from the noise added to the signal. Because the MPM does
not have a defined frequency grid, the frequency values of
the components have small deviations from the exact value.
The HIESSD algorithm is better than the MPM because it
identifies all the frequency components of the signal correctly
even with a high level of noise.

E. EXECUTION TIME
We implemented the HIESSD, DFT, MPM, and FMP
algorithms using MATLAB software on a PC with
AMD Phenom II X2 B55 3.0 GHz Processor. We mea-
sured the average execution time of each algorithm to
estimate the frequency components for the signals of
Sections III-B, III-C, and III-D, and the results are presented
in Table 7.

The MPM algorithm presented the highest times of
execution, followed by HIESSD, FMP, and DFT. HIESSD
estimated accurately the real values of harmonics and inter-
harmonics, estimating harmonics with results similar to the
DFT and estimating interharmonics with results better than
the DFT and FMP, which justifies its elevated execution time.
In addition, the HIESSD algorithm presented better results
than MPM, with a smaller execution time.

F. COMPARATIVE ANALYSIS
It was possible to observe the main advantages and disad-
vantages of each method. HIESSD and DFT work with a
frequency grid, minimizing errors in frequency estimation
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TABLE 6. Frequency components estimation from the MPM and FMP algorithms for the stator current of a synchronous machine. The symbol (*) indicates
that the frequency component was not estimated.

TABLE 7. Average execution times for estimating frequency components.

when compared to MPM and FMP. The spectrum resolution
can be improved in HIESSD by changing the fold. This is
not possible in DFT since its grid is fixed, which implies in
its high susceptibility to spectral leakage. On the other hand,
MPM and FMP do not work with frequency grids, which
can result in significant errors in estimating frequency values.
MPM could not identify components with a small ampli-
tude, and FMP identified nonexistent components, depending
on the value set for tolerance. However, the advantages of
HIESSD are reflected in its high runtime over DFT and FMP.

IV. CONCLUSION
We have presented in this paper the HIESSD method, which
is an algorithm for the estimation of harmonics and inter-
harmonics components of power system signals based on
the sparse decomposition from an overcomplete dictionary.
The choice of this overcomplete dictionary was based on the
evaluation of all possible DTTs. From the tests carried out
with the even DTTs, the pair DCT/DST-II has presented more
satisfactory results due to the suitable frequency grid and
the robustness concerning the edge conditions of the signals.
As in the DFT method, the HIESSD algorithm uses a fixed
frequency grid to calculate the frequency spectrum of a sig-
nal. The frequency values of this grid are adjusted by applying
the l-fold technique, which makes it possible to increase the
frequency resolution of the grid without changing the signal
acquisition conditions. This procedure allows the estimation
of interharmonic components with increased accuracy.

We have compared the performance of the HIESSD algo-
rithm with three different techniques: DFT, MPM, and
FMP. TheHIESSD algorithm has presented better results than
the DFT in the estimation of interharmonics, due to the fre-
quency resolution setting, and similar results for harmonics

estimation. The HIESSD has been shown more robustness to
noise than the MPM and FMP and had better results when we
reduced the sampling window size.Wewill proceed this work
in the future by including impulsive atoms to the overcom-
plete dictionary and the frequency deviation analysis. Hence,
we look forward to characterizing power quality disturbances
such as transients, notches, sags, and swells.
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