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ABSTRACT The application of the Internet of Things (IoT) in a smart city improves its efficiency
in terms of communication and installation costs by scaling geographical distance through intelligent
devices and digital information. Different applications in a smart city, including health care, road safety,
industry and home automation, rely on the IoT. Considering the significance of the IoT in smart city road
applications, this manuscript introduces a classifier matrix recognition system (CMRS) for improving real-
time traffic optimization. This classifier matrix system performs an independent and matching analysis of
the real-time traffic images and constructs a decision factor for deriving its conclusion. The conclusion is
served as responding notifications through the connected IoT systems for the users employing roadside-
communication–assisted applications. CMRS exploits the advantages of block classification and matrix
operations for improving the correlation accuracy and similarity index. The experimental results indicate
that the proposed CMRS improves correlation accuracy with a high similarity index and less processing
time and dissimilarity rate.

INDEX TERMS Block classification, image recognition, IoT, ITS, smart city, traffic management.

I. INTRODUCTION
The rapid development of the IoT is resulting in its services
being used in different real-world applications. This com-
munication platform is capable of connecting various ele-
ments, including humans, computers, machines, tiny sensors
and other objects [1], [2]. More specifically, the connected
devices are heterogeneous in nature, which facilitates perva-
sive access to resources, applications and services [3], [4].
The intelligence of the communicating devices in this
paradigm provides anywhere and anytime access to resources
the end user requests [5]. Because the interconnection of
this platform incorporates heterogeneous devices, it supports
various communication technologies ranging from device-to-
device (D2D) to distributed cloud computing [6]. The inde-
pendent operations of the devices are assisted via a wireless
communication medium in which the protocol and technol-
ogy are adopted appropriately. Distributed and concurrent
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access, mobility support, scalability and flexibility, interop-
erability and real-time responses are some of the benefits
the IoT provides for end users. Real-time applications of the
IoT include health care, industrial automation, smart homes,
roadside-driving– assisted communication, traffic manage-
ment and smart cities [7].

A smart city environment exploits the complete devel-
opment of the IoT and other reliable technologies such as
Intelligent Transportation Systems (ITS) to improve end-user
assistance and communication comfort [8], [9]. Real-time
automated traffic management is a recognizable smart city
application that improves road-safety and driving cautious-
ness for end users [10], [11]. Automated traffic manage-
ment and congestion avoidance on roads are feasible through
sensing and activating devices that are connected through
the internet [12], [13]. The sensing device can monitor and
capture instances on the roadside and transmit them through
IoT-enabled devices to the processing center [14], [15]. With
the help of advanced processing and analyzing systems,
the input is processed, and the response is activated to the
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users. The user’s equipment that is connected to the commu-
nication environment receives the activated output as notifi-
cation or assistance (as in Googlemaps) [16], [17]. The inputs
of these sensors are usually signals; the advanced features
of monitoring devices help share images with the process-
ing center. Images are extracted from a dynamic motion-
concentric environment, from which the device grabs notable
changes/events as input by the device [18], [19]. The radio-
unit that is connected with the device acts as a port for trans-
mitting the sensed input to a processing center that is located
far away. Such applications of the IoT assist in constructing a
reliable and well-connected service infrastructure in a smart
city environment [20], [21].

Computer vision [22] is an emerging technology in which
the machines are programmed to react intelligently by ana-
lyzing digital images. The machines activate to the inputs
by gaining useful information from the images or videos.
This kind of technology is popular in robots, object detection
and driverless cars. This technology is integrated with the
IoT in smart city environments for analyzing digital image
inputs [23]. In particular, in the case of traffic management,
the image inputs from the sensing/monitoring units are ana-
lyzed through sophisticated techniques. Processing centers
employ computer vision for processing and activating the dig-
ital images. Computer vision analyzes the input image/video
by extracting its features, classifying elements and processing
binary and digital features [24]. The processing features of
this field inherit the advantages of IoT and other computing
devices for augmenting the reliability of robust smart city
solutions. Computer vision is employed in digital image pro-
cessing, surveillance system actuation, road-traffic monitor-
ing, medical image diagnosis and robotic systems [25]. The
contributions of the paper are as follows.

• Wedesign a classifier matrix recognition system for ana-
lyzing the roadside traffic images fetched from surveil-
lance systems.

• We design a level-based image analysis method
for reducing errors in processing and performing a
correlation-based recognition for accurate road-traffic
information retrieval.

• We perform a comparative study of the proposedmethod
with the existing image processing techniques using
different metrics.

The organization of the manuscript is as follows.
In Section 2, the works related to image processing, the IoT
in traffic management and its applications are presented
with a detailed description. The introduced CMRS is dis-
cussed in Section 3, with its different levels and functions.
Section 4 describes the comparative study along with the
different metrics and previous methods considered. Section 5
concludes with the findings and a summary.

II. RELATED WORKS
Lee and Kim [26] employed a convolution neural
network (CNN) for detecting roadside traffic signs.

The two-dimensional texture and shape of the detected image
are processed using CNN to identify its edges. The boundary
of the image is detected by projecting the stored image plane
into the input image plane. This traffic detection method
achieves high accuracy irrespective of the mobile platform.
A cooperative edge computing framework was designed by
Long et al. [27] for video analysis in IoT-assisted multimedia
systems. This framework employs both greedy and heuristic
solutions for addressing suboptimal image matching and
quantization problems. The winner determination problem in
this framework mitigates the subgroup image matching prob-
lems due to resource starvation. These jointly help improve
the accuracy of human detection.

Li et al. [28] discussed the analysis of multispectral and
panchromatic images with the help of a fusion process in
a multi-sensor IoT environment. This fusion method helps
mitigate the distortions in the image due to different spectrum
ranges acting in the same image. Superpixel segmentation
and spectral weight distribution methods are adopted to con-
trol the errors in analyzing degraded images. Unlike the work
in [28], Rui et al. [29] introduced the concept of deep learning
for analyzing multispectral image analysis. In an IoT envi-
ronment, the analyzing device is trained with the processed
image using deep learning. The multispectral fusion method
relies on the output of deep learning for reducing detection
reliability, power-concentric analysis and degradation of the
images.

Arinaldi et al. [30] exploited the computer vision technique
for identifying and classifying vehicles from the observed
traffic videos. The computer vision technique relies on a
recurrent convolution neural network for estimating the prop-
erties of the road and vehicle density. The accuracy of
detection is improved through quantitative and qualitative
analysis for the vehicle count, its type and classification.
Wang et al. [31] introduced adaptive boosting support vec-
tor machines (AB-SVM) for identifying events by analyz-
ing large-scale traffic data. AB-SVM is a hybrid automatic
incident classification method in which the spatiotemporal
form of the input signals is analyzed for detection. Commu-
nication filters, association-based comparison and SVM for
training data are successfully employed for reducing noise,
classifying events and real-time data coverage in this method.
However, this method fails to achieve better accuracy in
correlating large datasets.

Zhang [32] projected a geometric discriminative feature
fusion (GDFF) method for analyzing traffic images. This
method uses the input data to train the CNN to extract
image-related features. RGB histograms and discriminative
features of the images are classified using the extracted fea-
tures. The images are segmented and are represented using a
region connected graph to identify the connection between
the features and the training sets. This method is adaptive
to different topologies with less feature variances. The less
feature variances create an impact over the processing time
of the image because the connectivity of the graph is less.
Lu et al. [33] presents visual attention model-based traffic
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signal identification and categorizing. The attention model
categorizes the signal by differentiating the image into multi-
ple candidate regions to identify small targets. This detection
model is useful in improving the accuracy of the traffic signal
image with fewer distortions.

Bai et al. [34] introduced a novel vehicle identification and
categorization method using deformable part-based models.
In this model, the tagged vehicle images are used to form
the training dataset. The traffic input is then correlated with
the trained dataset to identify the event in a precise manner.
Conventional image processing techniques such as crop and
scaling are applied for the correlating image to match the pro-
cessed data, and the vehicle is categorized using SVM. This
method is better at improving the accuracy and sensitivity of
the analysis. Hu et al. [35] introduced a histogram of multi-
scale block local binary pattern (HMBLBP) for exploiting
the texture features for distinguishing traffic density. In this
model, the image is split into different cells from which the
region of interest (ROI) is identified for estimating the pixels
in a temporal manner. Similar to the work introduced in [31]
and [32], this model also employs SVM for distinguishing the
traffic patterns. This method achieves a better true positive
rate and distinguishing accuracy. The true positive is stabi-
lized for limited and stored images, which reduces the rate of
similarity index.

Multi-class SVM is introduced by Ruiqi et al. [36] for
recognizing traffic patterns from the sensed roadside images.
SVM classifies the road congestion by considering the den-
sity of the vehicles. The quadratic discriminant analysis is
performed over the classified data for pattern matching and
identifying the appropriate event. This method aids reliable
road planning and traffic management quality in smart cities.
Ahn et al. [37] introduced an image distribution method
over IoT devices that addresses high-resolution image stitch-
ing issues. The load of the images is distributed to the
cloud, from which the homographic information is fetched
for exchange. A feature point dependent extraction method
augments distribution by reducing the processing time in
image stitching. Furthermore, this method achieves less com-
plexity and supports better image generation. Jiang et al. [38]
presented fuzzy-logic–based quality of service optimization
for handling visual information in IoT environments. This
optimization follows fuzzy correlation for analyzing visual
information. The fuzzy process resolves the information, and
then defuzzification integrates the features of the fuzzy pro-
cess into a single solution to provide better quality of service.

This survey discusses information distribution, process-
ing and analysis for detecting events concerning roadside
communication. Processing a visual image and correlating it
with the stored information help in detecting and classifying
events [31], [34], [35]. The analysis methods follow learning
concepts [26], [31], [32] for distinguishing the images in a
reliable manner. Unlike these methods, this article exploits
the conventional image preprocessing technique for image
analysis and event recognition to observe the changes from
smaller to complex levels of analysis. Block-based analysis

followed by correlating feature extraction and recurrent anal-
ysis are the novel schemes for event recognition in this pro-
posed method. The simplest form of image validation that
improves accuracy and reduces error is surveyed in [35].

III. CLASSIFIER MATRIX RECOGNITION SYSTEM
CMRS is designed to analyze real-time roadside images and
to report the traffic conditions as notifications. The analysis of
the current roadside live images is performed as a part ofmon-
itoring and streamlining traffic in smart city environments.
The notification services in the end-user application assist
better navigation, object detection and traffic forecasting.
Therefore, the advantages of live image analysis are manifold
for commercial, individual and other telecommunication ser-
vices. The prominent part of this analysis is the non-similarity
of the images with respect to time-domain and age-domain.

In a time-domain, a single live image varies with its density
of elements at different time instances (similar to road traffic
observed at different frequencies during a day). In an age-
domain, the elements and structure of the live image vary
with time (prolonged time). CMRS is designed to estimate
and detect the type of live image using a comparative analysis
of the stored image. This analysis represents the correlation of
different images over time. Correlation is performed between
stored and processed input images. The difference in images
is estimated by verifying the structural block of the live image
through matrix resolution and recurrent analysis. Therefore,
the process of CMRS is divided into four levels: block con-
version, matrix resolution, and recurrent analysis and recog-
nition. Figure 1 represents the schematic view of the levels in
processing live images transmitted through IoT devices.

FIGURE 1. Schematic view of CMRS.

A. LEVEL 1: BLOCK CONVERSION
The input from the roadside monitoring device is received
as an image that is validated for further analysis. Block
conversion is performed for improving the accuracy of image
processing and reference matching. At a block conversion
level, the image is spilt into individual blocks that are useful in
processing. The word ‘‘useful’’ refers to the simplest way of
image analysis by extracting features and information from
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FIGURE 2. Initial and final pixel position determination.

the input. The usefulness is determined based on the accu-
racy in processing the image and verifying it at the time of
correlation. Block-by-block processing prevents unnecessary
errors in image handling and pattern estimation. Unnecessary
errors include bit tampering, transmission and broken errors.
The reasons for these errors include the wireless medium,
transmitter-receiver malfunctioning, connectivity issues and
malicious users. A computer vision visualizes images as a
binary input of 0’s and 1’s. Extraction of overlapping images
as blocks is the fundamental measure in block conversion.
The RGB images are converted to gray scale for ease of
analysis and processing.

The image consists of two layers: background and fore-
ground. The block conversion involves the segmentation of
a complete gray-scale image into N-blocks. The even block
sizes are discarded because the input image size and texture
vary with time and age-domain. Let (xp, yp) denote the pixel
positions of an image, the maximum dimension of which
is (xmax , ymax) region. The converted image is divided into
(xmax , ymax)/N blocks for which the initial and final positions
of the (xp, yp) are to be determined. With respect to

(
xp, yp

)
,

the mean pixel range is estimated using Equation (1).

M
(
xp, yp

)
=

1
2

N∑
i=1

|γ
(
xp, yp

)
− γ (xN , yN ) (1)

where, M (x, y) is the mean pixel range, γ (xN , yN ), is the
concentration of pixels’ (1’s and 0’s) in (xp, yp) positions, and

(xN , yN ) represents the pixel concentration in N th position.
The dividing points (xs and ys) are estimated as

xs =

∑
(xN ,yN )

M (xp, yp)

N

ys =

∑
(xN ,yN )

M (xp, yp)

|N − p|

 (2)

Equation 2 frames the required points (xs, ys) for the block
segregation. Now, this pair (xs, ys) ∈ xmax , ymax∀(xp, yp) is
to be determined as the initial/final positions of the block.
Let β represent max

{(
xp, yp

)}
∀p = 1, 2, . . . ,N , then

if M
(
xp, yp

)
≥ β, then (xs, ys) is the initial position, and

if M
(
xp, yp

)
< β, then (xs, ys) is the final position of the

block. Therefore, the block positions are (xs, ys) and
(
xp, yp

)
if the M

(
xp, yp

)
≥ β. On the other hand, the

(
xp, yp

)
and

(xs, ys) pair represents the final position if M
(
xp, yp

)
< β.

The initial and final positions of the pixels are fixed as
determined using Equation (2). This is illustrated in Figure 2.

B. LEVEL 2: MATRIX RESOLUTION
In this level, the extracted blocks are converted as an N × N
matrix of all the pixels from 1 to N . The blocks that are
segregated as per (xs, ys) and

(
xp, yp

)
pairs are denoted as

a covariance matrix of size N × N . The covariance matrix
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element ci,i = 1, 2, . . . ,N is computed as:

ei =
1

N − 1

N∑
j=1

[
(αj − pj)T

]
(3)

where αj is the mean of the block between (xs, ys) and(
xp, yp

)
. The covariance matrix elements must satisfy the

condition of eieTi = 1, i.e., the matrix for ei∀ (xs, ys) to
(xmax , ymax) of all N must achieve a maximum value of 1.
This maximum value of 1 implies that the multiplicative
covariance matrix of the input and stored image is 1. This
covariant is a combination of the normal and transposed
matrices of the images.

Resolving the matrix into a simplex form is preceded by
analyzing the similarity between the extracted blocks. In this
scenario, the mapping of the stored image is mandatory.
The covariant matrix of the stored image is estimated by
identifying its elements (esi) as:

esi =
1

N × N

xmax∑
x=0

ymax∑
y=0

(x, y)2

− N∑
i=1

α si
N

(4)

where α si
N
is the mean of the stored image blocks from i =

1 to N th pixel. The matrix of both the elements is equated
in their simplest form as eieTi = 1. The expanded matrix is
represented as:
e11 e12 . . . e1N
e21
...

e22
...

. . .
e2N
...

ep1 ep2 . . . epN



es11 es21 . . . espN
es12
...

es22
...

. . .
e2N
...

es1N es2N . . . espN

=1
(5)

The transpose of the esi elements is represented in Equa-
tion (5). This matrix achieves a unit value provided

epN (
N∑
i=1

espi) = 1. Considering the two individual elements

espN and esi, the covariance matrix results in unity if these
conditions are satisfied.
Condition 1: The range of pixels p = 1 toN if it is found to

be the same in both the stored and the input image, and then
the dissimilarity (1d) is zero.
Analysis 1: Consider two images (input and stored) that

are framed for covariance estimation as represented in Equa-
tion (5). The simplest verification in the condition is done as
follows for the two elements ePN and esPN as using ∇d as:

∇d=

 1
N × N

p∑
i=1

p∑
j=1

eij − α2i


−

 1
N × N

p∑
i=1

p∑
j=1

eij.esij − (αi.αsi)

 (6)

The estimated ∇d∈ the set where either αj or αsi 6= 0.
This indicates that the mean is appropriately estimated
where no tampered/missing/pixels are found in both

the (xs, ps) and the
(
xp, yp

)
pair. Therefore, the difference

between eij − α2i tends to zero; if αi or αsi = 0, then ∇d = 0
for any N . Contrarily, if either of eij or eij 6= 0, then ∇d 6= 0.
If ∇d< 0, then the mean of the input image is estimated
incorrectly for all eij < esij. This means the image consists of
tampered/overlapping pixels fromwhich the information gain
is less. The information from these pixels are not completely
discarded if it is analyzed using the least features extracted
from the blocks (see the next subsection).
Condition 2: This conditional analysis is different from

Condition 1. The conversion results in a dissimilar number
of blocks, i.e., N and |N − p|.
Analysis 2: The dissimilar number of blocks between the

input and stored image results in non-uniform covariance
matrix resolution. In such a case, the input image is scaled
to satisfy Equation (5) with a scaling function. The scaling-
factor–based matrix is represented as:

ei.Sf = esi = 1
(i.e.)

[
ei.Sf

]
[esi]T = 1

(or)
∇d =

(
ei.Sf

)
−
(
eiSf

)
.esi

 (7)

In Equation (7), the scaling factor elements are represented
in which the transpose of the stored image covariance matrix
is considered for unity. The dissimilarity here is estimated
as an element of the scaling factor matrix for balancing the
erroneous pixels.

The matrix sf is the scaling factor that is a similar rep-
resentative of the ei matrix size. It consists of elements
[sf 11, sf 12, . . . , sfNp,] that reflect the concentration of the pix-
els in the blocks N or |N − p|. This means that the factors
of 0′s and 1′s over each other are represented in this matrix.
An example matrix is represented as below.
e11 e12 . . . e1N
e21
...

e22
...

. . .
e2N
...

ep1 ep2 . . . epN

·

0 0 . . . sf 1N
0
...

sf 2N
...

. . .
0
...

0 0 . . . 0



×


es11 es21 . . . esp1
es12
...

es22
...

. . .
esp2
...

es1N es2N . . . espN

 = 1 (8)

Using Equation (8) as a reference, the dissimilarly is esti-
mated as:

∇d =



[
1

N×N

p∑
i=1

p∑
j=1

(eij − sfij)

]

−

[
1

N×N

p∑
i=1

p∑
j=1

(eij ∗ sfij − esij)

]
, if eij > esij[

1
N×N

p∑
i=1

p∑
j=1

(eij + sfij)

]

−

[
1

N×N

p∑
i=1

p∑
j=1

(eij ∗ sfij − esij)

]
, if eij < esij

(9)
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FIGURE 3. Recurrent analysis.

The dissimilarity is considered for both overlapping pixels
(eij > esij) missing bits eij < esij using Equation (9). The ∇d
value is nevertheless zero; rather, it is very small, so it can be
discarded.

Discarding/accepting ∇d relies on the useful information
extracted from the image features. If the features are useful
through a series of block evaluations, then ∇d from Condi-
tion 2 is discarded else it decreases the similarity of the image.
The process of feature extraction and recurrent analysis is
presented in the next subsection.

C. LEVEL 3: RECURRENT ANALYSIS
In a recurrent analysis process, the converted block is ana-
lyzed for the features extracted to gain possible information.
For this analysis, machine learning that accepts the matrix
resolution is incorporated. Unlike the conventional machine
learning approaches, the recurrent analysis is halted if useful
information is gained. The occurrence of the useful infor-
mation is verified if ∇d = 0 at any step of the recur-
sive analysis process. The recurrence analysis follows two
features, entropy and correlation, that are computed as in
Equation (10):

entropy (ϕ) = −
∑p

i=1
∑p

j=1 ρ(xi, yi)∀(i, j) ∈ (xmax , ymax)
correlation (δ) =

∑p
i=1

∑p
j=1 (i, j) ρ (xi, yi)− αi, αj)

}
(10)

For simple, complex-free image input, entropy is less, and
correlation is high. Therefore, an image block with less
entropy and high correlation compared to the shored image
is said to have ∇d = 0. The number of blocks of the image is
said to vary depending on its size, texture and composition.
The process of recurrent analysis is illustrated in Figure 3.

The block is analyzed for the features extracted from the
converted image. For each feature, ∇d is analyzed in coher-
ence to the condition of min (ϕ) and max(δ) as a comparison
with the stored image. If this condition, i.e., ϕ ≥ ϕs and
δ ≥ δs, is achieved,∇d = 0 else the block consists of dissim-
ilarity as computed using Equation (6) for the same pixels.
If the number of blocks is different, then ∇d is estimated

as in Equation (9). Here, ϕs and δs denote the entropy and
correlation of the stored image. If these conditions are not sat-
isfied, the analysis is carried out for the next block. Therefore,
the recurrent process is valid until the N blocks of the image.
The ∇d 6= 0 blocks are categorized for future reference
as training sets. Similarly, the valid block information is
reflected in the processing image at the time of storage for
further analysis. The ∇d observed in each of the recurrent
analysis step is estimated.

∇d1 = epN − epN .espN
∇d2 =

(
epN −∇d21

)
−
(
epN .epN

)
+ (∇d1.αs1)

...

∇dN =
(
epN −∇d2N−1

)
−
(
epN .epN

)
+ (∇dN−1.αsN−1)


(11)

In Equation (11), ∇d is estimated for the condition where
the input and stored image have the same p = 1 to N . The
∇d for Condition 2 is also estimated in the same manner.
The condition specified in Figure 3 represents the termi-
nation/continuity of the analysis process. Similarly, if the
condition is satisfied in any of the rounds (between 1 and N),
then the process is terminated. The extracted feature is used to
detect the accuracy and similarity improvement of the images.
The recurrent analysis helps improve the accuracy rate by
reducing ∇d errors. Figure 4 presents the true positive rate
corresponding to the analysis probability of the features. One
feature denotes the consideration of ϕ (indicated in red), and
two features represents both ϕ and δ (indicated in green).
The true positive rate of the images are estimated as the

possibility of extracting useful information from analyzing
The true positive rate of the images is estimated as the pos-
sibility of extracting useful information from analyzing the
features ϕ and δ. In this analysis, the rate of analysis of a
single feature results in less information extraction compared
to the analysis of two features. Useful information is obtained
if the features satisfy the given condition. Table 1 presents
iterates and the true positive rate of the examined features.
The missing condition checks and true positive rate (TPR)

denote that ϕ≥ϕs is not satisfied, and hence, the block is
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FIGURE 4. True positive rate analysis.

TABLE 1. Iterates and true positive rate.

discarded. Instead, verification of both the conditions gener-
ates a positive response with less TPR.

D. LEVEL 4: RECOGNITION
In the recognition process, the images are compared to deliver
which event is detected and identified. The recognition is the
mapping of image features through sparse random projection
and coordinate matching. The pixel’s positions (initial and
final) of the processed image (blocks) are mapped with the
extract positions of the stored image. The deviations and
features are estimated for the block in reference to the stored
image. If the block requires sf , then ∇d is estimated for the
block. The rate of variation must be less than ∇d compared
to the stored image. The rate of variance (rv) is estimated as:

rv (ei, esi) = | |N − esi.∇dN | | (12)

In Equation 12, the rate of variance is estimated for each of the
N-blocks. The variable ∇dN represented in Equation (12) is
different from ∇d computed in Equations (6) and (9). There-
fore, the following is adopted in recognizing the processed
image with respect to the condition in Table 2.

TABLE 2. Condition and analysis for recognizing images.

Table 2 is used to identify the type of event as correlated
with the existing stored information. The condition and its
analysis determine the type of event and the labeling (iden-
tification) of the event is termed as tagging. All the analysis
conditions are based on the rate of variance between the dis-
similarity and its difference between two successive blocks.
The conditions are modeled between rate of variance and
difference in dissimilarity for different analysis of pixel and
block. The difference in pixel positions and blocks are the
analysis conditions for the detecting the event.

The tagging is the name of the event labeled for the stored
image. If the detected image is the same as the stored label,
it is augmented to the processed image. This process is the
same for any number of input images and its blocks.

IV. REAL-TIME SETUP
Figure 5 represents the real-time setup of a traffic monitoring
system. The setup consists of three functional layers: moni-
toring, access and processing layers.
Monitoring Layer: This layer is responsible for fetching

real-time inputs for analysis. Monitoring and surveillance
systems (cameras) and speed sensors are fixed at road inter-
sections and along the road path in a smart city environment.
The cameras are connected through the internet for transmit-
ting the images to the processing centers, which are located
far away. The purpose of speed sensors is to detect the speed
of the vehicles passing by the road/lane. The monitoring
camera is programmed to capture live images of the road
segment at periodic intervals. These images are useful in
determining the congestion/traffic information of the roads.
Access Layer: The access layer consists of communication

and distributed storage components. Gateways, access points
and the cloud platform are the major components in this layer.
The role of this layer is to enable communication between
the monitoring and processing layers. It simply exchanges the
information in a to-and-fro manner between the layers. Het-
erogeneous communication and different wireless technolo-
gies are accessed from this layer.
Processing Layer: The processing layer usually consists of

a centralized control center. In the case of trafficmanagement,
the processing center is the central control authority (build-
ing) that monitors the roadside events through live images and
recordings. This control center employs diverse techniques
for analyzing and processing the received input from the
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FIGURE 5. Real-time setup representations.

TABLE 3. Simulation setup.

monitoring layer through the access layer. After processing,
the received video/image input is stored for future reference
with the event tag in the layer’s local storage. The pro-
cessed images are helpful in assisting driving users through
notification or are integrated into the navigation system for
alerts.

V. RESULTS AND DISCUSSION
The performance of the introduced CMRS is verified through
simulations using an openCV tool [39], in which ran-
dom traffic images are used for analysis. The images
of different dimensions and pixels are collected from
open sources and are verified through the level-based
analysis procedure. In Table 3, the simulation setup is
presented.

For a brief analysis, the outcome of CMRS is compared
with the existing AB-SVM, GDFF and HMBLBP for the
metrics’ accuracy, processing time, dissimilarity rate and sim-
ilarity index, respectively. These methods are considered for
comparison to perform processingwith a correlation analysis.
Therefore, in this analysis, the similar methods are compared
because the proposed method follows the same process. The
images used in this method are processed using the methods
specified in [31], [32] and [35] for achieving a unanimous
analysis. The experimental results are verified for the impact
of iterates and blocks classified in CMRS. The metrics’ accu-
racy and processing time are measured with respect to the
iterates, and dissimilarity rate andmean accuracy are assessed
with respect to blocks.

A. IMPACT OF VARYING ITERATES
The varying number of iterates increases the possibility of
arriving at an accurate solution by validating the conditions
until termination.

FIGURE 6. Accuracy versus iterates.

1) ANALYSIS OF ACCURACY
In Figure 6, the accuracy observed in the proposed CMRS is
compared with the existing methods. In the matrix resolution
level, the requirement of sf for validating the covariance
matrix is determined. The dissimilarity factor is estimated
based on αi and αsi for both the input and stored images.
This pre-estimates the accuracy level by distinguishing N
and |N − 1| blocks at each covariance estimation. The
detained/error block is finely analyzed in the recurrent anal-
ysis level. In this level, ∇dN is estimated until ϕ ≥ ϕs and
δ ≥ δs conditions are satisfied. If at most one condition is
satisfied, the block is considered to provide useful informa-
tion, and it is discarded from the ∇d set. As the number of
iterates increases, (epN − ∇d2N ) and (∇dN .αs) metrics are
estimated for both ϕ and δ to analyze the possibility of a
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FIGURE 7. Processing time versus iterates.

useful information block. Therefore, the varying iterate finds
the possible solution for reducing ∇d , thereby improving the
accuracy of the image.

2) ANALYSIS OF PROCESSING TIME
Figure 7 presents a comparative analysis of processing time
with respect to the varying iterates. As iterates increase,
processing time increases. The proposed CMRS employs
recurrent analysis for gaining useful information by reducing
∇d over the input block. Unlike the conventional recurrent
analysis, this method terminates if either of ϕ ≥ ϕs and δ ≥ δs
conditions are satisfied. The next block is estimated only if
both the conditions fail. Therefore, a complete execution of
the recurrent analysis is not required for CMRS. Furthermore,
the matrix resolution level predetermines the blocks based on
covariance matching with the stored image.

Thus, the process of recurrent analysis does not cover the
entire blocks; rather, the blocks that contain ∇d (per Condi-
tion 1 or Condition 2) are alone induced in this process to
refine ∇dN and other eligible blocks. Similarly, the proposed
CMRS pursues block-based analysis rather than operating on
an entire image, thereby reducing the processing time.

B. IMPACT OF VARYING BLOCKS
The varying number of blocks decreases the chances of
the dissimilarity rate, and hence, the mean accuracy rate is
retained. Although it increases the processing time of an
image, it reduces the complexity of analysis by generating
blocks with appropriate pixel points.

1) DISSIMILARITY ANALYSIS
The dissimilarity rate of the proposed CMRS is compara-
tively less (see Figure 8) with respect to the varying blocks.
Increased blocks reduce the complexity of image analysis and
the chances of errors in covariance formation. The covari-
ance matrix is formed for all the segregated N blocks, and
∇d is estimated in both p = 1 to N and |N − p| cases.

FIGURE 8. Dissimilarity rate versus blocks.

The dissimilarity rate identified in the matrix resolution is
reduced using a recurrent analysis process on the basis of
flexible features. To reduce the complexity in processing,
the optimal blocks are directly used for image recognition.
On the other hand,∇dN is estimated for the |N−p| condition
for the ϕ and δ to reduce the dissimilarity. Therefore, ∇d
identified (as in Equations (6) and (9)) is reduced to ∇dN (as
in Equation (11)). This helps reduce dissimilarity by analyz-
ing the blocks through different iterates until the terminating
condition is met.

2) MEAN ACCURACY ANALYSIS
The rate of processing multiple blocks of an image recur-
rently decreases the chances of dissimilarity. The dissimilar-
ity is reduced in the matrix resolution layer that is further
refined by estimating∇dN using recurrent analysis. Although
these features help reduce the dissimilarity rate, the block
conversion process is responsible for reducing computation
errors in image analysis.

It identifies the exact position of the blocks with respect to
the pixels preventing overlapping and tampered bits causing
errors. Therefore, CMRS focuses on reducing the dissimilar-
ity in all the first three levels abruptly. Furthermore, the seg-
regated blocks are less complex in determining ∇d and ∇dN
independently.

The segregation of a bigger image into simple blocks of
less size reduces the computations on it. The dissimilarity and
difference in dissimilarity is assessed in successive blocks on
the basis of pixel positions. The consecutive position of the
pixels is used for estimating the rate of variance for all the
N-blocks. This kind of estimation reduces hefty computation
over the entire block, preventing additional time for block
processing. As the computation time decreases, the rate of
block processing increases, reducing the errors in pixel anal-
ysis.

Therefore, the accuracy of the analyzed blocks is high.
To handle erroneous blocks, Sf is introduced to consent with
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FIGURE 9. Mean accuracy versus blocks.

FIGURE 10. Similarity index versus error rate.

|N − p| blocks at the time of covariance estimation. In erro-
neous block identification, the concentration of 0’s and 1’s
is considered to obtain useful information through ϕ and δ
extraction. However, the ∇dN evaluation facilitates the final
reduction of dissimilarity, thereby improving the accuracy
rate (Figure 9).

3) SIMILARITY INDEX ANALYSIS
In Figure 10, the similarity index is compared between the
existing methods and the proposed CMRS with respect to the
error rate. In general, if the error rate increases, the similarity
index decreases. The error rate is estimated as in Equa-
tion (12) for the addressed blocks at the time of recognition.

The mismatching blocks are considered as errors pro-
vided rv (ei, esi) > ∇d is satisfied. Hence, the error rate is
deprived of the estimated similarity index, causing degra-
dation. In CMRS, the possible cases of ∇d and ∇dN are
classified and refined through the level 2 and level 3 processes
for the input image to reduce dissimilarity. This positive
feature augments the rate of the similarity index at the time of

TABLE 4. Comparative analysis values.

matching (xp, yp) with the stored image pixel positions with
respect to M (xp, yp) to prevent overlapping.

The missing pixel positions are consented by Sf elements,
and thereby, at most, either ϕ or δ is extracted that satisfies
the recurrent analysis condition. Thus, the error rate has less
impact over the similarity index of the image in CMRS. In
Table 4, the comparative analysis values of the existing and
proposed methods are presented.

VI. CONCLUSION
This manuscript discusses a classifier matrix recognition sys-
tem for processing sensed traffic images for improving the
reliability of road and navigation applications. This recog-
nition system splits the image into blocks and then ana-
lyzes its covariance matrix for precise matching with the
stored images. The functions of the system are classified into
four levels to extract useful information from the processed
images. The useful information helps determine the traffic
scenario and assists end users through notification/guided
navigation. The proposed recognition system is consistent
in identifying and matching the similarity between input
and stored images by improving accuracy by 4.7% and the
similarity index by 8.6% and by reducing processing time by
27.693% and the dissimilarity rate by 4.7%.
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