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ABSTRACT In this paper, by allocating the limited subchannel resources based on interference align-
ment (IA) with clustering to mitigate the severe co-tier interference in dense small cell networks (SCNs),
we aim at maximizing the number of data streams achieved by all small cell user equipments (SUEs) while
guaranteeing the data stream requirement for each SUE. As the corresponding optimization problem is
NP-hard, we propose a two-phases algorithm based on graph theory to obtain a suboptimal but efficient
solution, which requires much lower complexity and notably reduced feedback overhead. In the first phase,
all SBS-SUE pairs are grouped into disjoint clusters by the recursive partition of the constructed graph, where
the edge weight is only determined by the path losses from small cell base stations (SBSs) to SUEs, so the
estimation of perfect global channel state information (CSI) is avoided. Furthermore, when guaranteeing that
IA is feasible within each cluster, the number of formed clusters and the size of each cluster are determined
by the distributions of dense SCNs instead of being specified. In the second phase, by further treating each
cluster as a new vertex, graph coloring algorithm is proposed for subchannel allocation, which only requires
to estimate the perfect CSI within each cluster. The analysis of computational complexity demonstrates
that the proposed two-phases algorithm has a much lower complexity compared with the optimal solution
obtained by the exhaustive search. Numerical results show that the proposed solution outperforms other
related schemes and exhibits a performance close to the optimal solution.

INDEX TERMS Clustering, data streams, dense small cell networks (SCNs), graph coloring, graph
partitioning, interference alignment (IA), subchannel allocation.

I. INTRODUCTION
According to the latest report from Cisco, the global smart
devices such as smart phones and tablets grew to 4.5 billion,
while this number will grow to 7 billion in the fifth gener-
ation (5G) wireless communication networks by 2022 [1].
Such explosive growth will create a massive number of
data stream requirements (e.g., online video and game) for
simultaneously accessing the network, which will become
demanding especially in public areas such as airports, shop-
ping malls and offices [2]. Network densification, which can
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provide enhanced coverage and improved spectral efficiency
for macrocell networks by densely deploying small cell base
stations (SBSs) in the existing macrocells, is one of the key
technologies to meet the aforementioned requirements in 5G
networks [3]–[5]. Additionally, the orthogonal deployment
of dense small cell networks (SCNs) in existing macro-
cell networks, i.e., small cells and macrocells are allocated
with orthogonal spectrum resources, is attractive to operators
because they will not necessitate managing the cross-tier
interference, which results in low interaction with macrocell
networks [6].

Nevertheless, the severe co-tier interference between
SBSs and small cell user equipments (SUEs) in orthogonal
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frequency division multiple access (OFDMA) based dense
SCNs will become a dominant factor that degrades the net-
work performance [7], [8]. So how to effectivelymanagement
the co-tier interference to further support the massive number
of data stream requirements for SUEs in dense SCNs is one of
themost challenging issues in 5G networks [4], [6], [9]. Addi-
tionally, due to the limited spectrum resources and explosive
growth in the number of users [10], it is almost impossible to
mitigate the co-tier interference only through the traditional
interferencemanagement techniques such as subchannel allo-
cation, power control or a combination of them in dense
SCNs [9]. Consequently, it will be of great necessity to utilize
much more advanced interference management techniques
for co-tier interference mitigation in dense SCNs.

Recently, Interference alignment (IA) proposed in [11] is
considered as an advanced technique of interference man-
agement. IA enables multiple transmitter-receiver (Tx-Rx)
pairs to simultaneously transmit data over the same frequen-
cies free from interference, which remarkably improves the
spectral efficiency of dense SCNs where the limited spectrum
resources are far from enough to meet the massive number of
data stream requirements for SUEs. IA and its applications
were comprehensively surveyed in [12].

However, exploiting IA in dense SCNs is limited by its fea-
sibility condition given in [13]; besides, it requires to estimate
the perfect global channel state information (CSI), which will
incur heavy feedback overhead [12]. By dividing all users in
the network into disjoint clusters with each only containing a
certain number of users that meets the feasibility condition of
IA, IA with clustering [14], [15] only requires to estimate the
perfect CSI within each cluster, so the feedback overhead is
also notably reduced. Through IA with clustering, the intra-
cluster interference is completely eliminated. However, dense
SCNs will also experience significant performance degrada-
tion because some of the inter-cluster interference will still
be very strong. Accordingly, to meet the massive number
of data stream requirements for SUEs, resource allocation
based on IA with clustering is expected to be exploited for
mitigating both intra-cluster and inter-cluster interference in
dense SCNs.

In this paper, by allocating the limited subchannel
resources based on IA with clustering to mitigate the co-tier
interference in dense SCNs, we aim at maximizing the total
number of data streams achieved by all SUEs while guaran-
teeing each SUE’s data stream requirement. The correspond-
ing optimization problem is formulated as a combinatorial
optimization problem which is NP-hard. Obtaining its opti-
mal solution by exhaustive search requires huge computa-
tional complexity, so it is unable to be implemented by a
central entity called Home eNBGateway (HeNBGW) [16] in
practical system; furthermore, it necessitates estimating the
perfect global CSI that requires heavy feedback overhead.
Therefore, to find a suboptimal but efficient solution, we pro-
pose to solve it through a two-phases centralized algorithm
which requires much lower complexity and notably reduced
feedback overhead.

In the first phase, all SBS-SUE pairs are grouped into dis-
joint clusters through recursively partitioning the constructed
graph, which only needs the information of path losses from
SBSs to SUEs; then, to ensure the feasibility of IA within
each cluster, we further remove some vertices from the clus-
ters with sizes not meeting the feasibility condition of IA.
Note that the number of clusters and the size of each cluster
formed in the first phase are determined by the distributions
of dense SCNs instead of being specified before clustering.
In the second phase, by further treating each cluster as a
new vertex, a proposed graph coloring algorithm is used for
solving the subproblem of subchannel allocation based on
IA with clustering, which requires a lower computational
complexity. Besides, this phase only needs to estimate the
perfect CSI with each cluster, so the feedback overhead is
also notably reduced. In practical systems, HeNB GW will
execute each of the aforementioned phases.

The main contributions of our paper are summarized as
follows:
• We propose to efficiently utilize the limited subchannel
resources based on IA with clustering to maximize the
number of achievable data streams while guaranteeing
each SUE’s data stream requirement in dense SCNs.

• We propose a two-phases centralized algorithm based
on graph theory, which requires much lower computa-
tional complexity and notably reduced feedback over-
head, to obtain an efficient suboptimal solution to the
corresponding NP-hard optimization problem.

• In the first phase, we group all vertices into disjoint clus-
ters by recursively partitioning the constructed graph,
where the proposed edge weight is only determined by
the path losses from SBSs to SUEs; then, we remove
some vertices from the clusters where IA is infeasible to
ensure that IA can be performed within each cluster.

• In the second phase, by further treating each cluster as a
new vertex, we propose a graph coloring algorithm for
subchannel allocation, which only requires to estimate
the perfect CSI within each cluster.

• We analyze the computational complexities of the
optimal solution obtained by exhaustive search, the pro-
posed solution and three other related solutions, and we
also analyze the feedback overhead required by estimat-
ing the perfect global CSI and the proposed solution.

The remainder of this paper is structured as follows.
Section II reviews the related work. Section III presents the
system model and then formulates the corresponding opti-
mization problem. In Section IV, we propose a two-phases
suboptimal but efficient algorithm with low complexity and
reduced feedback overhead. Section V analyzes the computa-
tional complexities of the optimal solution, proposed solution
and three other related solutions. The feedback overhead
required by estimating the perfect global CSI and the pro-
posed solution are analyzed in Section VI. Simulation results
are exhibited in Section VII. Finally, conclusions are drawn
in Section VIII. A summary of key notations is given in
Table 1.
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TABLE 1. Summary of key notations.

II. RELATED WORK
In this section, we respectively review IA with clustering and
resource allocation based on IA in existing works, and then
introduce the recent research of resource allocation based on
IA with clustering.

A. IA WITH CLUSTERING AND RESOURCE ALLOCATION
BASED ON IA
IA with clustering was firstly exploited in large cellular net-
works [14] and then in wireless ad hoc networks [15]. In [17],
all Tx-Rx pairs were divided into disjoint clusters according
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to the proposed criterion only determined by path losses.
Then, IA was performed within each cluster to completely
eliminate the strong intra-cluster interference, treating the
relatively weak inter-cluster interference as noise. In [18],
according to the distances between different Tx-Rx pairs,
the whole network was divided into only one IA subnetwork
(i.e., a cluster) and several spatial multiplexing subnetworks
with each consisting of only one user and far away from the
IA subnetwork. In [19], through poisson cluster process in a
generic two-tier heterogeneous wireless network, all Tx-Rx
pairs were grouped into disjoint clusters with the same size
according to the distance between transmitters and receivers,
and IA was performed within each cluster to maximize the
second-tier throughput by using the tradeoff between signal-
to-interference ratio and multiplexing gain. In dense SCNs,
however, some of the inter-cluster interference is still strong
and cannot be treated as noise. Consequently, without further
resource allocation, it is unable tomeet themassive number of
data stream requirements for all SUEs only through IA with
clustering.

The following works investigate resource allocation based
on IA. In [20], an efficient approach was proposed to judge
the feasibility condition of IA in full-duplex-enabled SCNs by
relaxing the corresponding optimization problem into a linear
programming one, and then an adaptive power allocation
scheme based IA was proposed for interference elimination.
In [21], by aligning the interference generated in different
time slots to the same subspace, a scheme of time slot allo-
cation based on partial IA was proposed to simultaneously
mitigate both the inter-cell and intra-cell interference in a
two-cell relay heterogeneous networks. However, in dense
SCNs, without clustering, it is infeasible to mitigate all the
interference to further meet the massive number of data
stream requirements for all SUEs only by exploiting resource
allocation based on IA.

B. RESOURCE ALLOCATION BASED ON IA WITH
CLUSTERING
There are also several works that investigate resource allo-
cation based on IA with clustering for interference miti-
gation. In [22], subchannel and power allocation based on
IA with clustering were performed to maximum the sum
rate of all secondary users (SUs) after performing IA while
guaranteeing the quality of service (QoS) requirement for
each secondary, and the total interference caused by SUs
performing IA at each PU was ensured to be below the
given threshold. In [23], to maximize the number of users
with satisfactory QoS requirements in femtocell networks,
a subchannel allocation scheme based on IA with clustering
was proposed, and a suboptimal solution to the corresponding
optimization problem was obtained through the transformed
conflict graph. In [24], aiming at maximizing the sum rate
of all femtocell users, a scheme of orthogonal subchannel
allocation based on IA with clustering was proposed for fully
connected ultra-dense femtocell networks, then an efficient
algorithm with low complexity consisting of two phases was

proposed for clustering and subchannel allocation. In [25],
an IA and soft-space-reuse (IA-SSR) based cooperative trans-
mission scheme was proposed for multi-cell massive MIMO
networks, and the optimal power allocation and low overhead
channel training framework based on IA-SSRwere developed
to maximize the sum capacity of the network. However, how
to form disjoint clusters with specific clustering criterion is
not investigated.

It is noteworthy that all clusters formed in [22]–[25] have
equal sizes, i.e., clusters formed in [22]–[24] have a size of 3,
and the sizes of those formed in [25] are assumed to be the
same as the number of base stations, which is not the general
case of performing IA. In dense SCNs, on the premise of
guaranteeing IA is feasible and the intra-cluster interference
is strong enough within each cluster, the cluster size should
be determined by the distributions of dense SCNs.

In [26], base stations were grouped into disjoint clusters by
the coalitional game theory according to large-scale fading.
When the inter-cluster interference was strong, clusters were
allocated with different time slots; otherwise, they would
share the same time slots. In [27], a distributed multi-domain
interference management scheme jointly utilized OFDMA
scheduling, TDMA scheduling, IA and power control was
proposed to mitigate interference while maximizing the
achievable rate of SUEs in ultra-dense SCNs; furthermore,
clusters were formed through an overlapping coalition forma-
tion game, and the inter-cluster interference was mitigated by
TDMA scheduling. Nevertheless, the schemes above are not
suitable for supporting the data stream requirements for the
massive number of SUEs in dense SCNs because they need
to simultaneously access the network.

In [28], an efficient subchannel allocation scheme based
on IA with similarity clustering, i.e., both QoS requirements
and path losses are similar within each cluster, was pro-
posed to maximize the number of QoS guaranteed SUEs in
dense SCNs, and a low-complexity algorithm with notably
reduced feedback overhead was proposed to solve the opti-
mization problem. However, instead of being determined by
the distributions of dense SCNs, the number of clusters is
a priori. In [29], IA with clustering was exploited in full-
duplex-based SCNs. Furthermore, two clustering methods
called minimized spectrum consumption clustering (MSCC)
and minimized interference leakage clustering (MILC) were
proposed, where the inter-cluster interference was mitigated
through allocating orthogonal resource blocks in MSCC and
treated as noise in MILC. However, in dense SCNs, all small
cells are randomly distributed, so some of the inter-cluster
interference is strong enough while some is relatively weak
after clustering, and only utilizing MILC or MSCC will be
not enough for inter-cluster interference mitigation.

To conclude, schemes of resource allocation based on IA
with clustering which require low complexity and notably
reduced feedback overhead should be investigated to effec-
tively mitigate the interference and hence further meet the
massive number of data stream requirements for SUEs;
additionally, under the premise that IA is feasible and the
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intra-cluster interference is strong enoughwithin each cluster,
the number of clusters and the size of each cluster should
be determined by the distributions of dense SCNs instead of
being specified before clustering.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
As shown in Fig. 1, we consider the downlink transmis-
sion of OFDMA-based dense SCNs deployed in an existing
macrocell, where small cells and the macrocell operate on
orthogonal subchannels [2], [30]. Therefore, the cross-tier
interference, including both the interference incurred by the
macrocell base station (MBS) at SUEs and that incurred by
SBSs at macrocell user equipments (MUEs), is mitigated.
Assume that the subchannel allocation for MUEs has already
been finished, so we only focus on mitigating the co-tier
interference incurred by SBSs at SUEs through allocating the
limited subchannels based on IA with clustering to maximize
the number of data streams achieved by all SUEs in dense
SCNs.

FIGURE 1. An illustrative example of dense SCNs composed of 12 small
cells.

The set of SBSs in dense SCNs is denoted as
K = {1, 2, . . . ,K }. It is assumed that all SUEs have already
been associated with their serving SBSs before clustering
and subchannel allocation [23], [28], [31], and combining
SUE association with resource allocation based on IA with
clustering in dense SCNs will be our future work. Therefore,
in dense SCNs, each SBS serves multiple SUEs associated
with it, which is quite different from device-to-device (D2D)
networks. Furthermore, in this paper, each SBS provides
data stream transmission for its multiple associated SUEs
through different time slots, so we assume that each SBS
only serves one SUE in a given time slot of subchannel

allocation [23], [28]. How to select an exclusive SUE for each
SBS in a given time slot is beyond the scope of this paper,
accordingly, it is also assumed to be finished before clustering
and subchannel allocation. In this paper, SUE k is referred to
as the exclusive SUE served by SBS k in a given time slot.
Furthermore, an SBS and the SUE it exclusively serves in a
given time slot are called an SBS-SUE pair, so clustering in
this paper is referred to as grouping all SBS-SUE pairs into
disjoint clusters, each of which contains a certain number
of SBS-SUE pairs performing IA. In a new time slot of
subchannel allocation, each SBS exclusively serves another
one SUE associated with it, and the process of clustering and
subchannel allocation for clusters will be performed again.

Let N = {1, 2, . . . ,N } denote the set of subchannels
available in each time slot of subchannel allocation in dense
SCNs, where N is much smaller than K . Each SBS and
SUE is equipped with MT and MR antennas, respectively.
Besides, each SUE wants to achieve at least d simultaneously
transmitted interference-free data streams from its serving
SBS, where d ≤ min{MT ,MR} [13]. Furthermore, we only
consider the case of all SUEs having the same and less data
stream requirements, e.g., d = 1, and the case of SUEs with
differentiated data stream requirements will be investigated
in our future work.

In an arbitrary cluster Ci that performs IA, the following
inequality must be met [13]:

d ≤
MT +MR

|Ci| + 1
, ∀Ci ⊆ K , (1)

where |Ci| denotes the size of cluster Ci, i.e., the number of
SBS-SUE pairs contained by cluster Ci. From inequality (1)
we know that |Ci| is limited by

|Ci| ≤
⌊
MT +MR

d
− 1

⌋
, M, ∀Ci ⊆ K , (2)

where
⌊
MT+MR

d − 1
⌋
is the floor function that returns to the

biggest integer smaller than or equal to MT+MR
d − 1. In this

paper, for simplicity, we use M to denote
⌊
MT+MR

d − 1
⌋
,

i.e., the maximum size of each cluster performing IA.
After cluster Ci has formed, from (1), we know that the

number of data streams achieved by SUE k in cluster Ci after
performing IA over each subchannel is

dk =
⌊
MT +MR

|Ci| + 1

⌋
≥ d, ∀k ∈ Ci, ∀Ci ⊆ K , (3)

which implies that each SUE in a cluster performing IA
will achieve guaranteed data stream requirement as long as
this cluster is allocated with one subchannel. Then, the total
number of data streams achieved by all SUEs in cluster Ci
after performing IA over each subchannel is

dCi = |Ci| · dk . (4)

Besides, to perform IA within cluster Ci over subchannel
n, the transmit precoding matrix of SBS k for SUE k that is
exclusively served by SBS k and the interference suppression
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matrix at SUE k over subchannel n, i.e., Vn
k ∈ CMT×dk

and Un
k ∈ CMR×dk , must be designed to meet the following

equations [32]:{(
Un
k

)H Hn
klV

n
l = 0dk×dk ,

rank
((
Un
k

)H Hn
kkV

n
k

)
= dk , ∀k, l ∈ Ci, k 6= l,

(5)

where Hn
kl ∈ CMR×MT denotes the channel gain matrix from

SBS l to SUE k over subchannel n.
In our model, before performing IA, an SUE k in cluster

Ci only suffers intra-cluster interference from other SBSs in
cluster Ci. This is because the strong inter-cluster interference
will be mitigated by orthogonal subchannel allocation, while
the weak interference will be treated as noise. Then, after
completely eliminating the intra-cluster interference by IA in
cluster Ci, the received signal at SUE k in Ci over subchannel
n is expressed as

(
Un
k
)H ynk =

√
1

PLkk

(
Un
k
)H Hn

kkV
n
ks
n
k +

(
Un
k
)H nnk , (6)

where PLkk denotes the path loss from SBS k to SUE k
it exclusively serves in the given time slot. snk ∈ Cdk×1 is
the vector of transmitted symbols from SBS k to SUE k
over subchannel n, where snk ∼ CN

(
0MT×1,

pnk
dk
Idk
)
, and

pnk denotes the transmit power of SBS k over subchannel
n. In this paper, we only investigate subchannel allocation,
hence we assume that pnk = p, ∀k ∈ K , ∀n ∈ N , where
p keeps constant when performing IA with clustering and
subchannel allocation. Such assumption is also used in [23]
and [28]. Finally, nnk ∈ CMR×1 represents the circularly
symmetric additive white Gaussian noise (AWGN) at SUE k
over subchannel n, and nnk ∼ CN

(
0MR×1,

(
σ nk

)2 IMR

)
, where(

σ nk

)2 denotes the noise power at SUE k over subchannel n.
B. PROBLEM FORMULATION
To formulate the corresponding optimization problem,
we first give the following definition.
Definition 1: In dense SCNs, the path loss from cluster Cj

to cluster Ci, i.e., PLCiCj , is defined as the minimum value of
path losses from SBSs in Cj to SUEs in Ci:

PLCiCj = min
{
PLkf

∣∣∀f ∈ Cj,∀k ∈ Ci
}
, (7)

where PLkf is the path loss from SBS f in cluster Cj to SUE
k in cluster Ci.
Therefore, a threshold of path loss used to distinguish the

strong and weak interference, i.e., PL0, can be reasonably
prescribed according to the transmit power of each SBS over
each subchannel and the noise power at each SUE, so that
when PLCiCj > PL0, the inter-cluster interference between Ci
and Cj will be weak enough and can be treated as noise, hence
they are allowed to use the same subchannels; otherwise, they
must be allocated with orthogonal subchannels to mitigate the
strong inter-cluster interference.

Aiming at maximizing the total number of data streams
achieved by all SUEs while guaranteeing the data stream

requirement for each SUE in dense SCNs, the corresponding
optimization problem is formulated as follow:

max
Ci, ϕnCi

∑
n∈N

∑
Ci⊆K

ϕnCi · dCi

s.t. C1 : Ci
⋂

Cj = ∅, ∀Ci, Cj ⊆ K

C2 :
⋃

Ci = K

C3 : 2 ≤ |Ci| ≤ M, ∀Ci
C4 : PLkl ≤ PL0, ∀k, l ∈ Ci, ∀Ci

C5 : ϕnCi · ϕ
n
Cj =

{
1, if PLCiCj > PL0

0, else, ∀Ci, Cj, ∀n

C6 :
∑
n∈N

ϕnCi ≥ 1, ∀Ci

C7 : ϕnCi ∈ {0, 1}, ∀Ci, ∀n. (8)

In problem (8), ϕnCi is a decision variable that takes the value
of 1 if subchannel n is allocated to cluster Ci, and 0 otherwise.
Constraints C1 and C2 ensure that all clusters are disjoint and
their union constitutes the set of all SUEsK , respectively. The
size of each cluster is limited in constraint C3, where the case
of two users performing IA is investigated in [33]. Constraint
C4 requires the path loss from SBS l to SUE k in cluster Ci
not to exceed the given thresholdPL0, so that the intra-cluster
interference is strong enough. Constraint C5 indicates that if
PLCiCj > PL0, the inter-cluster interference will be treated as
noise, so that clusters Ci and Cj can reuse the same subchan-
nels; otherwise, they must be allocated with orthogonal sub-
channels. Constraint C6 ensures that each cluster is allocated
with at least one subchannel, so that each SUE can achieve
at least d data streams. This is because IA enables all SUEs
in cluster Ci to share subchannel n free from intra-cluster
interference, allocating subchannel n to cluster Ci is equiv-
alent to allocating it to all SUEs in cluster Ci. Optimization
problem (8) is a combinatorial optimization problem, and we
have the following lemma.
Lemma 1: Optimization problem (8) is NP-hard.
Proof: Obtaining the optimal solution to problem (8)

requires to compare all the possible cases of clustering for
SBS-SUE pairs and those of subchannel allocation for each
clustering result.

Firstly, the total number of all possible cases of clustering
for SBS-SUE pairs that need to be compared is

2clus =
∑

2≤|Ci|≤M
i=1,...,8

(
K
|C1|

) [∏8−1
i1=2

(
K−

∑i1−1
i2=1

∣∣Ci2 ∣∣∣∣Ci1 ∣∣
)]

8!
(9)

≈

∑
2≤|Ci|≤M
i=1,...,8

KK (10)

= (M− 1)8KK . (11)

In (9), 8 is the number of clusters performing IA, where
8 ≥ 8min. Here8min =

⌈K
M
⌉
denotes the minimum number

of clusters performing IA, and
⌈K

M
⌉
is the smallest positive
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integer bigger than or equal to K
M . Moreover,

(
K
|C1|

)
=

K !
|C1|!(K−|C1|!)

is the number of cases choosing |C1| SBS-SUE
pairs from all the K SBS-SUE pairs, where K ! =

∏K
k=1 k

denotes the factorial of K . Besides, the approximation in (10)
follows the result in [31].

Then, the total number of possible cases of subchannel
allocation that need to be compared after forming 8 clusters
is

2allo =

8∏
i=1

 ∑
1≤|NCi |≤N

(
N∣∣NCi
∣∣
) (
9
∣∣NCi

∣∣ )
>
(
2N9

)8
, (12)

where NCi is the set of subchannels allocated to cluster Ci,
and9 denotes the complexity of designing the precoding and
interference suppression matrices for IA in each cluster over
each subchannel [22].

From (11) and (12) we know that obtaining the optimal
solution to problem (8) requires to compare the number of
2clus2allo cases, which is bigger than

[
(M− 1)2N9

]8 KK

and exponentially increases with both K and N . Therefore,
optimization problem (8) is NP-hard. �
Lemma 1 indicates that obtaining the optimal solution

to problem (8) through comparing all the possible cases of
clustering and subchannel allocation for clusters requires
prohibitive computational complexity; besides, it necessitates
estimating the perfect global CSI, which will result in huge
feedback overhead. Consequently, we propose a two-phases
algorithm with lower complexity and reduced feedback over-
head based on graph theory to obtain a suboptimal but effi-
cient solution to problem (8). The first phase groups all
SBS-SUE pairs into disjoint clusters through graph partition
based on path loss, where each SBS and the SUE it exclu-
sively serves in a given time slot are represented as a vertex
in the constructed graph, and then removes vertices from the
clusters with sizes larger than M. The second phase allocates
subchannels to the formed clusters by the proposed graph
coloring algorithm. Such method (i.e., clustering and then
resource allocation for clusters) is also adopted in [31], [23]
and our previous work [28].

IV. PROPOSED SOLUTION
A. PHASE 1: CLUSTERING BASED ON PATH LOSSES
The goal of clustering is to group all SBS-SUE pairs into
disjoint clusters, each of which has a size that meets the
feasibility condition of IA (i.e., constraint C3 in problem (8))
so that IA can be performed within it to completely eliminate
the strong intra-cluster interference. However, such combina-
torial optimization problem is still NP-hard. As a suboptimal
but efficient solution, we utilize graph partitioning to finish
clustering for SBS-SUE pairs in this phase, which requires a
much lower computational complexity.

Firstly, we need to construct the weighted graph G ,
(V ,E), where V is the set of all vertices in the constructed

FIGURE 2. Treating each SBS-SUE pair as a vertex.

graph G , and E denotes the set of all edges in G . In this
paper, each SBS-SUE pair, i.e., each vertex in V represents
an SBS and the SUE it exclusively serves in a given time slot
(see Fig. 2). The reasons are as follows. Firstly, the path loss
from each SBS to the SUE it exclusively serves is smaller
than the path losses between this SBS and the SUEs it does
not serve. Secondly, in the first phase, we only consider the
interference incurred by SBSs at SUEs they do not serve.
So the property of an SBS and the SUE it exclusively serves
is the same as that of a vertex. The aforementioned method
is also used in [23] and [28]. As shown in Fig. 2, the vertex
that represents SBS k and SUE k that is exclusively served
by SBS k in dense SCNs is called vertex k , where k =
1, . . . ,K . Consequently, the vertex set V in graph G consists
of K vertices because there are altogether K SUEs in dense
SCNs. Note that we consider the downlink transmission of
OFDMA-based dense SCNs in this paper, so each SBS plays
a role of transmitter, and the SUE it exclusively serves plays a
role of intended receiver. Therefore, treating each SBS-SUE
pair as one vertex is equivalent to merging each transmitter
and its intended receiver into one vertex, which implies that
there is only one type of vertices in graph G .
Moreover, we use W = [wkm] to denote the weighted

adjacency matrix of graph G , wherewkm is the weight of edge
connecting vertices k and m. As the intra-cluster interference
must be strong, the weight of edges in each cluster should be
as big as possible. Note that each SBS has the same transmit
power, but the path losses from SBSs to the SUEs they do
not serve are differentiated due to the random deployment of
small cells. Consequently, the weight of edge connecting any
two vertices should be determined by the path loss between
them. Besides, G is an undirected graph, so the edge weight
must be symmetric, i.e., wkm = wmk , ∀k,m ∈ V , and the
path loss between vertices k and m must also be symmetric,
i.e., PL′km = PL′mk , which can be guaranteed by defining
PL′km as the minimum value between the path loss from SBS
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m to SUE k and that from SBS k to SUE m in dense SCNs:

PL′km = min
{
PLkm, PLmk

∣∣∀k,m ∈ V
}
. (13)

Therefore, if either PLkm or PLmk does not exceed PL0,
we have PL′km ≤ PL0, i.e., there will be strong interference
between vertices k and m, and vice versa. Then, similar to
Definition 1, we have the following definition.
Definition 2: In the constructed graph G , the path loss

between clusters Ci and Cj, i.e., PL′CiCj , is defined as the
minimum value of path losses between all vertices in Ci and
those in Cj:

PL′CiCj = min
{
PL′fk

∣∣∀f ∈ Cj,∀k ∈ Ci
}
. (14)

Furthermore, we use the ratio of the transmit power of each
SBS over each subchannel to the path loss between vertices
k and m, i.e., p/PL′km, to quantify the strength of interference
induced by vertex m at vertex k . Accordingly, the bigger
the ratio, the stronger interference vertex m will induce at
vertex k , and vice versa. In this paper, wkm is defined as

wkm =


1, if k = m
p/PL′km
p/PL′Min

, else if PL′km ≤ PL0, ∀k 6= m

−C0, else,

(15)

where PL′Min is the minimum value of path losses between
any two vertices in graph G , i.e.,

PL′Min = min
{
PL′km

∣∣∀k,m ∈ V
}
. (16)

Here note that in order to make wkm dimensionless,
we normalize the term p/PL′km when PL′km ≤ PL0, ∀k 6= m.
Moreover, the constant C0 in (15) is a sufficiently big positive
number. In graph G , when PL′km ≤ PL0, the interference
between vertices k and l is regarded as strong interference,
and they are connected by a solid line; otherwise, the inter-
ference between them is weak, and they are connected by a
dashed line. Fig. 3 shows the constructed graphG correspond-
ing to Fig. 1.

Then, the subproblem of clustering for SBS-SUE pairs is
converted into the problem of clustering for vertices which is
formulated as

max
Ci

∑
Ci⊆V

WCi

s.t. C1− C3

C4′ : PL′kl ≤ PL0, ∀k, l ∈ Ci, ∀Ci ⊆ V . (17)

In (17), WCi denotes the weigh of cluster Ci, which is defined
as the sum weight of edges in Ci, i.e.,

WCi =
∑
k, l∈Ci

wkl . (18)

Nevertheless, subproblem (17) is still NP-hard. This is
because obtaining its optimal solution requires to compare
all the possible cases of clustering for K vertices. From (11)

FIGURE 3. The constructed graph G .

it can be known that the minimum total number of possi-
ble cases that need to be compared, i.e., (M − 1)8minKK ,
still exponentially increases with K , which demonstrates the
NP-hardness of subproblem (17). To solve (17), we first
convert it into the following equivalent subproblem through
the following lemma.
Lemma 2: Subproblem (17) is equivalent to the following

subproblem:

min
Ci

∑
Ci⊆V

cut (Ci,V \ Ci)

s.t. C1− C3, C4′ (19)

where

cut (Ci,V \ Ci) =
∑

k∈Ci, q∈V \Ci

wkq (20)

denotes the cut between two disjoint vertex sets Ci and V \Ci.

Proof: See Appendix A.
Subproblem (19) is equivalent to the NP-hard subproblem

(17), so it is also NP-hard. However, as an efficient solution,
we can recursively partition graph G through the minimum
cut criterion, and the well-known Stoer-Wagner (S-W) algo-
rithm proposed in [34] can be used to compute the minimum
cut of an arbitrary subgraph of G . Firstly, graph G will be
partitioned into two subgraphs G1 and G2 by S-W algorithm.
Then, G1 and G2 will be recursively partitioned until the
weighted adjacency matrix of each subgraph partitioned from
them has no elements with value−C0.More detail is shown in
Algorithm 1. Note that in step 1 of Algorithm 1, VIA denotes
the set of clusters performing IA, i.e., the size of each cluster
contained by VIA does not exceed M, and Vlar represents the
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Algorithm 1 Clustering for Vertices by the Recursive Parti-
tion of Graph G
1: Initialize VIA = ∅ and Vlar = ∅.
2: Compute the weighted adjacency matrixW according to

(15), and then construct graph G .
3: if there are no elements with value −C0 inW then
4: Stop and treat V as a cluster.
5: else
6: Exploit S-W algorithm to partition G into two sub-

graphs, i.e., G1 and G2.
7: end if
8: for each subgraph Gi (i = 1, 2) partitioned from G do
9: if there are no elements with value −C0 in the

weighted adjacency matrix of Gi then
10: Stop and treat the vertex set of Gi as a cluster.
11: else
12: Recursively execute steps 2-6 to partition subgraph

Gi until there are no elements with value −C0 in
the weighted adjacency matrix of each subgraph
partitioned from Gi, and treat the vertex set of each
subgraph obtained after the recursive partition as
one cluster.

13: end if
14: end for
15: Delete all edges with weight −C0.
16: for each obtained cluster Ci do
17: if |Ci| ≤ M then
18: Update VIA = VIA

⋃
Ci.

19: else
20: Update Vlar = Vlar

⋃
Ci.

21: end if
22: end for
23: Output: The set of clusters performing IA, i.e., VIA, and

the set of clusters with sizes larger than M, i.e., Vlar.

set of clusters with sizes larger than M. After Algorithm 1,
we have the following theorem.
Theorem 1: The path loss between any two vertices in

each cluster formed after Algorithm 1 is smaller than or equal
to PL0.

Proof: See Appendix B.
Note that Algorithm 1 finally outputs VIA and Vlar, where

VIA
⋃

Vlar = V . When Vlar 6= ∅, there exist some clusters
with sizes larger than M, where IA is still infeasible. So we
further need to address the aforementioned feasibility issue
of IA by removing some vertices from the clusters whose
sizes exceed M. Specifically, if |Ci| > M, we first select
one cluster (e.g., Ci1 ) which contains M vertices and has the
maximum weight from Ci. Then, if |Ci \Ci1 | > M, the process
above will be repeatedly performed until each of the newly
formed cluster contains at most M vertices; otherwise, Ci \Ci1
will be treated as another new cluster. For example, when
MT = MR = 2, and d = 1, we have M = 3. Therefore,
in Fig. 4, IA is infeasible in Cluster 1, and we first need to

FIGURE 4. Clusters formed after Algorithm 1.

select 3 vertices that has the maximum weight from Cluster 1
and treat them as a new cluster, i.e., Cluster 1′; and then the
remaining 3 vertices will form another new cluster, i.e., Clus-
ter 4. Note that when there are no elements with value −C0
in W, i.e., the interference between any two vertices in V
are strong enough. In this special case, |V | (i.e., K ) is much
bigger than M, so IA is definitely infeasible in V if it is
treated as a big cluster. Then, M (i.e., the maximum cluster
size of performing IA) vertices will be removed from V to
form a new cluster performing IA, e.g., cluster Ci, and then
V is updated to V \ Ci. The aforementioned procedure will
be repeatedly performed until |V | ≤ M. More detail about
removing vertices is given in Algorithm 2.

It is also worth mentioning that 8 in steps 6 and 14 of
Algorithm 2 denotes the number of finally formed clusters
performing IA, and it is not specified before clustering but
determined by the distributions of dense SCNs. Moreover,
8min =

⌈K
M
⌉

in step 6 represents the minimum num-
ber of finally formed clusters performing IA. We know
that only when there are no elements with value −C0 in
W, 8min can be achieved. Finally, Algorithm 2 outputs
the set of finally formed 8 clusters performing IA, i.e.,
VIA = {C1, C2, . . . , C8}.

Executing Algorithm 1 and Algorithm 2 require to know
the weight of edge between any two vertices that is only
determined by the path losses between them. In practical
communication systems, the path losses can be estimated by
each SUE through computing the ratios of transmit power
of pilot symbols from different SBSs to the receive power
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Algorithm 2 Removing Vertices From Clusters With Sizes
Larger Than M
1: if there are no elements with value −C0 inW then
2: Set i = 1.
3: while |V | > M do
4: Determine Ci which has the maximum weight and

meets |Ci| = M in V , and update VIA = VIA
⋃

Ci,
V = V \ Ci, and i = i+ 1.

5: end while
6: Set 8 = 8min and C8 = V , where 8min =

⌈K
M
⌉
, and

update VIA = VIA
⋃

C8.
7: else
8: while |Vlar| > 0 do
9: for each Cj ⊆ Vlar do
10: Execute steps 2-6 to remove vertices from cluster

Cj, then update Vlar and VIA.
11: end for
12: end while
13: end if
14: Output: The set of finally formed8 clusters performing

IA, i.e., VIA = {C1, C2, . . . , C8}.

of corresponding pilot symbols received at this SUE. In this
way, the estimation of perfect global CSI is avoided when
grouping all SBS-SUE pairs into disjoint clusters, which
notably reduces the feedback overhead in dense SCNs.

B. PHASE 2: SUBCHANNEL ALLOCATION BY THE
PROPOSED GRAPH COLORING ALGORITHM
After the phase of clustering, the subproblem of subchannel
allocation for clusters becomes

max
ϕnCi

∑
n∈N

∑
Ci⊆VIA

ϕnCi · dCi

s.t. C5′ : ϕnCi · ϕ
n
Cj =

{
1, if PL′CiCj > PL0

0, else, ∀Ci, Cj, ∀n
C6, C7. (21)

Subproblem (21) is also NP-hard owing to the combina-
torial nature of subchannel allocation. Because each clus-
ter performing IA still contains multiple vertices without
intra-cluster interference among them, so subproblem (21)
is quite different from the traditional subchannel allocation
problems. Fortunately, each cluster can be further treated as a
vertex, which is also adopted in [23]. The reason is that there
is no intra-cluster interference within each cluster performing
IA, and each cluster only suffers the inter-cluster interference,
which indicates that from the aspect of subchannel allocation,
a cluster has the same property as that of a vertex. In this way,
graph G can be further converted into the simplified graph
Gs = (VGs ,EGs ). Here VGs = {̃v1, . . . , ṽ8} is the set of ver-
tices in Gs. Note that after Algorithm 2, there are altogether8
clusters performing IA, therefore, in the simplified graph Gs,
we use vertex ṽi to represent cluster Ci, where i = 1, . . . , 8.
Besides, EGs denotes the set of edges in Gs. To obtain Gs,

FIGURE 5. Removing vertices from Cluster 1.

FIGURE 6. The simplified graph Gs.

we first need to determine its adjacency matrix through the
following definition.
Definition 3: The adjacency matrix of simplified graph Gs

is defined as a8×8 symmetric matrix AGs = [ãvĩvj ], where
ãvĩvj = 1 if PL′CiCj ≤ PL0, ∀̃vi 6= ṽj; otherwise, ãvĩvj = 0.
In Gs, if ãvĩvj = 1, there is an edge connecting vertices

ṽi and ṽj; otherwise, there is no edge between them. Fig. 6
shows the simplified graph Gs. Then, based on Definition 3,
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the degree of vertex ṽi in Gs is defined as the number of
edges connecting with it, i.e., the sum of elements in the
row (column) corresponding to ṽi in AGs :

deg(̃vi) =
∑
ṽj∈VGs

ãvĩvj . (22)

Next we utilize the proposed graph coloring algorithm
which has a lower complexity to obtain a suboptimal but
efficient solution to (21). Briefly speaking, each subchannel
is represented by one color, and if two vertices in VGs is con-
nected with one edge, they must be allocated with different
colors; otherwise, they can be allocated with the same colors.
Moreover, vertices with bigger degrees will be given higher
priority to subchannel allocation. The process of subchannel
allocation for vertices by the proposed coloring algorithm is
described as follows.

We first determineAGs and compute the degree of each ver-
tex in VGs ; then, we sort all vertices by the descending order
of their degrees, which follows step 1 of the Dsatur algorithm
firstly proposed in [35] to efficiently color the vertices of a
graph. However, the number of SUEs is much bigger than
that of subchannels available in dense SCNs, and our goal
is to maximize the total number of data streams achieved
by all SUEs while guaranteeing the data stream requirement
for each SUE, which are not taken into consideration in the
Dsatur algorithm. So all the steps after step 3 are proposed by
us to utilize the limited subchannel resourcesmore efficiently.

Specifically speaking, firstly, after step 3, there may exist
some vertices with the same degrees. Therefore, secondly,
these vertices are further sorted by the descending order
of the number of their achievable data streams, so that the
vertices with bigger number of data streams are given higher
priority to subchannel allocation, which is in accordance with
maximizing the total number of data streams achieved by all
SUEs.More detail is shown in steps 4-11 of Algorithm 3. Sec-
ondly, in order to utilize the N subchannels more efficiently,
we divide all the sorted vertices into disjoint groups, each
of which contains vertices without any edges among them,
so that all vertices in each group are allocated with the same
colors, and vertices in different groups will be allocated with
different colors. Note that a group is quite different from a
cluster performing IA. In this paper, a group in the simplified
graph Gs is a set of vertices without interference among them,
while a cluster performing IA in the constructed graph G is
a set of vertices with strong interference. Detail about group
formation is shown in steps 12-19. Finally, the disjoint groups
formed through steps 12-19 will be allocated with different
colors. Note that the number of groups is smaller than that of
subchannels available, so each group can be allocated with at
least one subchannel, i.e., all vertices contained by each group
can also be allocated with at least one subchannel. Therefore,
constraint C6 of subproblem (21) can be definitely met. Then,
the remaining procedures of subchannel allocation are used to
further increase the total number of achievable data streams.
Steps 20-24 show the detail about subchannel allocation for
the formed groups.

Next, we give the definitions of new notations used in
Algorithm 3 and make some necessary explanations for the
algorithm. ṽ1, ṽ8−1, and ṽi+1 denote the first vertex, the
(8− 1)th vertex, and the (i+1)th vertex in VGs , respectively.
Note that VGs in step 4 has already been updated to the vertex
set where all vertices are sorted by the descending order of
their degrees. Besides, ṽi = ṽ1 : ṽ8−1 in step 4 means that
vertex ṽi will traverse the first 8 − 1 vertices (i.e., from the
first vertex ṽ1 to the (8 − 1)th vertex ṽ8−1) of the updated
vertex set VGs with a step size of 1. S̃vi is the serial number of
vertex ṽi in VGs , i.e., the smaller the serial number of a vertex,
the higher its ranking in VGs . Therefore, vertex ṽj in step
5 denotes the vertex after ṽi in VGs . 0 is the number of finally
formed groups. Similar to the number of finally formed clus-
ters 8 after Algorithm 2, 0 is not specified but determined
by the distributions of dense SCNs. �i1 denotes group i1,
where i1 ∈ {1, . . . , 0}. α and r0 denote the quotient and the
remainder of the number of subchannels N divided by the
number of groups 0, respectively. Consequently, if r0 = 0,
subchannel allocation will be performed in α procedures,
i.e., in procedure i2, subchannel i1 + (i2 − 1)0 is allocated
to all vertices in group �i1 , where i1 ∈ {1, . . . , 0}, and
i2 ∈ {1, . . . , α}; otherwise, subchannel allocation will be
performed in α+1 procedures, i.e., the first α procedures are
the same as those performed above, and in procedure α + 1,
subchannel α0 + i3 is allocated to all vertices in group �i3 ,
where i3 ∈ {1, . . . , r0}.
Note that Algorithm 3 outputs the 0 formed groups and the

corresponding subchannels allocated to each group. Finally,
according to (3), (4), and the output of Algorithm 3, the total
number of achievable data streams in dense SCNs can be
obtained. Here it is noteworthy that executing Algorithm 3
only requires to estimate the perfect CSI within each cluster,
which also avoids estimating the perfect global CSI and hence
greatly reduces the feedback overhead. More detail about
the estimation of perfect CSI within each cluster in practical
systems can be found in [28].

V. COMPUTATIONAL COMPLEXITY ANALYSIS
From the proof of Lemma 1 it can be known that obtaining the
optimal solution to optimization problem (8) by exhaustive
search requires to compare more than

[
(M− 1)2N9

]8 KK

cases, which is exponentially increases with both K and
N . So obtaining the optimal solution to (8) needs a com-
putational complexity higher than O

([
(M− 1)2N9

]8 KK
)
,

which is prohibitive in practical communication systems.
Next, we analyze the computational complexity of pro-

posed solution. In Algorithm 1, partitioning graph G into
subgraphs G1 and G2 by S-W algorithm in step 6 requires
a complexity not exceeding O

(
K2(K−1)

2 + K 2log2K
)
[34],

which is lower than O
(
K 3
)
. Moreover, both the number of

subgraphs that need to be partitioned and the number of ver-
tices in each subgraph are much smaller than K , so steps 8-15
have a complexity lower than O

(
K 3
)
. Besides, the complex-

ity of step 15 is lower than O
(
K 2
)
, and steps 16-22 requires
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Algorithm 3 Subchannel Allocation by the Proposed Graph
Coloring Algorithm
1: Determine AGs according to Definition 3.
2: Compute the degree of each vertex by VGs according to

(22).
3: Sort all vertices in VGs by the descending order of their

degrees, and set the obtained vertex set as VGs .
4: for ṽi = ṽ1 : ṽ8−1 do
5: Let ṽj = ṽi+1.
6: if deg(̃vi) = deg(̃vj) then
7: if d̃vi > d̃vj and S̃vi > S̃vj , or d̃vi < d̃vj and S̃vi < S̃vj

then
8: Exchange the order of vertices ṽi and ṽj.
9: end if
10: end if
11: end for
12: Set 0 = 1.
13: while |VGs | > 0 do
14: Let �0 = �0

⋃{̃
v1
}
and VGs = VGs \

{̃
v1
}
.

15: while ∃̃vj ∈ VGs , s.t. ∀̃vi ∈ �0 , ãvĩvj = 0 do
16: Update �0 = �0

⋃
{̃vj}, and VGs = VGs \ {̃vj}.

17: end while
18: Update 0 = 0 + 1.
19: end while
20: Let α =

⌊N
0

⌋
and r0 = N − α · 0.

21: Allocate subchannel i1+(i2−1)0 to all vertices in group
�i1 , where i1 ∈ {1, . . . , 0}, and i2 ∈ {1, . . . , α}.

22: if r0 6= 0 then
23: Allocate subchannel α0 + i3 to all vertices in group

�i3 , where i3 ∈ {1, . . . , r0}.
24: end if
25: Output: The 0 formed groups �1, �2, . . . , �0 and the

corresponding subchannels allocated to each group.

a complexity of O (K ). Consequently, Algorithm 1 has a
complexity lower than O

(
K 3
)
. In Algorithm 2, the com-

plexity of steps 1-6 is O
(∑8min−1

i0=0

(
K−i0·M

M

) )
. Obviously,

O
(∑8min−1

i0=0

(
K−i0·M

M

))
< O

(
8min ·

(
K
M

))
, where 8min

determined by step 6 of Algorithm 2 is the minimum number
of clusters performing IA, and

(
K
M

)
=

K !
M!(K−M!) denotes

the number of cases that choose M vertices from K ver-
tices. Moreover, step 8-12 also has a complexity lower than
O
(
8min ·

(
K
M

))
. SoAlgorithm 2 requires a complexity lower

than O
(
8min ·

(
K
M

))
. In Algorithm 3, as |VGs | is much

smaller than K , the complexity of steps 1-11 is lower than
O(K 2). Furthermore, steps 13-19 requires a complexity much
lower than O(K 2), and steps 20-24 has a complexity of
O(N9). So the complexity of Algorithm 3 is lower than
O(K 2

+ N9). Finally, the computational complexity of pro-
posed solution is lower than O

(
K 3
+8min ·

(
K
M

)
+ N9

)
,

and it is also much lower than that of the exhaustive search.

From Section II we know that there is no related work
about resource allocation based on IA with clustering to
maximize the number of data streams achieved by all SUEs
while guaranteeing the data stream requirement for each
SUE. Therefore, as effective benchmarks, solutions obtained
by clustering algorithms proposed in other literature and
Algorithm 3 in this paper or Algorithms 1 and 2 in this paper
and graph coloring algorithms proposed in other literature
are used for the comparisons of computational complexity.
Specifically, the computational complexities of following
three related solutions are analyzed.

Firstly, similarity clustering algorithms proposed in [28]
are used for grouping SBS-SUE pairs into disjoint clusters,
then each cluster performing IA is further treated as a ver-
tex, and Algorithm 3 is used for allocating subchannels to
the formed clusters performing IA ([28]+Alg. 3). Similar-
ity clustering algorithms in [28] are comprised of similarity
clustering for SBS-SUE pairs and further adjusting the clus-
ters with sizes not meeting the feasibility condition of IA,
which require complexities lower than O (K8minT1T2) and
O
(
K 28min

)
, respectively. Here T1 and T2 are the number

of iterations taken by Lanczos and K-means algorithms to
converge [28], respectively. Besides, recall that the com-
plexity of Algorithm 3 is lower than O(K 2

+ N9). Con-
sequently, [28]+Alg. 3 requires a complexity lower than
O(K8minT1T2 + K 28min + N9).
Secondly, Algorithms 1 and 2 are used for clustering,

then each cluster performing IA is further treated as a ver-
tex, and coloring algorithm proposed in [36] is used for
subchannel allocation (Algs. 1+2+ [36]). The overall com-
plexity of Algorithms 1 and 2 is O

(
K 3
+8min ·

(
K
M

))
.

Moreover, from [36] we know that its proposed coloring
algorithm requires a complexity of O(K 2). However, when
subchannel allocation based on IA with clustering is per-
formed, steps 8-14 of the coloring algorithm in [36] requires
an extra complexity of O(89), where 8min ≤ 8 ≤⌈K
2

⌉
. Accordingly, the complexity of Algs. 1+2+ [36] is

O
(
K 3
+8min ·

(
K
M

)
+89

)
.

Thirdly, similar to Algs. 1+2+[36], Algorithms 1 and 2 are
used for clustering, then each cluster performing IA is further
treated as a vertex, and coloring algorithm proposed in [37] is
used for subchannel allocation (Algs. 1+2+[37]). From [37]
it can be known that the complexity of its proposed coloring
algorithm is O(K 2). Similarly, steps 6-12 of the coloring
algorithm in [37] requires an extra complexity of O(89)
when performing subchannel allocation based on IA with
clustering. Therefore, Algs. 1+2+[37] also has a complexity
of O

(
K 3
+8min ·

(
K
M

)
+89

)
.

In conclusion, the proposed solution, Algs. 1+2+[36] and
Algs. 1+2+ [37] have the same computational complexi-
ties. Furthermore, when the number of SUEs K is bigger,
[28]+Alg. 3 will require a much higher complexity than the
proposed solution because it will take lots of time to make
K-means algorithm converge in [28]+Alg. 3; otherwise, their
complexities are considered to be the same.
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VI. FEEDBACK OVERHEAD ANALYSIS
In this section, we analyze the feedback overhead required
by estimating perfect global CSI as well as the proposed
solution, respectively.

Estimating the perfect global CSI requires to obtain the
channel matrix from each SBS to each SUE over each sub-
channel. In our scenario, there are N subchannels available
andK SBSs, each only serving one SUE in a given time slot of
subchannel allocation. Besides, over each subchannel, there
are K 2 channel matrices that need to be estimated, and each
channel matrix consists of MT × MR channel coefficients.
We assume that the feedback overhead of estimating each
channel coefficient is quantified to B bit, so the total feedback
overhead of estimating the perfect global CSI is NK 2MTMRB
bit.

Executing Algorithms 1 and 2 only require to estimate the
path loss from each SBS to the K − 1 SUEs it does not
serve, which requires a feedback overhead of (K − 1)2B bit.
Moreover, from steps 20-24 of Algorithm 3 we know that
the subchannel allocation for the groups will be performed in
α+1 procedures at most, which implies that each cluster per-
forming IA will be allocated with α+ 1 subchannels at most.
Therefore, executing Algorithm 3 only requires to estimate
the perfect CSI within each cluster over α + 1 subchannels
at most, which needs a feedback overhead not exceeding
8min(α + 1)M2MTMRB bit, where 8min =

⌈K
M
⌉
denotes

the minimum number of finally formed clusters performing
IA, and α + 1 =

⌈N
0

⌉
. So the total feedback overhead

required by the proposed solution does not exceed (K−1)2B+⌈K
M
⌉ ⌈N

0

⌉
M2MTMRB ≈ (K−1)2B+KM2MTMRB bit, which

is notably reduced compared with that required by estimating
the perfect global CSI especially when K is bigger.

VII. NUMERICAL RESULTS
In our simulation, all SBSs are deployed in a singlemacrocell,
and their locations are modeled as an independent homoge-
neous Poisson point process (PPP) with density λ = K

πr2
,

where r denotes the macrocell radius. Here it is noteworthy
that each SBS only serves one SUE in a given time slot of
resource allocation, so λ also represents the density of SUEs
performing IA. Table 2 lists the system parameters that keep
unchanged in the simulation. In the simulation, the algorithm
proposed in [38] and the formula given in [17] are respec-
tively utilized to determine the precoding and interference
suppression matrices of IA, which is also adopted in our
previous work [28]. This is because when the number of
users performing IA exceeds 3, there will not exist the closed
forms of precoding and interference suppression matrices of
IA [38]; besides, instead of designing the precoding and inter-
ference suppression matrices of IA, we focus on clustering
and subchannel allocation for the formed clusters performing
IA with limited subchannel resources to maximize the total
number of data streams in dense SCNs.

In the simulation, all SBSs are deployed in indoor environ-
ment, and the percentages of SUEs distributed in indoor and
outdoor environments are 80% and 20% [39], respectively.

Besides, in a given time slot of subchannel allocation, each
SBS only serves 1 SUE that randomly locates in a circular
disc around this SBS with an inner and outer radii of 3 m
and 10 m, respectively [40]. In this paper, we use the dual
strip model with urban deployment in [41] to model the
propagation environment. Firstly, when SBS k and SUE k
that is exclusively served by SBS k in a given time slot are
in the same apartment, PLkk is given by

PLkk (dB) = 38.46+ 20log10dkk + 0.7d2D, indoor + qLiw,

(23)

where dkk represents the distance between SBS k and SUE k ,
and d2D, indoor denotes the distance inside the apartment, and
q is the number of inner walls separating SBS k and SUE k ,
and Liw with a value of 5 dB denotes the penetration loss of an
inner wall. Besides, when SUE k is in outdoor environment,
PLkk becomes

PLkk (dB)
= max

(
15.3+ 37.6log10dkk , 38.46+ 20log10dkk

)
+ 0.7d2D, indoor + qLiw + Low, (24)

where Low with a value of 20 dB is the penetration losses
of an outdoor wall. When SBS m and SUE k that is not
served by SBS m are in the same apartment or SUE k is in
outdoor environment, the expression of path loss from SBS
m to SUE k , i.e., PLkm, is similar to that of PLkk in (23) or
(24), respectively. In addition, when SBS m and SUE k are
respectively in two different apartments, PLkm becomes

PLkm(dB)
= max

(
15.3+ 37.6log10dkm, 38.46+ 20log10dkm

)
+ 0.7d2D, indoor + qLiw + Low,1 + Low,2 (25)

where Low,1 and Low,2 are the penetration losses due to out-
door walls for the two apartments.

From Table 2 we know that the noise power at each
SUE over each subchannel is N0 · 1f = −121.4 dBm.
Therefore, the given threshold PL0 should meet that p

PL0
≥

−121.4 dBm. As p = 30 dBm, we have PL0 ≤ 151.4 dB.
However, due to the postprocessing of interference suppres-
sion matrices for performing IA at each SUE, the strength
of inter-cluster interference at each SUE also experiences a
certain degree of attenuation. Consequently, here PL0 is set

TABLE 2. System parameters.
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to 135 dB, which leaves some margin for the aforementioned
attenuation.

In the simulation, we compare the performances of fol-
lowing six schemes. Here it is worth mentioning that in
dense SCNs, using exhaustive search to find the optimal solu-
tion to problem (8) will lead to unaffordable computational
complexity. So we utilize Algorithms 1 and 2 to group all
SBS-SUE pairs into disjoint clusters, and then utilize exhaus-
tive search to obtain the optimal solution to the subproblem
of subchannel allocation for the formed clusters (OSAC),
i.e., subproblem (21), which can be regarded as an efficient
approximation of the optimal solution to problem (8).

1) OSAC.
2) Proposed Solution.
3) [28]+Alg. 3.
4) Algs. 1+2+[36].
5) Algs. 1+2+[37].
6) RandomClustering. All SBS-SUE pairs are randomly

grouped into disjoint clusters, each of which has a
size that meets constraint C3 of problem (8), and then
Algorithm 3 is utilized for subchannel allocation.

It is also noteworthy that the performance curve of OSAC
and those of five other solutions are obtained by taking
the average of 5 and 200 realizations, respectively. This is
because evaluating the performance of OSAC needs huge
time. In each realization, the distributions of all SBSs and
SUEs as well as the channel matrix gain between each SBS
and each SUE over each subchannel are varied. Accordingly,
the number of data streams achieved by each solution under
various parameters is not necessarily integers.

Fig. 7 shows the number of achievable data streams against
the number of SUEs, where N = 8, PL0 = 135 dB and
MT = 3. Here the number of achievable data streams in
the Y-axis is referred to as the total number of data streams
achieved by the SUEs that have been allocated with subchan-
nels in dense SCNs. As each SUE only has 1 data stream
requirement, from (2) we know that M = 4. When the
number of SUEs K increases from 30 to 60 with a step size

FIGURE 7. Number of achievable data streams vs. number of SUEs K .

FIGURE 8. Number of data stream guaranteed SUEs vs. number of SUEs K .

of 5, λ takes the values of 0.4246 × 10−3, 0.4954 × 10−3,
0.5662×10−3, 0.6369×10−3, 0.7077×10−3, 0.7785×10−3

and 0.8493 × 10−3, respectively. Firstly, we can observe
that the number of data streams achieved by OSAC, the pro-
posed solution and [28]+Alg. 3 increases with K but at a
much slower pace when K ≥ 45, and hardly increases
when K ≥ 55. The reason is that when K is relatively
small, e.g., K ≤ 45, the inter-cluster interference is rel-
atively weak, so each subchannel can be reused by more
clusters; otherwise, orthogonal subchannel allocation for dis-
joint clusters becomes dominant to mitigate the stronger
inter-cluster interference, so only 8 subchannels available
is not enough to support the rapid increase in the number
of achievable data streams. Furthermore, the proposed solu-
tion outperforms [28]+Alg. 3, but their performance gap
becomes smaller as K increases. We can also observe that
whenK ≤ 50, the performances of both Algs. 1+2+[36] and
Algs. 1+2+ [37] exhibit a linear increase but are still much
worse than that of proposed solution because the coloring
algorithms in both [36] and [37] allocate only one subchannel
to each cluster; when K > 50, Algs. 1+2+ [37] has a worse
performance than Algs. 1+2+ [36] as all vertices are not
sorted by the descending order of their degrees in the coloring
algorithms proposed by [37]. Finally, OSAC outperforms the
proposed solution especially when K is bigger; however,
it will require a much higher computational complexity.

Fig. 8 plots the number of data stream guaranteed SUEs
against the number of SUEs, where N = 8, PL0 = 135 dB
and MT = 3. Here the number of data stream guaranteed
SUEs is referred to as the number of SUEs that can achieve
the minimum data stream requirements in dense SCNs, i.e., d
simultaneously transmitted interference-free data streams
from their serving SBSs. Generally, the number of data stream
guaranteed SUEs achieved by all the five solutions increases
with K . Furthermore, even though K increases, the pro-
posed solution, [28]+Alg. 3 and Algs. 1+2+[36] enable
all SUEs to achieve satisfactory connectivity requirements;
however, when K > 50, this is unable to be guaranteed by
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FIGURE 9. Number of achievable data streams vs. number of subchannels
available N .

Algs. 1+2+[37] with only 8 subchannels available. Finally,
when K > 35, the solution of random clustering exhibits
the worst performance, and it only makes some of the
SUEs meet their connectivity requirements. This is because
the intra-cluster interference within each cluster formed by
the solution of random clustering may be weak, while the
inter-cluster interference tends to be strong enough, and more
clusters will be allocated with orthogonal subchannels for
inter-cluster interference mitigation, in this way, some clus-
ters cannot be allocated with even one subchannel.

It is noteworthy that when K is bigger, OSAC still has
a much higher computational complexity, which implies
that evaluating its performance will need huge time. Conse-
quently, K is set to a relatively small value (i.e., K = 35) in
the following simulation.

Fig. 9 investigates the number of achievable data streams
with respect to the number of subchannels available, where
K = 35, PL0 = 135 dB, MT = 3 and λ = 0.4954 × 10−3.
We can observe that the number of data streams achieved by
OSAC, the proposed solution, [28]+Alg. 3 and random clus-
tering almost exponentially increases withN . However, when
N ≥ 7, the number of data streams achieved by Algs. 1+2+
[36] and Algs. 1+2+[37] always keeps constant. The reason
is that the coloring algorithms proposed by [36] and [37]
require each cluster to be allocated with only one subchannel.
In addition, although the solution of random clustering mit-
igates some of the relatively weak inter-cluster interference
by orthogonal subchannel allocation, it enables each cluster
to be allocated with more subchannels as N increases, so it
outperforms bothAlgs. 1+2+[36] andAlgs. 1+2+[37] when
N ≥ 7. Finally, the performance gap between OSAC and
proposed solution becomes a little larger as N increase, but
the computational complexity of proposed solution is much
lower than that of OSAC.

Fig. 10 plots the number of achievable data streams against
the given threshold of path loss, where K = 35, N = 8,
MT = 3 and λ = 0.4954 × 10−3. As PL0 increases,

FIGURE 10. Number of achievable data streams vs. the given threshold of
path loss PL0.

FIGURE 11. Number of achievable data streams vs. the number of
transmit antennas at each SBS MT .

more inter-cluster interference which will be considered to
be strong enough is mitigated through allocating orthogo-
nal subchannels; therefore, the 8 subchannels are utilized
with a lower efficiency, and OSAC, the proposed solution,
[28]+Alg. 3 and random clustering experience significant
performance degradation. Besides, when 125 dB ≤ PL0 ≤

140 dB, the number of data streams achieved by Algs. 1+2+
[36] andAlgs. 1+2+[37] is always 35; however, whenPL0 >

140 dB, Algs. 1+2+ [37] becomes unable to support the
connectivity requirements for all SUEs only with 8 subchan-
nels. We can also notice that the proposed solution exhibits a
performance better than [28]+Alg. 3. This is mainly because
our clustering criterion in (15) and Algorithms 1 and 2 can
guarantee that the intra-cluster interference is strong enough,
which necessitates performing IA within each cluster; more-
over, instead of being a priori, the number of clusters formed
after Algorithms 1 and 2 is determined by the distributions of
dense SCNs, which can utilize the limited subchannels more
efficiently.

Fig. 11 presents the number of achievable data streamswith
respect to the number of transmit antennas at each SBS,where
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TABLE 3. Elapsed time of obtaining all the six solutions under various parameters (s).

K = 35, N = 8, PL0 = 135 dB and λ = 0.4954 × 10−3.
From (2) we know that when MT increases from 2 to 6, M,
i.e., the maximum cluster size, will increase from 3 to 7,
which indicates that each cluster can contain more SBS-SUE
pairs to perform IA. Note that in OSAC and proposed solu-
tion, it is necessary to exploit IA for intra-cluster interference
mitigation only when it is strong enough within each cluster;
however, the increase inMT has no influence on the strength
of intra-cluster interference. Accordingly, as MT increases,
few clusters will contain more SBS-SUE pairs to perform IA
in OSAC, proposed solution and [28]+Alg. 3 when K = 35,
and their performances are improved at a relatively slow pace
but still much better compared with that of random clustering.
In addition, [28]+Alg. 3 provides a performance that gradu-
ally approaches to that of proposed solution as MT becomes
bigger, and they exhibit almost the same performances when
MT ≥ 5. It is also noteworthy that the number of data
streams achieved by Algs. 1+2+ [36] and Algs. 1+2+ [37]
remains unchanged regardless of the increase inMT . Finally,
the proposed solution exhibits a performance much closer to
OSAC as MT increases, and it also requires a computational
complexity much lower than OSAC.

In Table 3, we list the elapsed time of obtaining all the
six solutions under various parameters. Note that same as
obtaining the performance curves Figs. 7 to 11, each elapsed
time of OSAC and those of five other solutions in the table
is obtained by taking the average of 5 and 200 realizations,
respectively. It can be observed that the elapsed time of
obtaining OSAC is much longer than five other solutions,
so OSAC is infeasible in practical communication systems.

Besides, the elapsed time of obtaining the proposed solution,
Algs. 1+2+ [36] and Algs. 1+2+ [37] is almost the same
under various parameters, and the elapsed time of obtaining
[28]+Alg. 3 is longer than that of proposed solution when
K ≥ 50. Finally, obtaining the solution of random clustering
need the shortest time, however, it offers almost the worst
performance under some parameters.

VIII. CONCLUSION
In this paper, we have allocated limited subchannel resources
based on IA with clustering to maximize the number of
data streams achieved by SUEs in dense SCNs while guar-
anteeing the data stream requirement for each SUE. Due
to the NP-hardness of corresponding optimization problem,
we have proposed to obtain its suboptimal but efficient solu-
tion based on graph theory through two phases: 1) clustering
for SUEs by recursively partitioning the constructed graph
which only requires to estimate the path losses from SBSs to
SUEs; and 2) subchannel allocation for the formed clusters
through the proposed graph coloring algorithm which only
requires to estimate the perfect CSI within each cluster. Each
phase required much lower complexity and notably reduced
feedback and would be executed by a central entity called
HeNB GW in practical communication systems. The compu-
tational complexity analysis has demonstrated that the com-
plexity required by the proposed solution is much lower than
that of the optimal solution obtained by exhaustive search.
Finally, numerical results have shown that the proposed solu-
tion provides a performance better than other related schemes
and close to the optimal solution.
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APPENDIX A
PROOF OF LEMMA 2
According to the definitions ofWCi in (18) and cut (Ci,V \ Ci)
in (20), we have∑

Ci⊆V

WCi =
∑

Ci⊆V

∑
k, l∈Ci

wkl

=

∑
Ci⊆V

( ∑
k∈Ci,m∈V

wkm −
∑

k∈Ci, q∈V \Ci

wkq

)
=

∑
Ci⊆V

∑
k∈Ci,m∈V

wkm −
∑

Ci⊆V

cut (Ci,V \ Ci) . (26)

Note that for a given vertex set V ,
∑

Ci⊆V
∑

k∈Ci,m∈V wkm
is a constant, which implies that when

∑
Ci⊆V WCi achieves

the maximum value,
∑

Ci⊆V cut (Ci,V \ Ci) will achieve the
minimum value. Hence the proof is completed. �

APPENDIX B
PROOF OF THEOREM 1
We first prove that when the weighted adjacency matrix of
an arbitrary subgraph partitioned from graph G , e.g., G1, has
at least one element with value −C0, the edge set corre-
sponding to its minimum cut computed by S-W algorithm
must contain at least one edge with weight −C0. Assume the
edge set corresponding to the minimum cut of subgraph G1
contains no edges with weight−C0. Therefore, the minimum
cut of subgraph G1 in this case is bigger than 0. However,
because −C0 is a sufficiently small negative number, the cut
of G1 will be much smaller than 0 when there is at least
one edge with weight −C0 in this cut, which contradicts
the initial assumption. So the number of edges with weight
−C0 in G1 decreases as the times of recursively execut-
ing steps 2-6 of Algorithm 1 increase. After finite times of
recursively partitioning graph G , there will be no edges with
weight −C0 in each obtained subgraph, which implies that
the path loss between any two vertices in each obtained
subgraph (i.e., a cluster) is smaller than or equal to PL0 after
Algorithm 1. �

REFERENCES
[1] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Update, 2017–2022, Cisco VNI Forecast, Cisco, Vis. Netw. Index,
San Jose, CA, USA, Feb. 2019.

[2] A. H. Jafari, D. López-Pérez, M. Ding, and J. Zhang, ‘‘Performance
analysis of dense small cell networks with practical antenna heights under
Rician fading,’’ IEEE Access, vol. 6, pp. 9960–9974, 2018.

[3] H. Tullberg, P. Popovski, Z. Li, M. A. Uusitalo, A. Höglund, Ö. Bulakci,
M. Fallgren, and J. F. Monserrat, ‘‘The METIS 5G system concept:
Meeting the 5G requirements,’’ IEEE Commun. Mag., vol. 54, no. 12,
pp. 132–139, Dec. 2016.

[4] J. Zhang, Y. Zhang, Y. Yu, R. Xu, Q. Zheng, and P. Zhang, ‘‘5G: A tutorial
overview of standards, trials, challenges, deployment, and practice,’’ IEEE
J. Sel. Areas Commun., vol. 35, no. 6, pp. 1201–1221, Jun. 2017.

[5] J. Chen, X. Ge, and Q. Ni, ‘‘Coverage and handoff analysis of 5G fractal
small cell networks,’’ IEEE Trans. Wireless Commun., vol. 18, no. 2,
pp. 1263–1276, Feb. 2019.

[6] M. Ding, D. López-Pérez, H. Claussen, and M. A. Kaafar, ‘‘On the fun-
damental characteristics of ultra-dense small cell networks,’’ IEEE Netw.,
vol. 32, no. 3, pp. 92–100, May/Jun. 2018.

[7] J. Shi, Z. Song, and Q. Ni, ‘‘Distributed resource allocation assisted by
intercell interference mitigation in downlink multicell MC DS-CDMA
systems,’’ IEEE Trans. Wireless Commun., vol. 16, no. 2, pp. 1250–1266,
Feb. 2017.

[8] X. Lu, Q. Ni, W. Li, and H. Zhang, ‘‘Dynamic user grouping and joint
resource allocation with multi-cell cooperation for uplink virtual MIMO
systems,’’ IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 3854–3869,
Jun. 2017.

[9] E. Hossain, M. Rasti, H. Tabassum, and A. Abdelnasser, ‘‘Evolution
toward 5G multi-tier cellular wireless networks: An interference manage-
ment perspective,’’ IEEE Wireless Commun., vol. 21, no. 3, pp. 118–127,
Jun. 2015.

[10] Y. Hao, Q. Ni, H. Li, and S. Hou, ‘‘Robust multi-objective optimization for
EE-SE tradeoff in D2D communications underlaying heterogeneous net-
works,’’ IEEE Trans. Commun., vol. 66, no. 10, pp. 4936–4949, Oct. 2018.

[11] V. R. Cadambe and S. A. Jafar, ‘‘Interference alignment and degrees of
freedom of the K -user interference channel,’’ IEEE Trans. Inf. Theory,
vol. 54, no. 8, pp. 3425–3441, Aug. 2008.

[12] N. Zhao, F. R. Yu, M. Jin, Q. Yan, and V. C. M. Leung, ‘‘Interference align-
ment and its applications: A survey, research issues, and challenges,’’ IEEE
Commun. Surveys Tuts., vol. 18, no. 3, pp. 1779–1803, 3rd Quart., 2016.

[13] C. M. Yetis, T. Gou, S. A. Jafar, and A. H. Kayran, ‘‘On feasibility of
interference alignment in MIMO interference networks,’’ IEEE Trans.
Signal Process., vol. 58, no. 9, pp. 4771–4782, Sep. 2010.

[14] R. Tresch and M. Guillaud, ‘‘Clustered interference alignment in large
cellular networks,’’ in Proc. IEEE 20th Int. Symp. Pers., Indoor Mobile
Radio Commun. (PIMRC), Sep. 2009, pp. 1024–1028.

[15] R. Tresch and M. Guillaud, ‘‘Performance of interference alignment in
clustered wireless ad hoc networks,’’ in Proc. IEEE ISIT, Jun. 2010,
pp. 1703–1707.

[16] Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Uni-
versal Terrestrial Radio Access Network (E-UTRAN) (Release 9), docu-
ment TS 36.300, 3rd Generation Partnership Project, Sep. 2013.

[17] S. Chen and R. S. Cheng, ‘‘Clustering for interference alignment in mul-
tiuser interference network,’’ IEEE Trans. Veh. Technol., vol. 63, no. 6,
pp. 2613–2624, Jul. 2014.

[18] N. Zhao, X. Zhang, F. R. Yu, and V. C. M. Leung, ‘‘To align or not to align:
Topologymanagement in asymmetric interference networks,’’ IEEE Trans.
Veh. Technol., vol. 66, no. 8, pp. 7164–7177, Aug. 2017.

[19] Y. Luo, T. Ratnarajah, J. Xue, and F. A. Khan, ‘‘Interference align-
ment in two-tier randomly distributed heterogeneous wireless networks
using stochastic geometry approach,’’ IEEE Syst. J., vol. 12, no. 3,
pp. 2238–2249, Sep. 2018.

[20] K. Wang, F. R. Yu, L. Wang, J. Li, N. Zhao, Q. Guan, B. Li, and Q. Wu,
‘‘Interference alignment with adaptive power allocation in full-duplex-
enabled small cell networks,’’ IEEE Trans. Veh. Technol., vol. 68, no. 3,
pp. 3010–3015, Mar. 2019.

[21] C. Qin, C.Wang, D. Pan,W.Wang, and Y. Zhang, ‘‘A cross time slot partial
interference alignment scheme in two-cell relay heterogeneous networks,’’
Appl. Sci., vol. 9, no. 4, p. 652, 2019.

[22] M. El-Absi, M. Shaat, F. Bader, and T. Kaiser, ‘‘Interference align-
ment with frequency-clustering for efficient resource allocation in cog-
nitive radio networks,’’ IEEE Trans. Wireless Commun., vol. 14, no. 12,
pp. 7070–7082, Dec. 2015.

[23] Y. Meng, J. Li, H. Li, and M. Pan, ‘‘A transformed conflict graph-
based resource-allocation scheme combining interference alignment in
OFDMA Femtocell networks,’’ IEEE Trans. Veh. Technol., vol. 64, no. 10,
pp. 4728–4737, Oct. 2015.

[24] H. Zhang, H. Li, and J. H. Lee, ‘‘Efficient subchannel allocation based on
clustered interference alignment in ultra-dense femtocell networks,’’China
Commun., vol. 14, no. 4, pp. 1–10, Apr. 2017.

[25] J. Ma, S. Zhang, H. Li, N. Zhao, and V. C. M. Leung, ‘‘Interference-
alignment and soft-space-reuse based cooperative transmission for multi-
cell massive MIMO networks,’’ IEEE Trans. Wireless Commun., vol. 17,
no. 3, pp. 1907–1922, Mar. 2018.

[26] R. Brandt, R. Mochaourab, and M. Bengtsson, ‘‘Distributed long-term
base station clustering in cellular networks using coalition formation,’’
IEEE Trans. Signal Inf. Process. Netw., vol. 2, no. 3, pp. 362–375,
Sep. 2016.

[27] J. Xiao, C. Yang, A. Anpalagan, Q. Ni, andM. Guizani, ‘‘Joint interference
management in ultra-dense small-cell networks: Amulti-domain coordina-
tion perspective,’’ IEEE Trans. Commun., vol. 66, no. 11, pp. 5470–5481,
Nov. 2018.

VOLUME 7, 2019 161847



H. Zhang et al.: Resource Allocation Based on Interference Alignment With Clustering for Data Stream Maximization in Dense SCNs

[28] H. Zhang, H. Li, J. H. Lee, and H. Dai, ‘‘QoS-based interference alignment
with similarity clustering for efficient subchannel allocation in dense small
cell networks,’’ IEEE Trans. Commun., vol. 65, no. 11, pp. 5054–5066,
Nov. 2017.

[29] M. Zhou, H. Li, N. Zhao, S. Zhang, and F. R. Yu, ‘‘Feasibility analysis
and clustering for interference alignment in full-duplex-based small cell
networks,’’ IEEE Trans. Commun., vol. 67, no. 1, pp. 807–819, Jan. 2019.

[30] T. Ding, M. Ding, G. Mao, Z. Lin, and D. López-Pérez, ‘‘Uplink perfor-
mance analysis of dense cellular networks with LoS and NLoS transmis-
sions,’’ IEEE Trans. Wireless Commun., vol. 16, no. 4, pp. 2601–2613,
Apr. 2017.

[31] A. Abdelnasser, E. Hossain, and D. I. Kim, ‘‘Clustering and resource
allocation for dense femtocells in a two-tier cellular OFDMA network,’’
IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1628–1641, Mar. 2014.

[32] K. Gomadam, V. R. Cadambe, and S. A. Jafar, ‘‘A distributed numerical
approach to interference alignment and applications to wireless interfer-
ence networks,’’ IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3309–3322,
Jun. 2011.

[33] S. A. Jafar and S. Shamai (Shitz), ‘‘Degrees of freedom region of the
MIMO X channel,’’ IEEE Trans. Inf. Theory, vol. 54, no. 1, pp. 151–170,
Jan. 2008.

[34] M. Stoer and F. Wagner, ‘‘A simple min-cut algorithm,’’ J. ACM, vol. 44,
no. 4, pp. 585–591, Jul. 1997.

[35] D. Brélaz, ‘‘Newmethods to color the vertices of a graph,’’Commun. ACM,
vol. 22, no. 4, pp. 251–256, Apr. 1979.

[36] Y. Lin, R. Zhang, C. Li, L. Yang, and L. Hanzo, ‘‘Graph-based joint
user-centric overlapped clustering and resource allocation in ultradense
networks,’’ IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 4440–4453,
May 2018.

[37] R. Wang, J. Wu, and J. Yan, ‘‘Resource allocation for D2D-enabled com-
munications in vehicle platooning,’’ IEEEAccess, vol. 6, pp. 50526–50537,
2018.

[38] S. W. Peters and R. W. Heath, ‘‘Interference alignment via alternating
minimization,’’ in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.
(ICASSP), Apr. 2009, pp. 2445–2448.

[39] Small Cell Enhancements for E-UTRA and E-UTRAN-Physical Layer
Aspects (Release 12), document 3GPP, TR 36.872, Dec. 2013.

[40] A. Abdelnasser, E. Hossain, and D. I. Kim, ‘‘Tier-aware resource alloca-
tion in OFDMA macrocell-small cell networks,’’ IEEE Trans. Commun.,
vol. 63, no. 3, pp. 695–710, Mar. 2015.

[41] Further Advancements for E-UTRA Physical Layer Aspects (Release 9),
document 3GPP, TR 36.814, Mar. 2017.

HAO ZHANG received the B.S. degree in applied
mathematics from Chang’an University, Xi’an,
China, in 2009, and the M.S. and Ph.D. degrees
in communication and information systems from
Xidian University, Xi’an, in 2012 and 2017,
respectively. From 2014 to 2016, he was a Visiting
Ph.D. Student with the Department of Electrical
and Computer Engineering, North Carolina State
University, Raleigh, NC, USA. He is currently a
Postdoctoral Researcher at the School of Marine

Science and Technology, Northwestern Polytechnical University, Xi’an. His
research interests include interference alignment, clustering, interference
management, and resource allocation in dense small cell networks and ship
networks under evaporation duct environment.

KUNDE YANG (M’13) received the B.S., M.S.,
and Ph.D. degrees in underwater acoustic engi-
neering from Northwestern Polytechnical Uni-
versity, Xi’an, China, in 1996, 1999, and 2003,
respectively. From 2006 to 2007, he was a Visit-
ing Scholar with the School of Earth and Ocean
Sciences, University of Victoria, Victoria, BC,
Canada. Since 2003, he has been with the School
of Marine Science and Technology, Northwestern
Polytechnical University, where he is currently a

Full Professor and the Director of the Department of Acoustic and Infor-
mation Engineering. His research interests include communication for ship
networks and microwave propagation in evaporation duct environment.

SHUN ZHANG received the B.S. degree in com-
munication engineering from Shandong Univer-
sity, Jinan, China, in 2007, and the Ph.D. degree in
communications and signal processing from Xid-
ian University, Xi’an, in 2013. He is currently an
Associate Professor with the State Key Laboratory
of Integrated Services Networks, Xidian Univer-
sity. His research interests include MIMO-OFDM
systems, relay networks, and detection and param-
eter estimation theory.

161848 VOLUME 7, 2019


