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ABSTRACT Pixel-domain weighting methods for multiple-exposure blending can efficiently remove noise
and under-/over-exposed pixels simultaneously in high dynamic range (HDR) image generation. Various
types of noise such as non-Gaussian noise, e.g., Poisson, impulse noise, and pixel saturation, are often
superimposed to multiple-exposure images taken with a high ISO setting in a low-light condition. Because
almost all existing methods assume Gaussian noise, these methods cannot sufficiently reduce these types
of noise. To achieve high-quality HDR image generation in such difficult conditions, we propose a novel
multiple-exposure blending method in which image blending is performed in a wavelet domain so as to
enhance the denoising performance. In addition, the Huber loss function is utilized as a fidelity measure in
blending to make the method robust against outliers. We also introduce an efficient algorithm based on a
primal-dual splitting method for solving our optimization problem. The experimental results demonstrate
the advantages of the proposed method over several conventional methods.

INDEX TERMS Exposure blending, wavelet transform, convex optimization, total variation, primal-dual
splitting.

I. INTRODUCTION
A. BACKGROUND
The objective of high dynamic range (HDR) imaging is
to represent the amount of light in a scene with a broad
dynamic range, and it is applied to various fields such as
computer graphics, medical imaging, in-vehicle cameras, and
surveillance systems. Multiple-exposure blending is the most
standard approach for HDR imaging because it can easily
generate HDR images by blending a set of multiple-exposure
images captured with a consumer camera [1]–[14].

High ISO shooting is a promising approach in taking
multiple-exposure images for HDR image generation. This
approach enables us to take ghost-free images, but the images
are contaminated by heavy noise. Hence, image-blending
methods with noise removal have been studied [15]–[22].

However, these blending methods have a limitation: they
assume Gaussian noise. In a low-light condition, observed
images taken with a high ISO setting would be degraded by
various types of noise like Gaussian noise, Poisson noise,
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impulse noise, and under-/over-saturated pixels, in which the
statistical properties are different according to exposure time.
The noise included in an HDR image obtained by blending
these images occurs according to an unknown distribution,
and it is difficult to suitably model by a specific distribu-
tion and design the fidelity of an HDR image. In addition,
the noise removal enhances the dynamic range of an image,
which is usually defined by the ratio between the maximum
achievable signal intensity and the maximum level of camera
noise, and thus sensor noise reduces the dynamic range.
Therefore, noise removal techniques play an important role
in HDR imaging.

B. RELATED WORK
Simply taking the mean of multiple images can help to
reduce the amount of random noise. Several authors have
investigatedmore effective exposure-blendingmethods based
on pixel-domain weighting [4]–[10], [12], [14]. To avoid
blur and ghost artifacts, the use of burst images taken with
a short-exposure and a high ISO setting is an effective
approach [7]–[10]. However, dozens of images are required
to generate a high-quality image. A pixel-domain weight
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FIGURE 1. Examples of multiscale image-blending methods applied to
noisy multiple-exposure images taken with ISO 12800 and −2,0, and 2
EV difference: (from left to right) exposure fusion [25], wavelet-based
fusion [29], and ours.

optimization method for exposure blending was proposed
in [13]. In this method, an HDR image is generated by the
weighted sum of a few input images with optimal weights
defined for each pixel, where the weights are determined
by alternately solving an optimization problem with total
variation regularization [23].

However, when input images are taken with a high ISO
setting in a low-light condition, almost none of the existing
methods yield desired results due to the inappropriate mod-
eling discussed in the previous section. If the luminance of
each exposure image is uniformly increased (or decreased)
due to noise, a noise-free desired pixel cannot be obtained.
This is because a blended pixel is obtained by the convex
combination of noisy inputs, and thus it is impossible to
sufficiently reduce noise, especially in the case of a small
number of images.

Multiscale image-blending methods have been intro-
duced to generate natural and high-contrast images from
multiple-exposure images [11], [24]–[27] or multi-modal
medical images [28], [29]. The weight maps for blending are
heuristically calculated without optimization in most meth-
ods. The purpose of them is to enhance the amplitude of
image gradients and contrast, and thus noise tends to be
enhanced (see Fig. 1).

There have been several attempts to handle the noise
removal problem by deep convolutional neural networks
(CNN) [30]–[33]. Learning-based methods are fragile to
degradation not found in a training data set. When remov-
ing noise from HDR images using a learning (CNN)-based
method, it is difficult and impractical to construct learning
data sets and networks. For example, since exposure time,
noise variance and characteristics vary greatly depending on
scenes, it is necessary to construct a plurality of networks suit-
able for each scene and appropriately replace them according
to an input scene.

C. CONTRIBUTION
In this paper, we propose a novel multiple-exposure blend-
ing method for HDR image generation. Our method com-
pounds multiple-exposure images in a wavelet domain.
Exposure blending in the wavelet domain can increase the
degree of freedom in designing weights and enhance the
denoising capability. The subbands yielded by the wavelet

transform are combined as aweighted sum,where theweights
used in blending are determined by solving a proposed convex
optimization problem. One of the features in our method
is that we evaluate data fidelity by using the Huber loss
function [34], which reduces the influence of various out-
liers [35]–[37]. The optimal solution of the proposed opti-
mization problem can be found via the primal-dual split-
ting (PDS) algorithm [38].

The contributions of this paper are as follows:
1) Weight optimization in the transform domain: Input

images are decomposed by the wavelet transform, and
then each subband is independently combined by a
weighted sum. The weights are defined for all the coef-
ficients of each subband, and then its optimal values are
estimated by solving a proposed convex optimization
problem so as to reduce noise. Ourmethod significantly
increases the degree of freedom in the weighted sum
thanks to weight optimization, leading to much better
blending.

2) Robust data fidelity: As a data fidelity term, we use
the Huber loss function, which is robust to outliers.
Various types of noise, such as Gaussian, Poisson,
impulse noise, and pixel-saturation, are contaminated
in an HDR image, especially in a low-light condi-
tion. The `2 data fidelity used in previous methods,
e.g., [13], is sensitive to such non-Gaussian noise,
and so it cannot reduce noise sufficiently. In contrast,
the use of theHuber loss function enables us to generate
a high-quality HDR image in such cases.

The remainder of the paper is organized as follows.
In Section II, we present mathematical preliminaries and
the PDS algorithm. In Section III, we propose a novel
multiple-exposure blending method.1 In Section IV, we show
several examples to confirm the effectiveness of our method,
where we compare it with conventional exposure-blending
methods and denoising methods. Finally, Section V con-
cludes the paper.

II. PRELIMINARIES
A. PROXIMAL TOOLS
The proximity operator [40] is a key tool of proximal splitting
techniques. Let x ∈ RN be an input vector. For any γ >

0, the proximity operator of a proper lower semi-continuous
convex function f over RN is defined by

proxγ f (x) := arg min
y∈RN

f (y)+
1
2γ
‖x− y‖22. (1)

For a given non-empty closed convex set C, the indicator
function of C is defined in [41], [42] by

ιC(x) :=

{
0, if x ∈ C,
+∞, otherwise.

(2)

1The preliminary versions of this work, without the extension of trans-
formed domain exposure blending, several generalizations, mathematical
details, new applications, or comprehensive experiments, have appeared in
conference proceedings [39].
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FIGURE 2. The flow of the proposed method.

The proximity operator of this function is expressed as

proxιC (x) = arg min
y∈RN

ιC(y)+
1
2γ
‖x− y‖22. (3)

The solution of (3) should be in the set C and minimize the
term ‖x − y‖22. Thus, for any index γ > 0, the proximity
operator of ιC is a projection onto C, i.e.,PC(x) = proxγ ιC (x).

B. PRIMAL-DUAL SPLITTING ALGORITHM
The PDS method [38] is well known as one of the most
flexible solvers for convex optimization. It finds an optimal
solution of a convex optimization problem of the form

min
x
F(x)+ G(x)+ H (Lx), (4)

where F , G, and H are proper lower semi-continuous convex
functions and L is a linear operator. The PDS algorithm
iteratively computes the two proximity operators⌊

x(τ+1) = proxγ1G
(
x(τ ) − γ1∇F

(
x(τ )

)
− γ1L∗y(τ )

)
,

y(τ+1) = proxγ2H∗
(
y(τ ) + 2γ2Lx(τ+1) − γ2Lx(τ )

)
,

(5)

where ∇F is the gradient of F and L∗ is the adjoint of L. The
operator proxγ2 H∗ can be computed by proxH/γ2 as

proxγ2H∗ (z) := z− γ2proxH/γ2

(
z
γ2

)
. (6)

Under appropriate conditions for γ1 and γ2, the sequence
(x(•))•∈� weakly converges to an optimal solution of (4)
(see [38] for more details).

III. PROPOSED METHOD
A. OUTLINE
Figure 2 shows the flow of the proposed method. Our objec-
tive is to simultaneously perform exposure blending and noise
removal. The proposed exposure blending is performed in a
wavelet domain.2 To obtain an initial HDR image, we use the
conventional exposure-blending method [2]. We assume lin-
earized multiple-exposure images as input, which are appro-
priately scaled by exposure ratio. Optimal weight maps that
efficiently reduce noise are obtained by solving a proposed
weight optimization problem with an initial HDR image

2Note that other transformation techniques, e.g., discrete cosine transform
(DCT) and curvelet transform [43], can be used in the same manner.

and wavelet-transformed images. After image blending with
these weight maps and applying an inverse wavelet transform
to it, we obtain a noiseless HDR image.

B. TRANSFORMED-DOMAIN EXPOSURE-BLENDING
MODEL
Let uk ∈ R3N (k = 1, . . . , K ) and r ∈ R3N be linearized
color multiple-exposure images (N and K are the number of
pixels and images, respectively) and a color HDR image. In
addition, let 8 ∈ R12N×3N be a forward transform, which
performs a first-level shift-invariant discrete wavelet trans-
form [44] for a color image, and 9 ∈R3N×12N be an inverse
transform, which performs an inverse shift-invariant discrete
wavelet transform, that satisfies 98= I, where I ∈ R3N×3N

is the identity matrix. Our exposure-blending model defined
in the irradiance domain is expressed as

r = 9W
[
(8u1)> . . . (8uK )>

]>
, (7)

W : =
[
diag(w1) . . . diag(wK )

] (
∈ R12N×12KN

)
, (8)

wherewk ∈R12N (k=1, . . . , K ) are the weight maps, which

are denoted by wk :=

[
w>k,LL w>k,LH w>k,HL w>k,HH

]>
(∈

R12N , wk,? ∈R3N , ?∈{LL, LH , HL, HH}), and diag(wk ) ∈
R12N×12N (k = 1, . . . , K ) are its diagonal matrices. Note
that these are normalized as

∑
k wk,i = 1∀i. When all the

elements of w are 1
K , the weighted sum of them equals the

simple average of the K images. The transpose of a vector or
a matrix is defined by (·)>.
Letting vk ∈ R3N (k = 1, . . . , K ) be observed

multiple-exposure images, we consider the following obser-
vation model

vk = Dk (uk + nk) , (9)

where nk ∈ R3N and Dk (k = 1, . . . , K ) are added white
Gaussian noise (AWGN) and non-Gaussian noise contami-
nation processes.

In the existing pixel-domain weighting methods [1]–[3],
[5], weight maps are calculated by using the weight function,
which is specified to be small for pixel values near 0 and 1 and
high for the middle intensities, where the dynamic range of
images are normalized in [0, 1]. A typical weight function
wc(·) introduced in [2] is given as

wc(x) :=

{
2x, if x ≤ 0.5,
2(1− x), if 0.5 < x.

(10)

The role of the weight is to discard saturated pixels. The
region where the pixel values are close to 0 or 1 is backed
up by other exposure images with larger weights. In the con-
ventional methods, the weighting functions are built based on
the assumption that middle intensities around 0.5 have high
reliability for irradiance estimation. In contrast, our method
defines the weights for subbands in the wavelet domain,
which are determined so as to sufficiently reduce noise.
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C. PROBLEM FORMULATION
By introducing pk := 8uk

(
∈ R12N

)
(k = 1, . . . , K ), our

exposure-blending model (7) is rewritten as

r = 9Pw := 9

{
K∑
k=1

pk ⊗ wk

}
, (11)

where w =
[
w>1 . . . w>N

]>
is the vectorized form of 4K

weight maps for the four subbands of the K images, and
P∈R12N×12KN is denoted by P :=

[
diag(p1) . . . diag(pK )

]
.

The notation ⊗ denotes the element-wise multiplication.
Our aim is to find a set of weight maps w∗ such that the

noise of the reconstructed image r is relieved. The proposed
optimization problem for a set of weight maps w in the
wavelet domain is defined by

min
w

ρδ,r(9Pw)+ α‖9Pw‖TV,

s.t. w ∈ C,
K∑
k=1

wk,LL ∈ E,

K∑
k=1

wk,LH ∈ D,

K∑
k=1

wk,HL ∈ D,
K∑
k=1

wk,HH ∈ D, (12)

where α is the balancing weight for the two terms. We name
this problem as the transformed-domain Huber loss TV (TD-
HLTV) weight optimization.

The first term in (12) is a data-fidelity term, which is
characterized by the Huber loss function [34]:

ρδ,r(x) :=
3N∑
n=1

Hδ(xn − rn), (13)

where

Hδ(x) :=


x2

2
, if |x| ≤ δ,

δ|x| −
δ2

2
, otherwise.

(14)

This function acts as a quadratic function for small values and
a linear function for large values, where δ is a thresholding
parameter.

The second term in (12) is the total variation (TV) [23],
[45]–[48] regularization term, which represents the charac-
teristic of local smoothness. By letting Dv and Dh ∈ RN×N

be the vertical and horizontal first-order differential opera-
tors, respectively, with Neumann boundaries, the differential
operator is expressed by D1 := [D>v D>h ]

>
(
∈ R2N×N

)
for a vectorized gray image with N pixels and D :=

diag(D1,D1,D1)
(
∈ R6N×3N

)
3 for a vectorized color image

x ∈ R3N , and thus the TV is defined as [49]–[52]

‖x‖TV := ‖Dx‖1,2. (15)

3The function diag(D1,D1,D1) denotes the block-diagonal matrix.

FIGURE 3. Example of multiple-exposure blending: The blue, green, and
red lines indicate noisy multiple-exposure image signals, and its
LL-subband signals are shown by dotted lines with the same colors. The
black line indicates a noise-free HDR image signal. The values in the HDR
image (black plot) denoted by the arrows are not restored by the
weighted sum of the input images in the image domain because the sign
of noise in the three signals are same, and all the weight values are
positive numbers. In contrast, those values can be restored by the
weighted sum of the LL-subbands.

The convex sets C, E , and D are defined as

C : = {x ∈ �12KN
| xn ∈ [0, 1] (n = 1, · · · , 12KN )},

E : = {x ∈ �3N
| |xn − 1| ≤ ξ (n = 1, · · · , 3N )},

D : = {x ∈ �3N
| xn ∈ [0, 1] (n = 1, · · · , 3N )},

where the first and third convex sets are defined with
different-dimension vectors that are essentially the same. By
the constraints in (12), all the weights are restricted to fall
within the range of [0, 1], and furthermore, the sum of the
K weights are restricted to be in the range of [0, 1] for the
subbands LH , HL, and HH . Those constraints implicitly
induce the energy reduction of high-pass components for
the blended image. That is, it allows the derivation of the
weights that hardly reflect the high-frequency energy of all
K input pixels corresponding to the ideally smooth regions,
yielding a smooth image. For the LL-subband, the sum of the
K weights should ideally be close to 1 to preserve the energy.
In our approach, a tolerable error ξ is set in consideration of
calculation error.

Remark (on the objective function (12))
• Weight optimization in the transform domain: We
consider multiple-exposure blending in the trans-
form (wavelet) domain to overcome the drawback of
the blending in an image domain [1]–[3], [13]. The
major drawback of the image domain approach is that
it strictly limits the possible range of pixel values in r,
e.g., if all the K pixels to be combined have negative
(or positive) noise values, an ideal pixel value cannot
be recovered. Figure 3 shows an example of exposure
blending with three exposure images. In Fig. 3, noisy
multiple-exposure image signals and a noise-free HDR
image signal are shown, in which the noisy images
were taken with ISO 12800, and the HDR image was
reconstructed by applying the simple weighted sumwith
the weight function (10) to a set of input noise-free
exposure images taken with ISO 100. The values in the
HDR image (black line) denoted by the arrows cannot

VOLUME 7, 2019 162285
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FIGURE 4. Multiple-exposure blending in a low-light condition: Absolute difference image was obtained by calculating the absolute
difference between a noise-free and a noisy HDR image, in which each HDR image was reconstructed by the weighted sum of a set of
noise-free (or noisy) multiple-exposure images taken with ISO 100 (or 12800). Some closeup local patches are shown, which were
normalized by the maximum absolute value of each patch.

be restored by the weighted sum of the noisy exposure
images because the sign of noise in the three signals are
same, and all the weight values are positive numbers.
Thus, the simple convex combination cannot represent
signals outside the input signal range. If image blending
is performed in a wavelet domain, those values can often
be represented by the weighted sum of LL-subbands
(see Fig. 3). In addition, by independently combining
the scaling and wavelet coefficients, the representation
ability of complex details is enhanced in image blending.

• Huber loss-based reconstruction error:We assume that
a set of multiple-exposure images uk (k = 1, . . . ,K )
is given and has already been linearized by photometric
calibration. As an input, we prepare a noisy HDR image
r by applying the simple weighted sum with the weight
function (10) to the image set uk (k = 1, . . . ,K ). We
also assume that the HDR image r contains additive
Gaussian noise in the regions where all the K pixels
to combine are not saturated. For regions with satu-
rated pixels in at least a single image, reconstruction
errors may become large. Pixel values in bright regions
are likely to saturate due to noise contamination and
clipping. Furthermore, unknown non-Gaussian noise is
superimposed to an image in photographing under a
low-light condition. Figure 4 shows an example of the
absolute difference between noise-free and noisy HDR
images. One observes from the figure that it is obvi-
ously inappropriate to simply approximate the recon-
struction errors as additive white Gaussian noise. Thus,
penalizing the error by the `2-norm, which is based
on a likelihood function of the Gaussian distribution in
the Bayesian context, is not appropriate because this
norm is significantly influenced by large errors (i.e.,
outliers). Instead of the `2-norm, the proposed method
uses the Huber loss function [34] to effectively penalize
the errors (the Huber loss function is depicted in Fig. 5).
Because the function involves a quadratic function near
the origin and a linear one away from it, it is robust to
outliers.

FIGURE 5. Fidelity functions: The blue dashed line and the red line
indicate the `2-norm and the Huber loss function, respectively, where δ is
a parameter of the Huber loss function, which determines the boundary
between quadratic and linear parts.

D. REFORMULATION AND OPTIMIZATION
By using the indicator functions of C, E , and D, the
TD-HLTV weight optimization problem (12) is reformulated
into an unconstrained problem

min
w

ρδ,r(9Pw)+ α‖D9Pw‖1,2 + ιC(w)

+ιE (ELLw)+
∑

z∈{LH ,HL,HH}

ιD(Ezw), (16)

where a matrix ELL ∈ R3N×12KN computes the sum of the K
subbands for LL, and the same notation is used for subbands,
LH , HL, and HH , which are defined as

ELL := [Id O O O Id O O O . . . Id O O O],

ELH := [O Id O O O Id O O . . . O Id O O],

EHL := [O O Id O O O Id O . . . O O Id O],

EHH := [O O O Id O O O Id . . . O O O Id ],

where Id ∈ R3N×3N and O ∈ R3N×3N are the identity and
the zero matrices. For solving the convex optimization prob-
lem (16), we use the PDS method described in Section II-B.
The correspondence with each term of the objective function
defined in (4) is given as follows:

F(x) := ρδ,r(9Px),

162286 VOLUME 7, 2019
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FIGURE 6. Input scene images for artificial noise removal experiments: (from left to right) scenes 1, 2, 3, 4, and 5.

FIGURE 7. Blending results and their NSNR for Gaussian noise with σ2 D 8.0 · 10−3 : (from left to right) Debevec and Malik [2], conventional
weight optimization method [13], ‘‘BM3D+HDR’’, ‘‘BM3D+MEI’’, and ours.

G(x) := ιC(x),

H (Lx) := α‖D9Px‖1,2+ιE (ELLx)+
∑

z∈{LH ,HL,HH}

ιD(Ezx),

L :=


D9P
ELL
ELH
EHL
EHH

 (∈ R18N×12KN ).

From Section II-B, an optimal solution can be obtained by
alternately calculating the following equations:⌊
w(t+1)

=proxγ1ιC
(
w(t)
−γ1P>8∇ρδ,r

(
9Pw(t)

)
−γ1L>y(t)

)
,

y(t+1) = proxγ2H∗
(
y(t) + 2γ2Lw(t+1)

− γ2Lw(t)
)
,

(17)

where y := [y>1 y>2 y>3 y>4 y>5 ]
> (y1 ∈ R6N and

yj ∈ R3N for j = 2, . . . , 5). The Huber loss function ρδ,r
is differentiable, and the computation of its gradient in (17)
is given for n = 1, . . . , 3N by [37] as

[∇ρδ,r(x)]n =


xn − rn, if |xn − rn| ≤ δ,
δ, if xn − rn > δ,

−δ, if xn − rn < −δ.

(18)

The operator proxγ2 H∗ in (17) is independently computed
w.r.t. y1, y2, y3, y4, and y5 as follows:

y(t+1)1 = proxγ2‖·‖∗1,2

(
y(t)1 +γ2D9P

(
2w(t+1)

−w(t)
))
, (19)

y(t+1)2 = proxγ2ι∗E

(
y(t)2 + γ2ELL

(
2w(t+1)

− w(t)
))
, (20)

VOLUME 7, 2019 162287
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FIGURE 8. Blending results and their NSNR for poisson noise: (from left to right) Debevec and Malik [2], Conventional weight optimization
method [13], ‘‘BM3D+HDR’’, ‘‘BM3D+MEI’’, and ours.

y(t+1)3 = proxγ2ι∗D

(
y(t)3 + γ2ELH

(
2w(t+1)

− w(t)
))
, (21)

y(t+1)4 = proxγ2ι∗D

(
y(t)4 + γ2EHL

(
2w(t+1)

−w(t)
))
, (22)

y(t+1)5 = proxγ2ι∗D

(
y(t)5 +γ2EHH

(
2w(t+1)

−w(t)
))
. (23)

The proximity operator for the `1,2-norm is given by a group
soft-thresholding, for i = 1, . . . ,mN , as [50], [52]:

[proxγ2‖·‖1,2 (x)]i = max

1− γ
m−1∑

j=0

x2i+jN

− 1
2

, 0

 xi,

(24)

where m is the number of grouping pixels, and we set m =
6 (3 channels × 2 directions of the gradient) in our case.
The proximity operators for ιC(x) is calculated for i =
1, . . . , 12KN by

[proxγ2ιC (x)]i =


0, if xi < 0,
xi, if 0 ≤ xi ≤ 1,
1, if xi > 1,

(25)

and the proximity operator for ιE (x) is calculated for i =
1, . . . , 3N by

[proxγ2ιE (x)]i =


1− ξ, if xi < 1− ξ,
xi, if 1− ξ ≤ xi ≤ 1+ ξ,
1+ ξ, if xi > 1+ ξ,

(26)

where ξ is a specific tolerable error. The proximity operator
for ιD(x) is also computed by (25) for i = 1, . . . , 3N .
Once the optimal solution w∗ is obtained, we generate a

noiseless HDR image by r∗ = 9Pw∗.
Let us discuss the computational cost of our algorithm.

At the update of w(t+1), the products by 9P and P>8 can
be computed by using the shift-invariant wavelet transform
with an O(N logN ) cost (see [44], [53], [54]). The operator
proxγ1ιC and the gradient of the Huber loss function ∇ρr are
computed with an O(N ) cost. Hence, the cost of the update
of w(t+1) is O(N logN ). At the update of y(t+1), we need to
calculate the proximity operators of the `1,2-norm and the
indicator functions ιE and ιD. These costs are O(N ). Hence,
the cost of each iteration of our algorithm is O(N logN ).

IV. EXPERIMENTAL RESULTS
To show the robustness and validity of the proposed
multiple-exposure blending method, we applied it to
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FIGURE 9. Blending results and their NSNR for mixed Gaussian-impulse noise: (from left to right) Debevec and Malik [2], Conventional weight
optimization method [13], ‘‘BM3D+HDR’’, ‘‘BM3D+MEI’’, PD-HLTV weight optimization, and TD-HLTV weight optimization (ours).

multiple-exposure images artificially degraded by various
types of noise that may occur when taking photographs
under low-light conditions and compared our method with
several conventional methods. Furthermore, we show the
denoising performance of the proposed method to apply it
multiple-exposure images taken with a high ISO setting.4

Note that we assumed scenes were static and carefully pho-
tographed inputmultiple-exposure images so as not to capture
moving objects and scene luminance variations.

A. ARTIFICIAL NOISE REMOVAL
For quantitative evaluation, we generated ‘‘Ground truth’’
HDR images as follows:

(i) Acquisition of input multiple-exposure images: To sup-
press sensor noise, we took multiple-exposure images
with ISO 100 and a long shutter speed. Three images,
i.e., short-, middle-, and long-exposure images, were
obtained by varying the shutter speed with −2, 0, and
2 EV difference while other camera parameters were
fixed. To avoid camera shake, we used a tripod.

(ii) Generation of noise-free HDR images: The images
obtained in step (i) were simply combined by Debevec

4In these experiments, since all input images were taken with RAW data
format, we did not perform photometric calibration to them. This is because
the RAW images have linear pixel values w.r.t. scene irradiance.

and Malik’s method [2] with the weight function (10),
yielding noise-free HDR images.

Figure 6 shows some of the Ground truth images.5 The pur-
pose of the first and second experiments was to clarify the
denoising performance of the proposed method by quantita-
tive and qualitative evaluation using the Ground truth images.

For the quality metric, we used the nonlinear SNR (NSNR)
of the generated HDR images. Because of the wider dynamic
range of an HDR image, the SNR evaluation is susceptible to
errors in bright regions, whereas human perception is insensi-
tive to differences in those regions. Therefore we adopted the
nonlinear SNR to evaluate the HDR images. This is the SNR
of the HDR image tone-mapped by Reinhard et al.’s local
operator [55]. We compared our method with the two con-
ventional exposure-blending methods based on pixel-domain
weighting; one was Debevec and Malik’s method [2], i.e., an
HDR image was obtained by the weighted sum with (10),
and the other was the conventional weight optimization
method [13]. Moreover, our results were compared with
the state-of-the-art denoising method BM3D [56].6 For a
fair comparison, we performed BM3D before and after
exposure blending. In the case of applying BM3D before

5In this paper, instead of directly showing an HDR image, a low dynamic
range image tone-mapped by Reinhard et al.’s local operator [55] is shown.

6We used the source code provided by the authors at
http://www.cs.tut.fi/ foi/GCF-BM3D
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FIGURE 10. Blending results and their NSNR for mixed Poisson-impulse noise: (from left to right) Debevec and Malik [2], Conventional weight
optimization method [13], ‘‘BM3D+HDR’’, ‘‘BM3D+MEI’’, PD-HLTV weight optimization, and TD-HLTV weight optimization (ours).

exposure blending, the denoised images obtained by applying
BM3D to each input image were blended by [2], yielding a
noise-free HDR image. In the case of applying BM3D after
exposure blending, BM3D was directly applied to a noisy
HDR image obtained by [2]. We call the two approaches as
‘‘BM3D+MEI’’ and ‘‘BM3D+HDR’’, respectively.

All experiments were performed using MATLAB on a
Windows 8.1 (64 bit) desktop computer with an Intel Xeon
E3-1220 v3 3.1GHz CPU and 16 GB RAM. To accelerate
the computation time of the proposed method, we used an
NVIDIAGeForce GTX 1080 GPU. For the parameters of our
method, we set ξ = 1.0 · 10−5, γ1 = 7.0 · 10−4, and γ2 =
(1/2000γ1) in all experiments. The thresholding parameter
of the Huber loss function and the balancing weight were set
to δ ∈ [0.8, 4.3]7 and α ∈ [0.3, 1.2], respectively. In each
method, we adjusted the degree of noise removal so as to
obtain the visually best restoration results, i.e., maximizing
smoothness while keeping the edges of the images as much
as possible. For the parameter setting of BM3D, we found the
visually best results from many resulting images obtained by
sequentially changing the standard deviation from a small to
a large value. The other parameters were close to the default
values shown in Table 1 of [56]. Note that we increased the
number of group blocks to enhance the smoothing degree of

7We recommend that δ be set to a large value in the case of low-intensity
noise and to a small value in the case of high-intensity noise.

TABLE 1. NSNR comparison for Gaussian noise, Deb.: Debevec and
Malik [2], Conv.: Conventional weight optimization [13], ‘‘BM3D+HDR’’:
Applying BM3D [56] to the HDR image obtained by [2], ‘‘BM3D+MEI’’:
the multiple-exposure images denoised by BM3D and blended by [2], and
ours.

BM3D, i.e., an upper bound on the number of grouped blocks
and the threshold value for evaluating similarity were set to
larger values than the default values.

1) SINGLE NOISE CASE
In the first experiment, we independently added AWGN
and Poisson noise to the input multiple-exposure images.
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FIGURE 11. Computational time comparison.

FIGURE 12. Comparison of NSNR in the case of datasets [59].

FIGURE 13. Comparison of PU-PSNR [60] in the case of datasets [59].

For the case of AWGN, we set three types of intensities, i.e.,
σ 2
= 4.0 · 10−3, 6.0 · 10−3, and 8.0 · 10−3. For the case of

Poisson noise, we generated each k-th noisy exposure image
by û′k =

1
λ
DP(λûk ), where ûk , û′k are the k-th noise-free and

noisy images, respectively, andDP is the Poisson distribution
(see [57], [58]). The parameter λ is a scaling parameter that
determines the noise intensity, and we set λ = 0.2 in this
experiment.

Tables 1 and 2 show the NSNR comparison for AWGN
and Poisson noise, respectively. From Table 1, the NSNR of
our method is higher than that of the conventional methods
in most cases with the exception of scene 2 with σ 2

=

4.0 · 10−3 and 6.0 · 10−3, and scene 5 with σ 2
= 4.0 · 10−3,

in which the conventional weight optimization method has

FIGURE 14. Comparison of PU-SSIM [60] in the case of datasets [59].

FIGURE 15. Comparison of HDR-VDP 2.2 [61] in the case of datasets [59].

TABLE 2. NSNR comparison for poisson noise.

the highest NSNR. In the case of σ 2
= 8.0 ·10−3, our method

outperforms other methods. One can observe from Table 2
that our method has the highest NSNR compared with the
conventional methods in all the scenes.

Next, some closeup HDR images in the cases of AWGN
with σ 2

= 8.0 · 10−3 and Poisson noise are shown
in Figs. 7 and 8, respectively. One can observe from both
figures that our method effectively removes noise compared
with the conventional methods, and it preserves details in
both dark and bright regions. Although the methods based on
BM3D produce smooth images, details in dark regions cannot
be preserved, especially in Fig. 7(b). The conventional weight
optimization method cannot remove noise in bright regions,
especially in Fig. 8(b).

2) MIXED NOISE CASE
In photographing under a low-light condition, in addition
to Gaussian/Poisson noise, non-Gaussian noise often occurs
in sensor outputs. We show the robustness of the proposed
method through mixed noise removal in the second exper-
iment. Mixed noise considered in this experiment included
mixed Gaussian-impulse noise and mixed Poisson-impulse
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FIGURE 16. Examples of our method with some parameter sets {α, δ}.

TABLE 3. Comparison of NSNR in the case of mixed Gaussian-impulse
noise.

noise. The variance of AWGN was set to σ 2
= 4.0 · 10−3.

Poisson noise was generated in the same manner as the first
experiment with scaling parameter λ = 0.3. We considered
a salt-and-pepper noise as impulse noise and added it to the
images degraded by AWGN and Poisson noise. Note that the
probability of impulse noise was set to 8.0 · 10−4. In this
experiment, we compared our method with the preliminary
version of the TD-HLTVweight optimization method, named
the pixel-domain Huber loss TV (PD-HLTV) weight opti-
mization [39]. This method solves a Huber loss TV weight
optimization problem in the pixel domain.

We show the NSNR comparison for mixed Gaussian-
/Poisson-impulse noise in Tables 3 and 4, respectively. One
observes that TD-HLTV has the best NSNR in most scenes.
In Table 3-Scene 5, although the NSNR of TD-HLTV is lower
than that of PD-HLTV, the difference is slight, but the value
is the same as that of ‘‘BM3D + MEI’’.
In Figs. 9 and 10, some closeups of the resulting

HDR images are shown for mixed Gaussian-impulse and
Poisson-impulse noise, respectively. One observes that
TD-HLTV effectively removed Gaussian/Poisson noise and
impulse noise simultaneously, and yielded noise-free HDR
images while preserving the edges. Because we employed
the `2-norm for data fidelity, the conventional weight opti-
mization method hardly removed impulse noise. Although
those types of noise are almost removed by the BM3D-
based methods, details are over-smoothed; complex textures
on the wall in particular are lost in Fig. 9(b). Both PD-HLTV
and TD-HLTV removed mixed noise well by using the
Huber loss function. Because PD-HLTV blends pixels in each
local region, the degree of smoothing is enhanced. However,
it tends to lose the rich textures and sharp edges of an image
by over-smoothing, as shown in Figs. 9(a) upper and (b) lower
and in Fig. 10(a) lower. This is because different color

TABLE 4. Comparison of NSNR in the case of mixed Poisson-impulse
noise.

TABLE 5. Average value comparison of NSNR, PU-PSNR, PU-SSIM [60],
and HDR-VDP 2.2 [61] in the case of mixed Gaussian-impulse noise
applied to the fifteen scenes of datasets [59], Deb.: Debevec and
Malik [2], Conv.: Conventional weight optimization [13], ‘‘BM3D+HDR’’:
Applying BM3D [56] to the HDR image obtained by [2],
‘‘BM3D+MEI’’/‘‘VBM4D+MEI’’: the multiple-exposure images denoised
by BM3D/VBM4D [62] and blended by [2], and ours.

pixels are often blended around textures and edges.
TD-HLTV suppressed these artifacts by blending images
in the wavelet domain, which is effective for texture
preservation.

3) USE OF A MULTIPLE-EXPOSURE IMAGE DATASET [59]
To show the validity of the proposed method, we added
four types of intensities of mixed Gaussian-impulse noise to
fifteen scenes8 of amultiple-exposure image dataset provided
in [59] and evaluated these results by using four quality
metrics, NSNR, PU-PSNR, PU-SSIM [60], and HDR-VDP
2.2 [61]. The average values of the quality metrics are
shown in Table 5. Here, we added the comparison with

8Scenes consist of three exposure images with -2, 0, and 2 EV difference.
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FIGURE 17. Blending results for sensor noise: (from left to right) Debevec and Malik [2], Conventional weight optimization
method [13], ‘‘BM3D+HDR’’, ‘‘BM3D+MEI’’, and ours.
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VBM4D [62]. Specifically, VBM4D was applied to input
multiple-exposure images, and the resulting images were
blended by [2] (which is called ‘‘VBM4D+MEI’’). One sees
that the proposed method has the best values of all metrics
in most cases. In the fourth case (i.e., 0.001 / 0.0023), our
method significantly outperforms the conventional methods.
We show these quantitative evaluation results for each scene
in Figs. 12, 13, 14, and 15, respectively.

Figure 11 shows the average computational time of the var-
iousmethods for four different image sizes. One observes that
our method has almost constant execution time, regardless
of the image size thanks to parallel computing whereas the
execution times of the other methods tend to increase as the
image size increases. In the case of 768 × 768, our method
is the fastest and about one-quarter that of BM3D+MEI and
VBM4D+MEI.

B. REAL-WORLD EXAMPLE
In the final experiment, we applied the proposed method to
multiple-exposure images taken with a high ISO setting. Pho-
tographs of five scenes were takenwith ISO 12800 and−2, 0,
and 2 EV difference and used as inputs. Figure 17 shows
the resulting images. One observes that our method outper-
forms the conventional methods. In Figs. 17(a), (d), and (e),
although the conventional weight optimization method and
‘‘BM3D+HDR’’ remove strong noise, the details of the
bright regions are over-smoothed. The details of the result-
ing images obtained by ‘‘BM3D+MEI’’ are lost, whereas
noise remains on the lower right of the upper closeup image
in Figure 17(a). In addition, over-smoothing artifacts occur
in both a dark and a bright region. Our method can remove
sensor noise efficiently and preserve the image details in both
dark and bright regions. Figures 17(b) and (c) also show
that our method can remove strong noise while preserving
image details in both dark and bright regions. From the results
of both the artificial and sensor noise removal experiments,
it was confirmed that the proposed blending method is more
robust than the existing methods.

C. PARAMETER SETTING COMPLEXITY
The conventional weight optimization method [13] itera-
tively solves two optimization problems; one is total vari-
ation regularization and the other is weight optimization
in the image domain. The method requires the careful
adjustment of regularization parameters. Because BM3D
has various parameters, they should be carefully adjusted
for hard-thresholding, block matching, and Wiener filter-
ing. Moreover, BM3D needs to know the standard devia-
tion of noise for achieving high-quality denoising, which is
often unknown in practical situations. In the case of a high
dynamic range scene, images often have saturated pixels,
and the standard deviation of noise adaptively varies in sat-
urated/unsaturated regions. These problems are more serious
for ‘‘BM3D+MEI’’ because it is applied to each input image
and the parameters should be individually optimized. Further-
more, it is difficult to intuitively improve the image quality of

HDR images because the denoising process is individually
carried out on each input image. In contrast, the proposed
blending method only has two parameters related to the
degree of noise removal, the regularization parameter α and
the parameter δ of the Huber loss function. Note that the
parameters of the PDS algorithm are independent of input
scenes and do not affect the blending results.

Next, we conducted an additional experiment on mixed
Gaussian-impulse noise removal. The variance of AWGN
was set to σ 2

= 8.0·10−3 and the probability of impulse noise
was set to 5.0 · 10−3. We blended a noisy multiple-exposure
image set by our method with some parameter sets {α, δ}.
The results are shown in Fig. 16. One sees that the noise
removal characteristics of our method depend on the sets of
{α, δ}. By setting α to large values, the smoothing degree of
our method is enhanced, yielding smoother images; however,
too large a value of α often causes over-smoothing, and thus
details and textures are lost. In the cases of small values of δ,
non-Gaussian noise, i.e., outliers, is well removed, but little
Gaussian noise is removed with small values of α, especially
in the case of {α, δ} = {0.1, 0.2}. In the case of {α, δ} =
{0.8,∞}, Gaussian noise is well removed, but outliers usually
remain. This is because the Huber loss function set to δ = ∞
is equivalent to the `2 data fidelity from (14), and thus it
is sensitive to such non-Gaussian noise. In contrast, in the
case of {α, δ} = {0.8, 0.8}, because δ was set so that the
balance between Gaussian and non-Gaussian noise removal
was appropriate, each noise could be effectively removed
simultaneously. By adjusting the parameter δ, it was possible
to flexibly remove mixed noise.

V. CONCLUSION
In this paper, we propose a novel multiple-exposure blend-
ing technique for HDR image generation based on wavelet
decomposition and the Huber loss function. The proposed
exposure blending is performed in the wavelet domain,
in which the optimal weights for scaling and wavelet coef-
ficients can be estimated by solving a proposed weight opti-
mization problem that can robustly eliminate various types of
noise, including mixed noise contamination. The optimiza-
tion problem is defined as a convex optimization problem
that is solved by an efficient algorithm based on the primal-
dual splitting method. By considering the estimation of an
optimal weight map in the wavelet domain, our method can
find more suitable weight maps for exposure blending, which
sufficiently reduce noise, than can pixel-domain weighting
methods and a highest level denoising method. In addition,
to show the validity of using the Huber loss function as
data fidelity for exposure blending, we applied the proposed
method to noisymultiple-exposure images degraded by artifi-
cial noise or sensor noise. Through the all experiments, it was
confirmed that the proposed method can robustly remove
various types of noise.

In future works, we will attempt to improve the com-
putational efficiency of the iterative estimation algorithm
by employing stochastic gradient descent algorithms, and
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we will apply the weight optimization scheme for other
image restoration problems, i.e., deblurring, demosaicing,
and bimodal image blending.
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