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ABSTRACT Magnetic resonance (MR) images have distinctive advantages in radiation treatment (RT)
planning due to their superior, anatomic and functional information compared with computed tomography
(CT). For the RT dose calculation, MR images cannot be directly used because of the lack of electron density
information. To address this issue, we propose to generate pseudo-CT (pCT) in terms of multiple matching
Dixon MR images to support MR-only RT, particularly in the challenging body section of the abdomen.
To this end, we design the dedicated multichannel residual conditional generative adversarial network
(MCRCGAN). The significance of our efforts is three-fold: 1) The MCRCGAN organically incorporates
multiple theories and techniques, such as multichannel residual network (ResNet) and conditional generative
adversarial network (cGAN), which facilitate its more authentic pCT generation thanmany existingmethods.
2) The usage of residual modules effectively deepens the network without performance degradation, and the
multichannel ResNet helps to simultaneously capture the substance of images, as extensively as possible,
which is implicitly contained in the multiple different MR images of the same subject. 3) Due to the
designed dedicated network structure, the MCRCGAN is capable of generating satisfactory pCTs under
the condition of limited training data as well as prompt prediction response. Experimental studies on ten
patients’ paired MR-CT images demonstrate the effectiveness of our proposed MCRCGAN model on both
the pCT generation quality and the performance stability.

INDEX TERMS Generative adversarial network (GAN), pseudo-CT, abdomen, deep learning.

I. INTRODUCTION
To facilitate reading and understanding, we first list themean-
ings of the primary abbreviations used throughout this paper
in Table 1.

Compared with computed tomography (CT), magnetic res-
onance imaging (MRI) has superior soft tissue contrast and is
therefore widely used in clinic diagnoses. Due to the lack of
electron density information, however, MR images are rarely

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongtao Hao.

used in isolation in RT planning. Instead, the combination of
CT andMR, i.e., their fusion image, is of great significance in
both clinical trials and diagnoses in which, for example, CT
shows clear bone, whereasMR exhibits high-contrast soft tis-
sue. For precise RT planning, the soft tissue contrast informa-
tion of MR can be transferred to a patient’s CT by registering
these two types of medical images. Nonetheless, such a trans-
fer could produce systematic errors due to the potential imper-
fections and uncertainties of image registration [1]–[3]. For
instance, Nakazawa et al. [2] demonstrated that the registra-
tion of MR and CT could introduce geometrical uncertainties
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TABLE 1. Common notations used throughout this manuscript.

of 0.5 to 2 mm in the brain. To avoid such uncertainties,
recent studies have focused on MR-only radiotherapy treat-
ment [4]–[6]. In this regard, effectively generating pseudo-
CT (pCT) from given MR images has received an increased
amount of research interest [13]. Simulating CT in terms of
given MR images can provide benefits from two aspects.
On the one hand, patients only need to take MR scans, which
allows them to avoid noticeable ionizing radiation. On the
other hand, because the generated pCT has the same spatial
coordinates as the original MR, the previously intractable
issue of imperfect registration no longer exists. In addition,
as we revealed in [3], it is important for the attenuation
correction (AC) [3], [7] of positron emission tomography
(PET) imaging in a hybrid PET/MR system to synthesize
a CT based on obtained MR images. PET AC requires the
electron density information that CT well indicates, while the
intensity value of one voxel in MR images is just dependent
on the hydrogen atom density in water.

The specific methods to generate pCT via given
MR can be roughly categorized into two groups: tra-
ditional technique-based and deep learning-based meth-
ods. Traditional techniques include the atlas-used [8], [9],
segmentation-used [13], [40], [41], and machine learning-
used [3], [10], [16], [42]. Deep learning methods have
indicated promising results on image analysis tasks.
Convolutional neural network (CNN) [18], [19], a well-
known method qualified for image analysis, is commonly
employed in multimodality medical image segmentation
due to its remarkable ability to capture the potential, com-
plex relationships between inputs and outputs. For exam-
ple, Zhang et al. [20] used a deep CNN to successfully
segment infant brain images. As a variation of CNN, fully
convolutional network (FCN) can handle image pixels and
thus achieves the level of semantic image segmentation.
In this regard, Sun et al. [21] used a multiple-kernel FCN
to automatically segment the liver tumor; Nie et al. [22] and

Fu et al. [23] proposed 2D/3D FCN models to estimate syn-
thetic CT fromMRI, respectively. Generative adversarial net-
work (GAN) [24] is another type of fully convolutional model
and has also been successfully utilized in image processing.
Isola et al. [25] proved that the GAN can produce near-real
results, such as generating objects from sketches and predict-
ing colors from grayscale images. Kohl et al. [26] used the
GAN to detect aggressive prostate cancer. Emamic et al. [27]
generated synthetic CTs from MRI using the GAN, and
Kazemifar et al. [28] studied the dosimetric accuracy in brain
MRI-only radiotherapy using synthetic CTs generated using
GAN.

Although existing MR-based, simulated CT generation
methods have proven successful for many body sections, such
as the brain and pelvis, they seldom show effectiveness in
the abdomen, wherein human breath and organ motion often
result in image artifacts that greatly increase the difficulty of
image analyses [3], [13].

In response to this challenge, in this paper, we introduce
a dedicated deep learning architecture, multichannel residual
conditional GAN (MCRCGAN for short), to generate pCT
from available multiple-modality MR images for the body
section of the abdomen. Our contributions lie in the following
three aspects:

(1) TheMCRCGAN organically incorporates multiple the-
ories and techniques, e.g., multichannel residual network and
conditional GAN. Consequently, the pCTs simulated by the
MCRCGAN appear more realistic than those simulated by
many existing methods.

(2) Residual modules help suppress the issue of perfor-
mance degradation while greatly deepening our network
structure. Additionally, multichannel ResNet is used to mine
the substance of multimodality input images as simultane-
ously and extensively as possible.

(3) Due to the dedicated network structure, the
MCRCGAN is able to output satisfactory pCTs under the
condition of limited training data as well as prompt prediction
response.

The remainder of this manuscript is organized as follows.
Related work, e.g., GAN and ResNet, is reviewed briefly in
Section II. The proposed MCRCGAN model is introduced
specifically in Section III. Experimental studies are presented
in Sections IV and V. Conclusions are given in Section VI.

II. RELATED WORK
A. GENERATIVE ADVERSARIAL NETWORK
Goodfellow et al. [24] first proposed the typical generative
adversarial network (GAN), which, in fact, has become a the-
oretical formula for trainingmodels for image simulation cur-
rently. A classic GAN consists of two antagonistic networks:
the generative network (G) and the discriminant network (D).
G inputs a random noise vector and outputs a simulated
image. D inputs the simulated image that is generated by G
and determines whether it is the real image or the fake one
from G. In recent years, many researchers have paid great

163824 VOLUME 7, 2019



K. Xu et al.: MCRCGAN-Leveraged Abdominal Pseudo-CT Generation via Dixon MR Images

FIGURE 1. The architecture of the generator G in the MCRCGAN. The numbers in each rectangle represent the kernel size, number of
kernels, and convolution stride, respectively.

attention to GAN, and numerous efforts have been conducted
to improve the quality and variability of the generated images
from GANs [30], [31].

Conditional GAN [32], [38] (cGAN), employed in this
study, is exactly one type of improved GAN. It also contains
two opposing networks. The generative network (G) takes
the input image x and outputs the generated image G(x, y),
in which y could be any conditional information, such as class
labels. The discriminant network (D) receives an input image
and distinguishes if it is the training image x or the synthe-
sized imageG(x, y) generated by the generative network (G).
The loss function of cGAN can be represented as

LcGAN = Ex,y∼Pdata(x,y)[log(D(x, y))]

+Ex,y∼Pdata(x,y)[log(1− D(G(x, y), y))] (1)

where G attempts tominimize the objective function, whereas
D attempts to maximize it.

B. RESIDUAL NETWORK
He et al. [29] proposed the residual network (ResNet), and
their group won the 2015 ILSVRC competition. Increasing
the depth of a neural network usually improves the perfor-
mance, and conversely, extensive blind deepening is prone
to gradient diffusion or gradient explosion. In this context,
the ResNet enlists residual blocks and shortcut connections
to alleviate the problems of gradient diffusion and gradient
explosion while deepening the network architecture.

III. THE PROPOSED MCRCGAN
To propose an effective deep learning architecture capable
of generating satisfactory pseudo-CT from multiple given
MR images, we design the dedicated MCRCGANmodel that
organically incorporates ResNet and multichannel cGAN.
The MCRCGAN consists of two parts: the generator (G) and
the discriminator (D). G generates the pCT image accord-
ing to the input multimodality MR images, while D gives
the probability that the pCT tends to the real CT. The loss
function, used in D to distinguish the generated pseudo-
image from the real one and to measure their mismatching
degree, is important for the MCRCGAN, as it determines,
to a great extent, the efficiency of weight updating during
training the network of the MCRCGAN. In view of this, both

FIGURE 2. The structure of the residual block. In_D and Out_D are the
dimensions of the input and output data, respectively. The stride is
2 when Out_D is equal to twice In_D or is 1.

the LcGAN loss defined in (1) and the L1 loss indicated in (2)
are employed in our study.

LL1 (G) = Ex,y∼Pdata(x,y)[||y− G(x, y)||1] (2)

That is, the ultimate loss function used in the MCRCGAN is:

LMCResCGAN = LcGAN (G,D)+ λLL1 (G) (3)

where λ > 0 is the trade-off factor [25].
Regarding the overall network architecture, the MCR-

CGAN adopts the multichannel ResNet as the generator,
as shown in Fig. 1. Specifically, the generator contains 1 con-
volution layer (Conv), 6 residual blocks (RB), and 3 deconvo-
lution layers (DEC). Each RB, as further indicated in Fig. 2,
is composed of 2 convolution layers (C), each of which fol-
lows 1 batch normalization layer (BN) [33] and 1 LeakyReLU
nonlinear activation function (LReLU) [34]. Batch normal-
ization is adopted to avoid internal covariate transfer during
the training procedure, and LReLU is capable of solving
the issues of gradient diffusion and gradient explosion when
optimizing the network. For the purpose of obtaining pCT
having the same size as the input images, the deconvolution
operation is utilized to upsample the intermediate images.
The discriminator in the MCRCGAN is generally a regular
CNN structure, as detailed in Table 2. It consists of layers
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TABLE 2. Structure of the discriminator D in the MCRCGAN.

TABLE 3. Patients’ MR-CT data for training and testing the MCRCGAN.

of input (IN), convolution (C), batch normalization (BN),
LReLU, and sigmoid loss.

IV. EXPERIMENT
A. SETUP
Ten sets of MR-CT images were provided by the Depart-
ment of Radiology, Case Western Reserve University. These
images were obtained from 10 volunteers using the modified
Dixon (mDixon) MR scan and 120-kV CT scan, respectively.
After image reconstruction, we acquired four different types
of MR images for each patient: in-phase (IP), opposed-phase
(OP), fat, and water. Table 3 lists the training and testing data
sets.

Before our experimental studies, each pair of MR-CT
images from each patient was subjected to deformable reg-
istration [39] to better match their spatial coordinates and to
unify their resolutions and fields of view.

To make full use of the training samples, particularly of
the available different types of MR images of each patient,
the four types of MR images − fat, IP, OP, and water − from
10 patients were simultaneously input into our MCRCGAN
model as the multichannel data, as illustrated in Fig. 1. Mean-
while, their corresponding CT image was recruited for the

FIGURE 3. Performance curves of five involved methods in terms of the
MAE and CC metrics, respectively.

discriminator to measure the performance of the generated
pseudo-CT via the enlisted loss function (see (3)). For the
purpose of further enlarging both the training samples and the
data diversity (namely, data augmentation), simple, random
image clipping was also used in our experiments. Specifi-
cally, every plane of MR images was randomly clipped into
many 256 × 256 data blocks, and then the input block size
became 256× 256× 4 after combining the four types of MR.
The leave-one-out strategy was adopted to train and test

our network. That is, any nine patients’ MR-CT image data
were taken as the input to train the network parameters, and
the remaining patient’s image data were adopted to test the
accuracy of our proposed model. For the purpose of perfor-
mance comparison, in addition to the proposed MCRCGAN,
two traditional machine learning methods − FCM [13] and
TFCM [35]− and two deep learning methods−VGG19 [36]
and ResNet [29] − were employed.

Our experiments were carried out on a workstation with an
Intel i7-6850K 3.60 GHz CPU, 128 GB RAM, Nvidia Titan
XP GPU, Ubuntu 16.04 (64-bit), and MATLAB 2016b. The
MCRCGAN is run in the Google TensorFlow 1.8.0 frame-
work. The number of training epochs was 100, the batch size
was 1, and the Adam random gradient descent method [37]
was enlisted to minimize the loss function.

B. VALIDITY METRICS
To measure the accuracy of all involved methods, we need to
compare their generated pCTs with the real CTs that were
obtained from the abdomens of all patients. To this end,
we first spliced all the pCT planes for each patient and then
regenerated a 3D volume. The metrics of mean absolute error
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TABLE 4. Quantitative comparisons of the proposed MCRCGAN and the other competitors.

(MAE, defined in (4)) and Pearson correlation coefficient
(CC) were calculated to quantitatively assess the performance
of all methods.

MAE =
1
N

∑N

i=1
|CT (i)− sCT (i) | (4)

whereN is the total voxel number in the CT volume andCT (i)
and sCT (i) denote the intensity value of voxel i in the real CT
and pCT, respectively. Smaller MAE values indicate better
quality of pCT. The value of CC is within [−1, 1], and the
closer its absolute value is to 1, the stronger the correlation is.

C. RESULTS
After separately running FCM, TFCM, VGG19, ResNet, and
the MCRCGAN with the experimental data listed in Table 3,
the quantitative results obtained are listed in Table 4, mea-
sured in terms of the MAE and CC metrics. Based on these
results, we illustrate the performance curves for all involved
methods in Fig. 3. For the pCTs output by these 5 methods,
in view of the limitation of paper length, we only present
the outcomes on Patient 4, as shown in Fig. 4. To distinctly
demonstrate the advantages of our proposedmethod, the aver-
age percentage improvements of the MCRCGAN against the
other methods on all patients are further indicated in Table 5.

TABLE 5. The average percentage improvements of the MCRCGAN (%).

V. DISCUSSION
As revealed in Table 4, the MCRCGAN achieves con-
siderable performance improvements versus traditional
machine learning methods, such as FCM and TFCM.
Regarding the deep learning methods, the MCRCGAN sur-
passes VGG19, particularly in terms of the MAE index.
Compared with ResNet, the MCRCGAN also generally
exhibits better or comparable performance. In addition,
as shown in Fig. 3, the MCRCGAN shows preferable per-
formance stability compared with the other four approaches
through the 10 patients’ image data.

Fig. 4 shows that both FCM and TFCM, two conventional
fuzzy clustering approaches, do not work correctly on bone.
In contrast, the produced pCT of theMCRCGAN is distinctly
clearer than the others, especially on the bone tissue.
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FIGURE 4. Abdominal real CT and pCTs generated by five methods on Patient 4.

In contrast to traditional neural networks that usually
require large numbers of training samples, ourMCRCGAN is
capable of producing acceptable pCTs with a limited quantity
of training data.

Moreover, one of the advantages of the MCRCGAN is
that it can be deployed quickly. Although we currently spend
approximately 2 hours to train the network, this process
can be accelerated using multiple GPUs. For a new patient,
only approximately 3 seconds are needed to obtain the pCT
through thewell-trainedMCRCGANmodel, and this benefits
clinical applications to a certain extent.

VI. CONCLUSION
In this paper, we present the deep learningmodelMCRCGAN
based on cGAN and multichannel ResNet to generate
abdominal pseudo-CT from multiple given MR images.

Experimental studies demonstrate that our proposed method
is able to estimate excellent pCT with a limited number of
training samples as well as a relatively prompt prediction. The
high-quality pCT generation together with low computational
costs ensures the practicability of clinical applications of our
method, especially for the challenging abdomen.

In the near future, one pathway could be used to fur-
ther improve the accuracy of the proposed MCRCGAN, that
is, to train three different MCRCGAN models from three
directions, transverse, coronal, and sagittal, on each patient’s
MR volumes according to the corresponding image planes.
Then, for a new patient, each of the obtained MCRCGAN
models would output an intermediate pCT, and the even-
tual pCT would be regenerated by properly assembling
these intermediate pCTs, such as via the weighted average
strategy.
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