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ABSTRACT Accurate gait recognition is of high significance for numerous industrial and consumer
applications, including video surveillance, virtual reality, on-line games, medical rehabilitation, collaborative
space exploration, and others. This paper proposes a new architecture designed using deep learning neural
network for a highly accurate and robust Kinect-based gait recognition. Two new geometric features: joint
relative cosine dissimilarity and joint relative triangle area are introduced. Both of the proposed features are
view and pose invariant, thus enhancing recognition performance. The proposed neural network model is
trained using the feature vector of dynamic joint relative cosine dissimilarity and joint relative triangle area.
Subsequent application of Adam optimizationmethodminimizes the loss of the objective function iteratively.
The performance of the proposed deep learning neural network architecture is evaluated on two publicly
available 3D skeleton-based gait datasets recorded with the Microsoft Kinect sensor. It is experimentally
proven that the accuracy, precision, recall, and F-score of the proposed neural network architecture, trained
using introduced dynamic geometric features, is superior to other state-of-the-art methods for Kinect
skeleton-based gait recognition.

INDEX TERMS Kinect-based gait recognition, human motion, Microsoft Kinect, joint relative cosine
dissimilarity, joint relative triangle area, deep learning neural network.

I. INTRODUCTION
Gait recognition is one of the tasks commonly used in a mul-
titude of industrial and consumer applications, such as video
surveillance, virtual reality, on-line games, medical rehabili-
tation, collaborative space exploration, and others. Biometric
gait is a type of behavioral biometric, which provides one of
themost popular unobtrusivemeans of remote authentication.
Since biometric gait is acquired from a distance, the identity
of an individual can be recognized remotely [1]. Therefore,
gait recognition system can be used for person authentica-
tion [2], human action recognition [3], gender recognition [4],
surveillance [5], analysis of abnormal gait in physiological
treatment [6], and psychological state assessment [7]. Gait
analysis is highly dependent on the motion of different body
joints. Although physical injuries and tiredness may affect the
walking pattern of an individual, it is still quite difficult to
imitate another person’s gait [8], [9]. For this reason, biomet-
ric gait is well-suited for robust unobtrusive authentication
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system where a subject can be authenticated without direct
interaction with the system.

The deep learning methodology is a popular machine
learning (ML) technique, which opens new doors for
advanced analysis of human motion. Unlike deep learning,
traditional machine learning methodology has been previ-
ously applied for gait recognition [2], [9]–[13]. While those
methods achieved reasonable results on Kinect-based gait
sequences, they suffer from severe limitations. First, although
prior researches extracted classifying features from the skele-
ton model of Kinect, feature extraction methodologies were
limited to selective body joints of the skeleton model of
Kinect. Relative motions and directions considering all com-
binations of body joints were not considered. Therefore, more
distinctive robust feature extractionmethodology is needed to
consider relative motions of all body joints. Second, recogni-
tion methodologies were limited to traditional machine learn-
ing methods. Powerful universal approximation algorithm,
such as neural network, provides new opportunity to improve
recognition performance of Kinect-based gait recognition.
Third, while all combinations of body joints are considered
for feature extraction, co-dependencies of body joints must
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FIGURE 1. Human skeleton identification from the depth image acquired
from the Microsoft Kinect.

FIGURE 2. Representation of human body joints by Microsoft Kinect.

be prevented. Therefore, incorporation of the regularization
method is necessary to achieve robust recognition perfor-
mance.

In this paper, we introduce a deep learning neural network
architecture for Kinect-based gait recognition that solves the
above-mentioned deficiencies. Microsoft Kinect produces
color-based depth video frame with the human skeleton from
the 2D color image shown in Figure 1. The proposed sys-
tem utilizes the 3D coordinates of the body joints of the
3D skeleton as an input, acquired by Microsoft Kinect (see
Figure 2). The coordinates of each of the joints of the human
skeleton are used to extract the distinctive features for training
a neural network architecture. The major contributions of this
paper can be outlined as follows. First, multiple gait cycles

are extracted from a gait sequence. Intuitively, the extrac-
tion of multiple gait cycles acts as the data augmentation
in the neural network architecture. Second, two unique view
and pose invariant geometric features: joint relative triangle
area (JRTA) and joint relative cosine dissimilarity (JRCD)
are introduced. We extract dynamic JRTA and JRCD fea-
tures from each of the frames of the gait cycle to create
highly distinctive gait signatures. Then, JRTA and JRCD
features are fused in such a way that resulting feature vec-
tor is compatible as input to the proposed deep learning
neural network. Third, a new architecture of deep learning
neural network is designed for Kinect-based gait recogni-
tion. Fourth, the proposed deep leanring neural network is
optimized by the Adam optimization [14] method to deter-
mine the optimal weights and biases. Furthermore, the per-
formance of the Adam optimization method is compared
with the Root Mean Square Propagation (RMSProp) [15]
and Stochastic Gradient Descent (SGD) [16] optimization
methods to find out which optimization method is better
suited for the proposed deep learning neural network. Pub-
licly available UPCV gait dataset [17] and Kinect Gait Biom-
etry dataset [2] are used to evaluate the performance of the
proposed deep learning neural network based gait recogni-
tion method. Results of the cross-validation experimentation
demonstrate that the proposed system outperforms all other
recently proposed state-of-the-art Kinect-based gait recogni-
tion methods [10], [11], [12], [13], [9] in terms of recognition
accuracy, precision, recall, and F-score on both datasets. The
preliminary results on the use of deep learning for biometric
gait recognition were reported in [18].

The rest of the paper is organized as follows. Back-
ground research work related to Kinect-based gait recogni-
tion is presented in Section II. Proposed Kinect-based gait
recognition methodology is described in Section III includ-
ing multiple gait cycle detection, unique feature extraction,
and the proposed deep learning neural network architecture.
The details of the two benchmark datasets are described in
Section IV. Experimental results of the proposed methodol-
ogy on two datasets are reported in Section V. Performance of
the proposed neural network is compared with the traditional
machine learning classifier in Section VI. Performances of
the recent Kinect-based gait recognition methods are com-
pared in Section VII. Conclusion and future direction of the
research work are presented in Section VIII.

II. RELATED WORK
The research on person identification using biometric gait
analysis has been extensively conducted for many years.
Gait analysis relies on video sequence recorded by the
motion capture system. Motion-based gait recognition can
be either model-free or model-based [19]. In the model-
free approach, binary segmented version of the silhouette
of the gait sequence is generated to analyze the changes of
the motion of the human body. Han and Bhanu identified
silhouette sequences and extracted gait energy images (GEI)
by averaging the silhouette sequences over the gait cycle [20].
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Li and Chen [21] developed a better version of GEI image by
determining both foot energy image and head energy image
from the silhouette sequences and fusing both energy images.
Active energy image [22], gait flow image [23], and structural
gait energy image [21] are other examples of model-free
based gait recognition. Although the model-free approaches
are not computationally expensive, the recognition accuracy
suffers from the changes of view angle and scale variation
of the subject. Moreover, these approaches do not exploit
3D data as input. As a result, model-free approaches are not
effective in real-life scenarios.

In the model-based approach, the model is constructed
and updated over time by estimating changes of parame-
ters considering different body parts from the video input
of the gait sequence. Model generation is computationally
expensive and therefore, it is not a robust approach for many
practical applications [24]. BenAbdelkader et al. [3] extracted
features by computing the stride length and the speed of
walking. Yam et al. [25] automatically recognized a person
by identifying the changes of motion between walking and
running. This method is view and scale-invariant but requires
extensive computation for model generation. These works
were conducted before the invention of Microsoft Kinect.

Research on model-based gait recognition have emerged
after the release of Microsoft Kinect as a low cost commer-
cial sensor. Initially Kinect was envisioned as a consumer
console focusing specifically on motion capturing tasks in
the indoor environment. Due to its low cost, portability, and
convenience of data access, it rapidly evolved from a human
motion research in a controlled environments to more practi-
cal and versatile applications, such as fall detection in hospi-
tals [26], [27], design of companion robots for elderly [28],
or interpretation of hand signals for emergency response [29].
Currently, there are applications of Kinect sensor in outdoor
environments. For instance, in 2017, autonomous systems
equipped with the Kinect sensor were introduced for the res-
cue operations [30], [31], [32]. A study on the use of multiple
Kinect sensors to increase the outdoor tracking coverage was
carried out by Banerjee et al. [33].
Studies comparing Kinect based technology with tradi-

tional ways to capture motion data have been abundant.
Kinect convenience stems from the fact that it can generate
human skeleton model in 3D space in real-time [34] without
using any marker-based equipment attached to the human
body. The Kinect sensor can provide depth information with
acceptable accuracy without causing any noticeable system-
atic errors [35]. Moreover, Schmitz et al. [36] concluded that
the accuracy and precision of joint angle measurement in
the 3D skeleton model obtained from Kinect is comparable
with the marker-based system. Therefore, 3D data of the
skeleton model of Kinect can be utilized for model-based gait
recognition.

There was a surge in new methodologies developed
in the research community for Kinect-based gait recog-
nition. Preis et al. [11] extracted thirteen anthropometric
features—eleven static and two dynamic features—from the

Kinect skeleton model and used traditional classifier, such
as Naïve Bayes for person identification. Ball et al. [10]
applied unsupervised K-means clustering algorithm on
the motion data extracted from the lower body part.
Kastaniotitis et al. [17] proposed to calculate Euler angle
to represent the direction of the human body limb while
walking. They investigated K-nearest neighbors (KNN) and
support vector machine (SVM) classifiers for the recognition
purpose. Moreover, Ahmed et al. [12] proposed joint relative
angle (JRA) and joint relative distance (JRD) features and
utilized dynamic time warping to measure the dissimilarity
score of the training and testing sets. On the other hand,
Yang et al. [13] combined twenty relative distance features
and twenty anthropometric features from the skeleton model
of the Kinect. Random subspace method was applied to
reduce the size of the feature vector incorporation with KNN
classifier. Furthermore, Sun et al. [9] also trainedKNN classi-
fier using eight static features and four groups of angle feature
considering upper and lower limbs. Recognition method-
ologies of the aforementioned related works are limited to
traditional machine learning techniques. On the other hand,
multi-layer perceptron based model using a single hidden
layer was designed by Andersson and Araujo [2]. But the
multi-layer perceptron model designed by them did not show
better recognition performance than KNN classifier.

In this paper, we investigate whether improved machine
learning model can be designed specifically for Kinect-based
gait recognition and whether new features can be proposed
to train this machine learning model for further performance
improvement. In the subsequent section, the details of the
proposed gait recognition method are described.

III. PROPOSED METHOD
A. OVERALL METHODOLOGY
Our proposed framework presents several key contributions.
We introduce two unique geometric features: joint rela-
tive cosine dissimilarity (JRCD) and joint relative triangle
area (JRTA). The geometric features have the properties of
exhibiting dynamic spatio-temporal characteristics of human
while walking. The spatio-temporal distinctive features are
extracted over the frame of a gait cycle or multiple gait
cycles. JRCD and JRTA features of a gait cycle are merged to
represent the feature vector of the walking pattern of an indi-
vidual. The feature vector is utilized to train a neural network.
We propose a deep learning neural network, specialized for
Kinect-based gait recognition. Since the gait cycle is different
among people, the feature vector of joint relative cosine
dissimilarity and joint relative triangle area are resampled
to a vector of a fixed size. The feature vector of fixed size
becomes the input to train the proposed deep learning neural
network. The deep learning neural network architecture is
designed by cascading fully connected dense layer, batch
normalization layer, activation layer, and dropout layer. The
hyper-parameters of each layer of the neural network are
adjusted to secure the best performance for gait recognition.
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FIGURE 3. Overall system flowchart of the proposed framework, where new user registration process is
shown on the left and subsequent identification on the right.

We design our proposed model in such a way that does
not suffer from overfitting. After the design of the model,
we propose to use Adam optimizer to minimize the loss of the
cost function for the deep learning neural network. Figure 3
shows the flowchart of the overall gait recognition method-
ology. The proposed method has two phases: the registration
phase and the identification phase. In the registration phase,
proposed JRCD and JRTA features are extracted from the
skeleton-based gait sequence of Kinect of the training set. The
feature vectors of the training set are fed into the proposed
deep learning neural network for training. After the training,
the fitted model is stored to be applied for the prediction in
the identification phase. The skeleton-based gait sequences of
Kinect of the testing tests are used in the identification phase.
The prediction of the person’s identification is performed
using the trained deep learning neural network.

B. MULTIPLE GAIT CYCLE EXTRACTION
During walking, the motion of the different joints of the
human body has a resemblance to a cyclic pattern. As a
result, each frame of a gait cycle exhibits recurrent classifying
features. Features extracted from each frame of a gait cycle
comprise a unique gait signature for the corresponding sub-
ject. This unique gait signature is the input of the machine
learning model for training.

At the time of walking, heel strike is the first occurrence,
left and right ankles are in their farthest positions. During
a standing position, left and right ankles are in the nearest
positions. Distance between two ankles become maximum
again at the time of heel off position. This cyclic pattern is
repeated over the gait sequence. To determine a gait cycle,
Euclidean norm is calculated between left and right ankles.
A complete gait cycle consists of three successive maxima of
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FIGURE 4. Steps of gait cycle detection algorithm tracking the Euclidean distances between two ankles over the gait sequence.

FIGURE 5. Gait sequences do not exhibit consecutive three local maxima consistently because the number of frames from first maxima to second
maxima does not match with the number of frames from second maxima to third maxima.

the Euclidean distances over the gait sequence. The first max-
ima is the beginning of a gait cycle and the gait cycle is ended
by the third maxima. Euclidean distances between two ankles
of a gait sequence are shown in Figure 4a. To determine
the maxima, moving average filter and subsequent median
filter are applied to suppress the noise in the distance vector,
as shown in Figure 4b. Local maxima and minima are shown
in Figure 4c. We extract more than one gait cycle if a gait
sequence has multiple gait cycles. Otherwise, a single gait
cycle is extracted. In Figure 4c, P1, P2, P3, P4, P5, and P6
represent the local maxima of the distance vector. Therefore,
four gait cycles are detected from this distance vector, such
as P1 to P3, P2 to P4, P3 to P5, and P4 to P6. Features are
extracted separately from each of the gait cycles. Inclusion of
multiple gait cycle and feature extraction from multiple gait
cycles act as a data augmentation for model training.

In practical situation, inconsistent gait cycles can be exhib-
ited by an individual. It is worth mentioning that inconsistent
gait cycles are observed in the dataset for our study. Figures 5a
and 5b are the examples of inconsistent gait sequences found
in the UPCV gait dataset. Three local maxima are deter-
mined to extract a gait cycle. If three local maxima are not
found in a gait sequence, a gait cycle is assumed starting
from the first frame and ending with the last frame of the
corresponding gait sequence. This situation occurs when a

gait sequence does not have a sufficient number of frames to
accommodate a complete gait cycle because of errors in data
collection.

C. GAIT FEATURE EXTRACTION
Distinctive feature extraction is crucial for gait recognition.
In prior researches, various degrees of success were achieved
in locating motion of body joints. Very effective features
based on the relationship of distance and angle of body joints
were introduced by Ahmed et al. [12]. We make one step
further through extracting more robust and discriminating
features to find the distinctive motion of human body joints.
These features are Joint Relative Triangle Area (JRTA) and
Joint Relative Cosine Dissimilarity (JRCD)—extracted from
different body joints. The relative motions of different body
joints while walking are identified using these dynamic fea-
tures. Both of these dynamic features are extracted from
each of the frames of a gait cycle. Since JRTA identifies
the geometry of the motion of joint and JRCD captures
the directional motions of body joints, their combination
enhances the recognition accuracy. Consider Ng is the num-
ber of the gait cycle in a gait sequence, Nf is the number
of frames in a complete gait cycle, NC is the length of
feature vector of the joint relative cosine dissimilarity, and
NT is the length of the feature vector of the joint relative

162712 VOLUME 7, 2019



A. S. M. H. Bari, M. L. Gavrilova: Artificial Neural Network-Based Gait Recognition Using Kinect Sensor

triangle area. We extract Nf ∗ NC numbers of joint relative
cosine dissimilarities and Nf ∗ NT numbers of joint relative
triangle areas. Since the number of the gait cycle in a gait
sequence is Ng, we extract Ng rows of Nf ∗ NC numbers
of joint relative cosine dissimilarities. Similarly, we extract
Ng rows of Nf ∗ NT numbers of joint relative triangle
areas.

1) JOINT RELATIVE TRIANGLE AREA (JRTA)
The area of triangle in 3D space is determined consider-
ing three 3D coordinates. We represent three body joints
as A(x1, y1, z1), B(x2, y2, z2), and C(x3, y3, z3) Cartesian 3D
points. The area of triangle considering three 3D points is
calculated using the Equation (4) where vector

−→
AB and

−→
BC

are defined in Equation (1) and (2) respectively. The area of
parallelogram is required to determine the area of triangle.
The area of parallelogram is the cross-product of

−→
AB and

−→
BC

defined in Equation (3) and half of the area of parallelogram
is the area of triangle. In Equation (3), ‖∗‖ represents the
norm of the vector and (×) denotes the cross-product of
two vectors. In Equation (4),

a
ABC represents the area of

triangle enclosing A, B, and C points where B is the reference
point.

−→
AB = B− A (1)
−→
BC = C − B (2)

Areaparallelogram = ‖
−→
AB×

−→
BC‖ (3)

i
ABC =

‖
−→
AB×

−→
BC‖

2
(4)

The physical interpretation of joint relative triangle area fea-
ture is that it represents the geometry of the motions of human
joints calculated with respect to the most stable body joint
(SPINE body joint) in the human skeleton. The joint relative
triangle area features are calculated from each of the frames
of a gait cycle. The fluctuation of the SPINE body joint
(see Figure 6) is the smallest among all of the other body
joints, according to [37]. Therefore, the SPINE body joint
is chosen as the reference point for determining the joint
relative triangle area feature. If there are Nb body joints in the
skeleton, length of a joint relative triangle area feature vector
(NT ) is ((Nb − 1) ∗ (Nb − 2)). This means that there are NT
triangles formed with respect to the SPINE body joint in the
skeleton model. In Figure 6, P is the reference point (SPINE
body joint),

a
POQ and

a
POR are the examples of joint rel-

ative triangles. Each of the joint relative triangles undergoes
unique transformationwhile the person is walking. Therefore,a
POQ and

a
QOP triangles are treated as two different

triangles in our study. As the SPINE body joint is the most
stable body joint, it serves as an excellent reference point to
compute and compare the geometry of the motion of the joint.
In addition, the area of a triangle is shown to be less suscep-
tible to noise and random distortions than other geometric
features, such as direct distances between pairs of absolute
coordinates [38].

FIGURE 6. Representation of JRCD and JRTA features. P , O, Q, and R are
the body joints. JRTA feature is represented by the shaded triangle and
the cosine dissimilarity between Q and O body joints is represented by a
curved arrow.

2) JOINT RELATIVE COSINE DISSIMILARITY (JRCD)
Joint relative cosine dissimilarity is the cosine distance
between two points in the vector space. Consider A(x1, y1, z1)
andB(x2, y2, z2) are the 3D coordinates of two skeleton joints.
Cosine similarity between

−→
A and

−→
B is defined by the Equa-

tion (5) and (6). In Equation (5), (·) represents the dot product
of two vectors.

−→
A ·
−→
B = ‖

−→
A ‖‖
−→
B ‖ cos θ (5)

cos θ =
−→
A ·
−→
B

‖
−→
A ‖‖
−→
B ‖

(6)

Cosine dissimilarity is defined by the Equation (7).

δcosine(A,B) = 1−
−→
A ·
−→
B

‖
−→
A ‖‖
−→
B ‖

(7)

The physical interpretation of the new joint relative cosine
dissimilarity feature is that joint relative cosine dissimilar-
ity uniquely identifies the recurrent directional motions of
all body joints of a person who is walking. This is highly
valuable in distinguishing one person’s gait against others,
through recurrent yet unique motions of body joints. The
cosine dissimilarities of each of the body joints are calculated
with the rest of the body joints; these body joints can be
connected or not. The recurrent directional motion of each
of the body joints relative to the rest of the body joints is
identified by the cosine dissimilarity feature. The cosine dis-
similarities of each of the body joints are calculated consid-
ering all combination of the rest of body joints. For example,
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FIGURE 7. Proposed deep learning neural network architecture.

in Figure 6, we extract cosine dissimilarity between O and
Q body joints. Similarly, cosine dissimilarities are calculated
using {O,R}, {P,O}, and {P,R} body joints. If there are total
Nb body joints in the skeleton model of Kinect, length of a
joint relative cosine dissimilarity feature feature vector (NC )
is (Nb ∗ (Nb−1))/2. This means that there are NC directional
motions identified using the joint relative cosine dissimilarity
feature vector. Identifying recurrent directional motions of a
person during the process of walking allows to achieve high
discriminability during gait recognition.

D. PROPOSED DEEP LEARNING NEURAL NETWORK
This paper presents a new deep learning neural network for
Kinect-based gait recognition. The proposed deep learning
neural network architecture is shown in Figure 7. The pro-
posed architecture takes the input of normalized features of
joint relative triangle area and joint relative cosine dissimi-
larity. In a pre-processing step, the feature vectors are nor-
malized by the standard normalization method to eliminate
the effect of outliers while training of the neural network
model. The feature vectors are transformed to make the mean
equal to 0 and variance equal to 1 of the normalized feature
vectors [39]. The identification labels of every person are
transformed into one-hot encoded format. Then, normalized
feature vectors and one-hot encoded identification label are
fed into hidden blocks for training the deep learning neural
network.

There are four hidden blocks in the proposed architecture
of deep learning neural network. The hidden units of four
hidden blocks are stacked in such a way that the output of
one layer becomes the input to the next layer. There are
128, 256, 256, and 128 fully connected dense nodes in the
first, second, third, and fourth hidden block respectively. The
weights of each of the dense layers of all hidden blocks are
initialized using He Normal initialization method [40]. He
Normal initializer selects the random value for weights from
the truncated normal distribution which is centered on 0 and
the standard deviation of the truncated normal distribution is
of value

√
2/Nh, where Nh is the number of hidden units in

any particular hidden block. The batch normalization layer,
activation layer, and dropout layer are successively added
after the dense layer. The order of the dense layer, batch
normalization layer, activation layer, and dropout layer is sim-
ilar to all hidden blocks. Mini-batch wise training and mini-
batch gradients’ calculation are performed in the proposed
deep learning neural network. The purpose of the addition
of batch normalization layer is for performance improvement
and stability to each of the mini-batch of each hidden layer.
Batch normalization layer decreases the internal covariate-
shift [41] by reducing the oscillation of gradient descent. The
output of mini-batch of each layer is normalized and become
the input to the next layer using batch normalization method.
Furthermore, the accuracy of the model can be improved
using batch normalization method [41].

In our study, hyperbolic tangent (tanh) activation func-
tion is used to add non-linearity to the deep learning neural
network. The hyperbolic tangent activation function is used
according to Equation (8) instead of logistic activation func-
tion defined in Equation (9). Although the derivatives of both
hyperbolic tangent and logistic activation functions are not
monotonic, hyperbolic tangent activation function is used in
our research for three reasons. First, the length of the feature
vector is large. Second, the derivatives of hyperbolic tangent
activation are bigger than derivatives of logistic activation.
Third, we can minimize objective function faster than the
logistic activation function in the neural network.

tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x
(8)

logistic(x) =
1

1+ e−x
(9)

Furthermore, we investigate the performance of the recti-
fied linear unit (ReLU) activation function. ReLU is one of
the most used activation functions in deep learning archi-
tecture. ReLU activation function is formally defined in
Equation (10).

ReLU (x) = max(0, x) (10)
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TABLE 1. Type and count of parameters of the proposed deep learning
neural network architecture without considering the number of nodes in
the decision layer.

The propoerty of the result and derivative of the ReLU func-
tion is monotonic. Since ReLU function clips the negative
values to 0, it lowers the capability of training the model
properly because of the dead neuron problem. The perfor-
mance of ReLU activation is compared with tanh activation
function to find out which activation function works better
in the proposed deep learning neural network architecture
for gait recognition. Besides, we introduce dropout regular-
izer [42] by setting weights to zero to random hidden units to
subdue the high-variance problem in the deep learning neural
network. Thus, the co-dependency of each of the hidden units
is prevented. The dropout rate of 10%, 20%, 20%, and 20%
are set in the dropout layer of first, second, third, and fourth
hidden block respectively.

The softmax activation function is applied in the deci-
sion layer to classify persons’ identities in a multi-class gait
recognition system. Softmax activation function—defined in
Equation (11)—results probabilistic outputs within the range
of [0, 1].

S(yi) =
eyi∑
j e
yj

(11)

If there are gait sequences of Ny persons in the dataset,
Softmax activation function in the decision layer generates
a vector (S) of probabilities of length Ny. In Equation (11),
yi is ith value of the vector y for the Softmax activation
function and S(yi) is probability of ith value of the vector y.
Thus, the model gives the prediction probabilities of each
of the classes for a sample. The highest probability denotes
the rank-1 prediction from the features extracted from a gait
cycle.

The type and count of parameters of the proposed deep
learning neural network architecture is presented in Table 1.
Based on the number of class label, the number of nodes in
decision layer is set. Since the number of class label is not
same in both datasets considered in this study, the counts of
trainable and non-trainable parameters are reported in Table 1
without considering the number of nodes in the decision
layer.

E. OPTIMIZATION METHOD
The objective function of the proposed deep learning neural
network isminimized iteratively by applying the optimization
method. The optimized weights of the proposed deep learn-
ing neural network are determined using Adam optimization
method [14]. The optimization result of Adam optimizer is
compared with Root Mean Square Propagation (RMSProp)
and Stochastic Gradient Descent (SGD) optimizer. There are

several benefits of using Adam stochastic optimizer over
other optimizers. First, it is computationally efficient and
simple to implement. Second, it is an empirically established
optimization method for optimizing a deep neural network.
Third, the benefits of both AdaGrad [43] and RMSProp [15]
optimizers are exploited in Adam optimization method. Fur-
thermore, performance result mentioned in the section V
substantiate the choice of Adam optimizer for the proposed
deep learning neural network.

Hyper-parameters of each of the optimization methods are
adjusted empirically using the grid-search method. Hyper-
parameters of Adam optimizer, such as learning rate (ηa),
exponential decay rate of first moment (β1), exponential
decay rate of second moment (β2), decay of learning rate
(decaya) over each of the updates while back-propagation,
and numerical constant (εa), are tuned for the high per-
formance in terms of recognition accuracy. We register the
value of 0.001 to η, 0.90 to β1, 0.999 to β2, 0.0 to decay,
and 10−8 to εa. Similarly, hyper-parameters of RMSProp
optimizer—learning rate (ηr ), exponential weighted average
of all the gradient (ρ), numerical constant (εr ), and decay of
learning rate (decayr ) over each of the updates while back-
propagation— are tuned to reduce the loss of cost function at
maximum. We set the value of 0.0001 to ηr , 0.9 to ρ, 0.0 to
decayr , and 10−8 to εr . Furthermore, the learning rate (ηs),
momentum and decay of learning rate (decays) over each of
the updates while back-propagation are initialized to 0.001,
0.90, and 10−6 respectively for the hyper-parameters of SGD
optimizer. In our study, Nesterov momentum is included in
SGDoptimizer because the performance ofNesterovmomen-
tum is found to be better than standardmomentum in the SGD
optimizer. Adam, RMSProp, and SGD optimizer minimize
the categorical cross-entropy loss function while training the
deep learning neural network. Binary cross-entropy loss is
extended to categorical cross-entropy loss using the Equa-
tion (12) because multi-class gait recognition is studied in
this paper. In Equation (12), C denotes the total number of
participants available in a particular dataset, ytrue is one-hot
encoded vector of ground-truth and ypredict is the vector of
probabilities of the prediction for each of the classes by the
Softmax activation function, and L is the loss.

L(ytrue, ypredict ) = −
C∑
c

y(c)truelog(y
(c)
predict ) (12)

Since Softmax activation function is used in the decision
layer, the categorical cross-entropy loss function is a good
match with the probabilistic result of the Softmax activation
function.

To train the deep learning neural network batch-wise,
we set the batch size to 32. The categorical cross-entropy
loss function is applied to minimize the training loss iter-
atively. We add callback function for reducing the learning
rate by a factor if learning does not change within a predeter-
mined number of epochs. Thus, the learning rate is reduced
adaptively.
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IV. DATASETS
In this section, two benchmark datasets: UPCV gait
dataset [17] and Kinect gait biometry dataset [2] are
described. Both datasets are publicly available. The descrip-
tions of the both datasets are as follows.

A. UPCV GAIT DATASET
Kastaniotis et al. [17] released UPCV gait dataset having
the gait sequences of 15 males and 15 females. Participants
were directed to walk normally in a straight direction. The
Kinect sensor was located at a position which was 1.70 m
above the ground level. Videos were recorded at the speed
of 30 fps from the left side of the person’s walking direction.
The recorded video had the gait sequences maintaining a
30-degree angle with the Kinect sensor. There were five
walking sequences for each of the participants. Each gait
sequence consisted of approximately 55–120 frames. In our
paper, UPCV gait dataset is represented as UPCV dataset.

B. KINECT GAIT BIOMETRY DATASET
Andersson and Araujo collected Kinect Gait Biometry
Dataset of skeleton-based gait sequences of 164 individu-
als [2]. The participants were directed to walk in a semi-
circular path. The subjects walked from left to right following
clockwise direction and then right to left to the starting point.
The gait sequence was captured using the X-Box 360 Kinect
sensor attached to a spinning dish. The purpose of utilizing
the spinning dish was to track the participant while walking.
Thus, walking sequences were recorded without distortion
keeping the participant in the center of the field of view of
Kinect sensor. There were variable walking sequences for the
participants. Each walking sequence had a total of approxi-
mately 500–600 frames and 6–12 gait cycles. In our paper,
Kinect gait biometry dataset is represented as GaitBiometry
dataset.

V. EXPERIMENTAL RESULTS
The proposed gait recognitionmethodology is validated using
two Kinect-based skeleton datasets of gait discussed in the
section IV. The gait cycle detection algorithm is applied to
detect multiple gait cycles from the gait sequences of both
datasets. Joint relative triangle area and joint relative cosine
dissimilarity features are extracted from the beginning to the
ending frame of each of the gait cycles. Proposed features
are normalized after merging. The normalized features are
employed to train the proposed Deep Learning Neural Net-
work (DLNN) and the fittedmodel is stored in the registration
phase. In the identification phase, the trained model is used
for the prediction of the person’s identification.

The experiments are conducted based on the K-fold cross-
validation with K equal to 5. In the 5-fold cross-validation
experiment, all data samples are randomly split into equal size
of five sets. The performance of the proposed gait recognition
method is evaluated in terms of recognition accuracy, preci-
sion, recall, and F-score. The recognition accuracy is calcu-
lated for each of the testing sets and the average recognition

accuracy is reported. In our study, the precision, recall, and F-
score metrics are reported by determining the macro-average
for each class. To calculate the macro-average, the precision,
recall, and F-score metrics are calculated for each class and
the corresponding unweighted average is measured.

We arrange multiple experiments to compare our proposed
neural network architecture with other activation functions
and optimization methods. First, ReLU and tanh activation
functions are applied in the proposed deep learning neu-
ral network. Second, the performance of the proposed deep
learning neural network architecture is observed replacing
the dense layer with the Maxout network [44]. Maxout net-
work is chosen for comparison because the maxout activation
is easily applicable for deep learning neural network and
robust model can be designed using maxout network with
dropout regularizer. Third, the objective function is mini-
mized applying the SGD, RMSProp, and Adam optimization
methods.

The performance results of Maxout network, deep learn-
ing neural network with ReLU activation and SGD opti-
mizer, deep learning neural network with ReLU activation
and RMSProp optimizer, deep learning neural network with
ReLU activation and Adam optimizer, deep learning neu-
ral network with tanh activation and SGD optimizer, deep
learning neural network with tanh activation and RMSProp
optimizer and deep learning neural network with tanh acti-
vation and Adam optimizer are calculated in our study. The
average recognition performance of the proposed deep learn-
ing neural network with different activation functions and
optimizationmethods onUPCV dataset is reported in Table 2.
The recognition accuracy, precision, recall, and F-score are
determined to evaluate the performance of the proposed deep
learning neural network.Maxout network shows the accuracy
of 81.96%, the precision of 80.25%, the recall of 81.30%,
and the F-score of 80.78%. This is the lowest recognition
performance among all configurations of the neural network
considered in this study. The hyperbolic tangent activation
provides better non-linearity than ReLU activation on UPCV
dataset. The recognition accuracy, precision, recall, and F-
score of proposed deep learning neural network with ReLU
activation function and SGD optimizer are 88.60%, 85.47%,
85.70%, and 83.56% respectively whereas the recognition
accuracy, precision, recall, and F-score of proposed deep
learning neural network with tanh activation function and
SGDoptimizer are 92.94%, 91.13%, 91.16%, 90.19% respec-
tively. A similar comparison can be performed between the
RMSProp and Adam optimizer. Deep learning neural net-
work optimized by Adam optimizer secures the best result.
Precisely, the highest recognition accuracy of 95.30%, pre-
cision of 94.40%, recall of 94.02%, and F-score of 93.27%
are achieved while proposed features are trained with the
proposed deep learning neural network with tanh activation
and Adam optimization method. It is worth pointing out
that precision, recall, and F-score of deep learning neural
network with tanh activation and RMSProp optimizer are bet-
ter than deep learning neural network with ReLU activation
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TABLE 2. Average recognition performance of proposed deep learning neural network with different activation functions and optimization methods on
UPCV dataset.

TABLE 3. Average recognition performance of proposed deep learning neural network with different activation functions and optimization methods on
GaitBiometry dataset.

and Adam optimizer, but deep learning neural network with
tanh activation optimized by Adam optimizer triumphs over
the methods reported in Table 2. The average recognition
performance of the proposed deep learning neural network
with different activation functions and optimization methods
on GaitBiometry dataset is reported in Table 3. The lowest
recognition accuracy of 95.46%, the precision of 95.46%,
the recall of 95.89%, and the F-score of 95.0% are achieved
by the proposed deep learning neural network with tanh
activation and SGD optimization method. On the other hand,
the highest recognition performance is secured when the
proposed deep learning neural network architecture with tanh
activation is trained with the proposed features and optimized
by Adam optimizer. The minimization of the objective func-
tion optimized by RMSProp is better than SGD optimizer
whereas Adam optimizer performs the best among three opti-
mization methods. The recognition accuracy of the proposed
deep learning neural network is 95.46–98.08%; the preci-
sion is 95.46–98.0%; the recall is 95.89–98.26%; the F-score
is 95.0–97.81%.

The analysis of the average Kinect-based gait recognition
performance of the proposed deep learning neural network
with different activation functions and optimization methods
can be summarized as follows. First, the hyperbolic tangent
activation function is better than rectified linear unit activa-
tion function. Second, the lowest loss of the categorical cross-
entropy objective function is attained by the Adam optimizer.
Third, the recognition accuracy, precision, recall, and F-score
achieved by the proposed deep learning neural network with
tanh activation function and Adam optimizer is the best on
both datasets.

The learning curve demonstrates the performance of the
neural network over the iteration while training. Another
advantage of visualizing the learning curve is to identify

the occurrence of the model overfitting. We generate the
training loss for each of the training sets and validation loss
for each of the validation sets over the epochs. Figure 8a
shows the average training and validation loss on UPCV
dataset. It can be observed from Figure 8a that the training
loss starts from 3.2869 and the loss is gradually minimized to
0.0761. Although the validation loss decreases following the
training loss, there is a difference of 0.21 between the training
loss and the validation loss. It is worth mentioning that the
more loss is decreased, the more the accuracy increases. The
average training and validation accuracy on UPCV dataset is
shown in Figure 8b. Although the training accuracy reaches
to almost 100%, the highest validation accuracy is 95.30%.
Furthermore, we visualize the learning curve of the proposed
neural network architecture on GaitBiometry dataset. The
average training and validation loss for the Kinect gait biome-
try dataset is shown in Figure 9a. The training loss starts from
4.6127 and the minimum training loss of 0.0206 is achieved.
The validation loss almost reaches to the training loss
in Figure 9a. the validation loss begins with 3.8743 and the
minimum validation loss is 0.1001. The difference between
training and validation loss is 0.0795. Since the valida-
tion loss is minimized to 0.1001, the validation accuracy
reaches to 98.08% shown in Figure 9b. The summary of the
analysis of the visualization of the learning curve of both
dataset is as follows. First, although the validation loss does
not decrease as training loss, the validation loss gradually
decreases over iteration and does not increase anywhere. Sec-
ond, it supports that our proposed neural network architecture
is not biased to specific training and testing set. As a result,
the model does not show overfitting to a specific set. Third,
we expect to decrease the validation loss more on UPCV
dataset if the samples are increased similar to GaitBiometry
dataset.
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FIGURE 8. The average learning curve of the proposed deep learning neural network on UPCV dataset.

FIGURE 9. The average learning curve of the proposed deep learning neural network on Kinect GaitBiometry dataset.

The performance of the proposed Kinect-based gait recog-
nition method is further evaluated using Cumulative Match
Characteristic (CMC) curve. The purpose of the CMC
curve is to plot the rank versus cumulative recognition per-
centage. CMC curves of the proposed method on UPCV
and GaitBiometry datasets are shown in Figure 10a and
Figure 10b respectively. On UPCV dataset, the rank-1 recog-
nition accuracy is 95.30%. The recognition accuracy reaches
to 99% with the Rank-7. Rank-10 recognition accuracy is
99.34%. On the other hand, rank-1 recognition accuracy on
GaitBiometry dataset starts just above 98% and reaches over
99%within rank-3. Rank-10 recognition accuracy is 99.64%.
Since the rank-10 recognition accuracy on UPCV dataset is
99.34% and 99.64% on GaitBiometry dataset, our proposed
method is applicable for gait recognition in practical applica-
tion in the future [13].

The running time of predicting a feature vector is calcu-
lated. The system configurations for determining the running
time of the model prediction are Intel Core i7-8700 CPU
of 3.20 GHz, 16 GB of Ram, and GPU of NVIDIA GeForce
GTX 1080. The running time of predicting a feature vector
of test set using the trained deep learning neural network is
about 3.85× 10−4 second.

VI. COMPARISONS WITH TRADITIONAL CLASSIFIERS
We also compare the results of neural network methods
with the traditional machine learning (ML) methods, such
as Naïve Bayes (NB) [45], Decision Tree (DTree) [46],
K-Nearest Neighbors (KNN) [47], and Support Vector
Machine (SVM) [48]. We re-implement NB, DTree, KNN,
and SVM methods. The optimal values of the hyper-
parameters of NB, DTree, KNN, and SVM are calculated
using the exhaustive grid-searchmethod so that we can obtain
the highest recognition accuracy of NB, DTree, KNN, and
SVM. Gaussian Naïve Bayes is used to fit the training sam-
ples. 5-fold cross-validation experiment is applied to search
the optimal value of the hyper-parameter of traditional ML
method. The hyper-parameter of maximum depth of the
DTree classifier is searchedwithin the range from 1 to 50. The
optimal value of maximum depth is 31. To find the optimal
value of the number of neighbors of KNN classifier, we set
the search range of the number of neighbors from 1 to 70.
The value of 1 of the parameter K shows the best perfor-
mance for KNN classifier. In case of SVM classifier, the opti-
mal values of three hyper-parameters—the penalty parameter
(C), the kernel coefficient (γ ), and the type of kernel—are
searched exhaustively using the grid-search method. The list
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FIGURE 10. CMC curve of the proposed method on UPCV and GaitBiometry datasets.

TABLE 4. Average recognition performance of proposed features with the traditional ML methods on UPCV dataset.

TABLE 5. Average recognition performance of proposed features with the traditional ML methods on GaitBiometry dataset.

of possible value for C is [1, 5, 10, 100, 1000]; for γ is
[0.0001, 0.001, 0.01, 0.1, 1.0, 10.0]; for the type of kernel is
[‘‘linear’’, ‘‘rbf’’]. The best recognition accuracy is achieved
using SVM classifier when C is equal to 1, γ is equal to
0.0001, and the type of kernel is equal to ‘‘linear’’.

The result of recognition performance on UPCV dataset
is shown in Table 4. Naïve Bayes performs the worst
with the accuracy of 35.68%, precision of 36.98%, recall
of 35.60%, and F-score of 32.29%. DTree achieves the accu-
racy of 52.57%, precision of 47.58%, recall of 48.11%, and
F-score of 44.51%. KNN achieves the accuracy of 80.39%
whereas the precision, recall, and F-score are below 80%.
SVM shows the best accuracy, precision, recall, and F-score
among the four traditional ML methods considered in this
study by achieving accuracy of 90.98%, precision of 90.19%,
recall of 90.41%, and F-score of 89.40%.

The performance of the traditional ML methods trained
with the proposed features on GaitBiometry dataset is shown
in Table 5. DTree classifier performs the worst with the
accuracy of 40.04%, precision of 43.65%, recall of 41.78%,
and F-score of 39.03%. NB classifier achieves the accu-
racy of 77.69%, precision of 80.54%, recall of 78.81%, and

F-score of 77.35%. KNN achieves the accuracy of 81.14%
which is better than DTree and NB classifiers. SVM shows
the best accuracy, precision, recall, and F-score among the
four traditional ML methods considered in this study by
achieving accuracy of 92.31%, precision of 92.75%, recall
of 92.91%, and F-score of 92%.

The takeaway messages of the experimental results with
the traditional ML methods are as follows. First, the perfor-
mance of the DTree classifier is the worst. Second, although
NB shows recognition result close to 80% on GaitBiome-
try dataset, the recognition accuracy is the worst on UPCV
dataset. As a result, the performance of the NB is not con-
sistent. Third, KNN and SVM classifiers consistently show
the recognition accuracy above 80% and 90% respectively.
Fourth, the proposed features and proposed deep learning
neural network with the hyperbolic tangent activation and
Adam optimizer triumphs over the traditional ML methods.

VII. COMPARISONS WITH RELATED WORKS
The recognition performance of the proposed gait recogni-
tion method is compared with the state-of-the-art methods
to prove the effectiveness of our approach. Ball et al. [10]
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TABLE 6. Performance comparison of gait recognition methods on UPCV dataset.

TABLE 7. Performance comparison of gait recognition methods on GaitBiometry dataset.

FIGURE 11. Comparion of rank-1 recognition accuracy (%) of gait
recognition methods on UPCV dataset.

published Kinect-based gait recognition method analyz-
ing gait sequences of four persons. The research work of
Ahmed et al. [12] was on 20 persons whereas Sun et al. [9]
researched on 52 participants. Since most of the state-of-
the-art methods obtained the recognition results based on
the private datasets, prior researches are re-implemented to
compare the recognition result on publicly available Kinect-
based benchmark gait datasets. All the comparative results
are achieved using a 5-fold cross-validation experiment and
the average result is reported.

Table 6 shows the comparison of rank-1 recognition per-
formance of gait recognition methods on UPCV dataset.
The proposed features and the proposed deep learning neu-
ral network with hyperbolic tangent activation and Adam
optimization method achieve 95.30% recognition accuracy.
The achieved recognition accuracy is 38.30% higher than

Ball et al., 17.30% higher than Preis et al., and 12.63% higher
than Sun et al. Our proposed method obtains 8.63% higher
recognition accuracy than Yang et al. as well. The comparison
of rank-1 recognition accuracy of gait recognition methods
on UPCV dataset is shown in Figure 11. Furthermore, our
proposed method not only achieves higher recognition accu-
racy but also secures higher precision, recall, and F-score on
UPCV dataset.

The comparison of rank-1 recognition performance of
gait recognition methods on GaitBiometry dataset is shown
in Table 7. The recognition accuracy, precision, recall, and
F-score of Ball et al. [10] is the lowest among the gait recog-
nition method considered in this study. The method proposed
by Sun et al. [9] achieves a better result than Ball et al. [10]
and Preis et al. [11]. But when the proposed features of
Ahmed et al. [12] is used to train our proposed deep learning
neural network with tanh activation and SGD optimization
method, it obtains 11.52% better accuracy than Sun et al.
JRTA and JRCD features and the proposed deep learning
neural network with hyperbolic tangent activation and Adam
optimization method achieves the highest recognition accu-
racy of 98.08%. The achieved recognition accuracy is 60.53%
higher than Ball et al., 22.62% higher than Preis et al., 18.32%
higher than Sun et al., and 3.2% higher than Yang et al. The
comparison of rank-1 recognition accuracy of gait recogni-
tion methods on GaitBiometry dataset is shown in Figure 12.
The proposed gait recognition method secures the highest
precision of 98.0%, recall of 98.26%, and F-score of 97.81%
among the state-of-the-art methods considered in this study.

To demonstrate that the new features are more effective,
we extract JRA and JRD features according to [12] and train
proposed deep learning neural network with a hyperbolic
tangent activation function. This neural network is optimized
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FIGURE 12. Comparion of rank-1 recognition accuracy (%) of gait
recognition methods on GaitBiometry dataset.

by SGD, RMSProp, and Adam optimization methods.
In Table 6 and 7, average recognition performance of JRA and
JRD features is compared with the performance of proposed
features onUPCV andGaitBiometry dataset respectively. It is
evident that joint relative cosine dissimilarity and joint rela-
tive triangle area features provide better recognition accuracy,
precision, recall, and F-score than JRA and JRD feature set.
On UPCV dataset, the range of recognition accuracy by JRA
and JRD features is around 87.06–93.33% whereas the range
of recognition accuracy by the proposed features is around
95.30%. On GaitBiometry dataset, the highest recognition
accuracy achieved by JRA and JRD features with our pro-
posed deep learning neural network is 95.62% whereas our
proposed features with our proposed deep learning neural net-
work achieves 2.46% higher recognition accuracy of 98.08%.
Higher precision, recall, and F-score are also achieved using
our proposed features than JRA and JRD features on both
datasets.

VIII. CONCLUSION AND FUTURE WORK
This research presents deep learning neural network archi-
tecture for Kinect-based human gait recognition. To increase
the recognition performance, two unique geometric features:
joint relative triangle area and joint relative cosine dissim-
ilarity, are introduced. Data augmentation is performed by
extractingmultiple gait cycles from a gait sequence. Proposed
features are extracted from each gait cycle. The performance
of the proposed deep learning neural network is enhanced
by the Adam optimization method. The proposed model is
compared to the hyperbolic tangent activation function and
Adam optimization method with the deep learning neural
network with rectified linear unit activation function and
SGD and RMSProp optimization methods. Moreover, tradi-
tional machine learning methods and other recently proposed
gait recognition methods are compared with our proposed
method. Two publicly available benchmark datasets are used
to evaluate the proposed gait recognition method. The highest
accuracy obtained by the proposed deep learning neural net-
work, trained with the proposed geometric features, is around

95.30% on UPCV dataset and 98.08% on GaitBiometry
dataset after 5-fold cross-validation experiment. This perfor-
mance is the highest among traditional state-of-the-art classi-
fiers considered in our paper for both datasets. The proposed
features establish superior result than the prior researches also
for both datasets. Furthermore, the proposed gait recognition
method achieves higher accuracy, precision, recall, and F-
score than previous state-of-the-art methods even in challeng-
ing scenarios having inconsistent gait sequences. Therefore,
we believe that the proposed gait recognition architecture can
be adapted to real-world environments. In the future, an evo-
lutionary algorithm for optimizing the feature set can be stud-
ied in the context of the proposed neural network architecture.
Moreover, recurrent neural network can be designed to avoid
the necessity of resampling of feature vector to a vector of
fixed size.
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