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ABSTRACT In a practical space-borne active phased antenna array (APAA), main beam scanning angle
(MBSA)-dependent low side lobe level (SLL) and taper loss are the ultimate and most critical performances.
At some MBSA, extremely SLL in some local space is needed. The harsh limitation on APAA taper loss
further complicates the problem seriously. In this paper, the main beam scanning space (MBSS) was divided
into several subspaces. Instead of applying a single set of weights regardless of the MBSA, a separate set
of weights is implemented independently in each subspace. This transforms the nearly unsolvable problem
into multiple solvable problems. An array-decomposition approach is proposed to further reduce the number
of synthesis parameters for each subspace. The entire array is simplified as an assembly of multiple sub-
arrays. Each and every sub-array shares the same set of weights. The number of synthesis parameters is
therefore reduced to the order of the subarray that the synthesis is much easier to solve without sacrificing
too much synthesis performance. The proposed approach has been applied to solve concerned practical
problem successfully.

INDEX TERMS APAA, SLL, taper loss, space division, array-decomposition.

I. INTRODUCTION
In recent years, active phased antenna array (APAA) has been
increasingly applied in satellites due to its advantages such as
rapid beam scanning abilities, high reliability, more flexibility
for different kinds of application and multi-functionality [1].
In a practical application, anAPAA as shown in Fig.1 receives
signals from the earth and communicates with other satellites.
The array employs triangular arrangement of elements to
obtain higher gain and lower element density [2].

The APAA receives signals from the earth (0◦ ≤ θ0 < 20◦,
0◦ ≤ ϕ0 ≤ 360◦) and communicates with other satellites
(20◦ ≤ θ0 ≤60◦, 0◦ ≤ ϕ0 ≤360◦), where (θ0, ϕ0) is the
MBSA. It is well known that amplitude and/or phase tapering
usually results in reduction of beam efficiency and power
attenuation. Both will lead to gain loss which is termed taper
loss here. In this paper, we focus on minimizing taper loss.

Requirements on the SLL and gain loss change as its
function changes. In particular,
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FIGURE 1. The planar array with elements spaced at triangular grids.

(a) When the APAA receives signals from the earth, the
main beam scans 0◦ ≤ θ0<20◦, 0◦ ≤ ϕ0 ≤360◦. SLL ≤
−25 dB in entire visible space 0 ≤

√
u2 + v2 ≤ 1 is required

to ensure high signal to noise ratio (SNR); the taper loss ≤
5.5 dB, and the dynamic range ratio (DRR) < 15 dB;
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(b) When the APAA communicates with other satellites,
themain beam scans space (20◦ ≤ θ0 ≤60◦, 0◦ ≤ ϕ0 ≤360◦),
SLL ≤ −30dB in the space 0 ≤

√
u2 + v2 ≤ 0.2, SLL ≤

−13 dB in the space 0.2 <
√
u2 + v2 ≤ 1; the taper loss ≤

2 dB, and DRR < 15 dB.
Classic methods such as Chebyshev method [3] and Taylor

method [4] are applied to suppress the side lobes in the entire
visible space by amplitude-only control. However, due to
over-attenuation of excitation currents especially for elements
near array edge, taper loss is too large that both methods
fail to produce qualified APAA. The Woodward-Lawson
method [5] is also used for main beam forming. Likewise,
it fails because the SLL is above the specified level.

In nature, synthesis of APAA is a multi-dimension multi-
objective optimization problem. As such, in recent years,
genetic algorithms (GA) [6]-[7], particle swarm optimization
(PSO) algorithm [8]-[9], differential evolution [10]-[11] and
other intelligent optimization algorithms have been success-
fully employed in antenna array pattern synthesis. However,
all of them suffer the ‘‘curse of dimensionality’’.

To reduce the number of optimization variables and
improve convergence speed, Li Shi proposed a method which
using the weights of a set of the orthogonal basis functions
as optimizing variables [12]. It may be have the ability to
optimize the excitation currents of array with hundreds or
thousands elements. Fig. 2 shows the synthesized patterns
with different beam directions. For the pattern with broadside
main beam, it has a maximum sidelobe level of -19dB; for
other patterns with scanning main beams, the maximum SLL
are higher than−19dB. Obviously, the result fails to meet the
SLL requirements.

FIGURE 2. Array patterns synthesized by the Li Shi’s method (a) θ0 = 0◦,
ϕ0 = 0◦, (b) θ0 = 60◦, ϕ0 = 90◦.

The successive fast Fourier transform (SFFT) is more flex-
ibility, and ease of implementation in software [13]. It is
applied to synthesize the above mentioned APAA.

Two cases have been considered. The first one is the
worst scenario synthesis in the entire MBSS. The synthe-
sized weights apply to all MBSA. Unfortunately, the worst
scenario requirements in the entire MBSS usually make the
synthesis unrealistic. As a demonstration, the patterns with
MBSA at θ0 = 60◦, ϕ0 = 0◦ obtained by using amplitude-
and phase-only synthesis to suppress side lobes down to
SLL=−30 dB are depicted in Fig. 3. The former result fails

FIGURE 3. Synthesized patterns (a) Pattern synthesized by amplitude-only
control, and (b) Pattern synthesized by phase-only control.

FIGURE 4. Patterns with main beam scanning at (θ0 = 40◦, ϕ0 = 90◦).
(a) 3-D pattern, and (b) v-cuts at u = 0.

to meet the taper loss requirements while the latter one meets
neither SLL requirements nor taper loss requirements.

The above observation hints that there might be no single
universal weights for the APAA to simultaneously satisfy the
specific requirements on side lobe level and taper loss.

The second one is the point by point synthesis at each and
everyMBSA in the entire MBSS.When the main beam steers
at a given direction, it is observed that this method succeeds
in both side lobe suppression and taper loss. For example,
as shown in Fig. 4, when the main beam steers at (θ0 = 40◦,
ϕ0 = 90◦), SLL≤−30 dB in the space 0 ≤

√
u2 + v2 ≤ 0.2,

SLL ≤ −13 dB in the space 0.2 <
√
u2 + v2 ≤ 1, and the

taper loss is 1.5 dB.
In practice, resolution of scanning angle is 0.05◦ or finer.

Enumeration of all synthesis cases for the concerned practical
application would mount to at least 1200× 7200. It is appar-
ently impractical in terms of synthesis time and flash RAM.

In this paper, a scanning space-division and array-
decomposition approach is proposed to solve this hard prob-
lem. Instead of applying a single set of weights regardless
of the scanning angle, different weights are implemented
when the APAA is scanning at different angles. In another
word, the scanning space is divided into multiple sub-spaces
in which different weights are implemented. In addition,
to ease the synthesis problem in each sub-space, the entire
array is simplified as an assembly of multiple sub-arrays.
Each and every sub-array shares the same set of scanning
angle-dependent weights. The number of synthesis parame-
ters is therefore reduced to the order of the subarray that the
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synthesis is much easier to solve without sacrificing toomuch
synthesis performance.

II. DIVISION OF MAIN BEAM SCANNING SPACE
Consider a general planar antenna array with elements
arranged in a triangular grid as shown in Fig. 1. By the
principle of vector superposition (PVS) [14], the array pattern
can be expressed as

F (ukl, vkl)=
M∑
m=1

N∑
n=1

ImnejψmnEFmn(ukl, vkl)ejβ(xmnukl+ymnvkl )

(1)

where ukl = sin θk cosϕl and vkl = sin θk sinϕl , k =
0, . . . ,K−1, l = 0, . . . ,L−1, Imn andψmn are the excitation
current magnitude and phase of the (m, n)th element when the
main beam steers at (θ0, ϕ0), EFmn(ukl , vkl) is the pattern of
element(m, n) which is included in Eq. (1) to highlight the
practical significance of the presented study, β = 2π /λis the
phase constant, λ is the wavelength, respectively,

ψmn = ϕmn − β(xmnu0 + ymnv0) (2)

where u0 = sin θ0 cosϕ0, v0 = sin θ0 sinϕ0. The first term on
the right hand side of Eq. (2) is the weighting phase which is
used to suppress SLL or beamforming, while the second term
is used to change the main beam direction.

Without loss of generality, all elements in the array is
assumed identical. Practical testing shows that

EFmn(ukl, vkl) ≈ EF(ukl, vkl) ≈ cosp θk , 0 ≤ θ ≤
π

2
(3)

where p = 0.85.
In this case, Eq. (1) can be re-written as

F (ukl, vkl) = EF(ukl, vkl) · AF (ukl, vkl) (4)

where

AF (ukl, vkl) =
M∑
m=1

N∑
n=1

Imnejϕmnej[βxmn(ukl−u0)+βymn(vkl−v0)]

(5)

According to the aforementioned observation, both Imn and
ϕmn are dependent on θ0 and ϕ0, i.e.,

Imn = Imn(u0, v0) (6)

ϕmn = ϕmn(u0, v0) (7)

As mentioned in Section I, point by point synthesis at
each and every MBSA in the entire MBSS is impractical in
terms of synthesis time and flash RAM. Empirical experience
implies that both Imn and ϕmn only weakly couple with θ0 and
ϕ0. As such, in our practice, they are piecewisely approxi-
mated as

Imn(u0, v0) = Igmn, g = 1, 2, .....,G (8)

ϕmn(u0, v0) = ϕgmn, g = 1, 2, ......,G (9)

where G is the number of sub-spaces of the entire scanning
space.

FIGURE 5. Division diagram of scanning space.

As can be seen from the specified requirements, in MBSS
0◦ ≤ θ0<20◦, 0◦ ≤ ϕ0 ≤360◦, lower SLL is more important
for better receiving signals from the earth, while the taper loss
is eased to 5.5 dB. Therefore, the MBSS 0◦ ≤ θ0<20◦, 0◦ ≤
ϕ0 ≤360◦ is treated as subspace I. Amplitude-only synthesis
by using SFFT is applied.

When the APAA communicates with other satellites,
the main beam scans at space (20◦ ≤ θ0 ≤60◦, 0◦ ≤
ϕ0 ≤360◦). In this case, higher gain is crucial for long
distance communication between satellites due to power limi-
tation. Therefore, phase-only synthesis is applied. In addition,
to suppress clutter and/or interference from the earth, SLL ≤
−30 dB is required in the space 0 ≤

√
u2 + v2 ≤ 0.2. It is

very unlikely to meet this harsh requirement by a single set
of weighting phases for all MBSA. Therefore, this MBSS is
further divided into 10 subspaces as shown in Fig. 5. In partic-
ular, it is finer in the space (35◦ ≤ θ0<60◦, 55◦ ≤ ϕ0 ≤125◦)
and (35◦ ≤ θ0<60◦, 235◦ ≤ ϕ0 ≤305◦) since it is observed
that the side lobes near the normal direction are more difficult
to suppress when the main beam is scanning at these space.
The phase synthesis approach for those subspaces is given in
Section III and Section IV.

In addition, the synthesized weights are stored at the flash
RAM of APAA. The APAA calls the corresponding weight-
ing data when the main beam scans at different subspaces.
Therefore, the scanning speed is not affected.

III. ARRAY DECOMPOSITION
The division of scanning space complicates a single synthe-
sis problem into 11 synthesis problems. By making use of
symmetry, there are still 6 independent synthesis problems
(I, II, III, IV, V andVI). Each synthesis problem involves 2MN
parameters (magnitudes and phases of elements). Usually,M
and N are large. It is therefore more urging to reduce the
dimension of synthesis problem.

According to antenna theory [15], the pattern of the rectan-
gularly arranged array with rectangular boundary and separa-
ble distribution can be represented as the product of two pat-
terns, one each from two orthogonal linear arrays. In this case,
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FIGURE 6. Array decomposed by two approaches (a) array decomposed
by every two rows of elements, (b) array decomposed by every two
columns of elements.

the synthesis problem of such planar arrays can be simpli-
fied as two independent synthesis problems of linear arrays.
Hence the number of optimization parameters is significantly
reduced from 2MN to 2M + 2N that the computational cost
is affordable and usually the synthesized antenna arrays are
practically acceptable.

Inspired by the above findings, in this paper, the trian-
gularly arranged planar array with rectangular boundary is
assumed one with separable distribution and is treated as
an equivalent rectangularly arranged array with rectangular
boundary and separable distribution.

Decomposition of the entire antenna array can be carried
out in two ways. The first approach regards every two rows
of elements as a subarray as shown in Fig. 6(a), and the sec-
ond approach combines every two columns of elements as a
subarray as shown in Fig. 6(b).

The former decomposition is implemented to synthesize
the element excitations when the main beam scans at the
II∼III, Eq. (5) can be re-written as

AF(ukl, vkl) = AFsubarray_R(ukl, vkl) ·
N/2∑
n=1

Inejψnej2βndyvkl

(10)

where

AFsubarray_R(ukl, vkl) =
M∑
m=1

2∑
n=1

Igmne
jϕgmnejβ[xmn(ukl−u0)+ymnvkl ]

(11)

g = 1, 2, and u0 = sin θ0.

The latter decomposition is taken to synthesize the element
excitations when the main beam scans at the IV∼ VI, Eq. (5)
can be re-written as

AF (ukl, vkl) = AFsubarray_C (ukl, vkl) ·
M/2∑
m=1

Imejψmej2βmdxukl

(12)

where

AFsubarray_C (ukl, vkl)=
2∑

m=1

N∑
n=1

Igmne
jϕgmnejβ[xmnukl+ymn(vkl−v0)]

(13)

g = 4, 5, 6, and v0 = sin θ0.
With the aim of lower taper loss of the array, the phase only

control is used, thus in Eqs. (11) and (13), Igmn = 1, Im = 1
and In = 1. According to the need of optimization, ψm = 0
and ψn = 0 in Eqs. (10) and (12), respectively.

Obviously, the dimension of synthesis problem is signif-
icantly reduced from O(M × N ) to only O(2N ) or O(2M ).
In addition, it can be further noticed that the computational
efficiency of array pattern is also greatly improved.

IV. OPTIMIZATION OF WEIGHTING PHASE
As a powerful stochastic global optimization algorithm,
dynamic differential evolution (DDE) [16] is applied to
optimize the phase values of subarray elements. In view
of the APAA requirements and the proposed scanning
space-division and array-decomposition approach, the fitness
function for subspace g can be expressed as

objfg

= ω1g ×max[20× log10

∣∣Fg(ukl, vkl)∣∣
(ukl ,vkl )∈S1g

max(
∣∣Fg(ukl, vkl)∣∣

(ukl ,vkl )∈S
)
− C1g, 0]2

+ω2g ×max[20× log10

∣∣Fg(ukl, vkl)∣∣
(ukl ,vkl )∈S2g

max(
∣∣Fg(ukl, vkl)∣∣

(ukl ,vkl )∈S
)
− C2g, 0]2

+ω3g × (D0g − Dg) (14)

where ω1g, ω2g and ω3g are weight coefficients controlling
the sensitivity of the optimization procedure, C1g and C2g
are negative numbers which are smaller than -30 and -13,
respectively. D0g is the directivity of the APAA with uniform
amplitudes and no weighting phase, Dg is the directivity of
the APAA with uniform amplitudes and weighing phases. Sg,
S1g and S2g are three regions which can be given by

S = [(ukl, vkl) ∈ the entire visible space] (15)

S1g = (ukl, vkl

∣∣∣∣0 ≤ √u2kl + v2kl ≤ βg ) (16)

S2g = (ukl, vkl

∣∣∣∣βg < √
u2kl+v

2
kl ≤ 1) and (ukl, vkl ) /∈ S3g)

(17)
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TABLE 1. The value of parameters in this application.

FIGURE 7. The Weighting Amplitude Distribution.

TABLE 2. Psll in Subspace I.

and

S3g = [(ukl, vkl) ∈ the main lobe region] (18)

where βg is a positive number between 0.2 and 1.
The above mentioned parameters are shown in TABLE 1.

V. NUMERICAL RESULTS
The concerned array has N = 22 rows of elements and the
vertical distance between two adjacent rows is dy = 0.5λ.
Each row has M = 22 equally spaced elements and the
horizontal spacing between two adjacent elements in a row
is dx = 0.59λ.
Subspace I
The weighting magnitude synthesized by using the SFFT

is plotted in Fig. 7. The dynamic range ratio (DRR) is 13 dB
which is lower than the specified 15 dB. The directivity of this
concerned array at broadside is 32.5 dBi and 31.6 dBi with
uniform excitations and the weighting magnitudes, respec-
tively. The gain loss is 0.9 dB and power loss is 4.5 dB.
Accordingly, the taper loss is 5.4 dB, less than the required
5.5 dB.

The peak SLL (PSLL) values when the main beam scans
at representative directions are summarized in TABLE 2.
Obviously, PSLL meets the requirements.

To have a more straightforward illustration of the SLL,
the radiation pattern with main beam scans at θ0 = 19.9◦,
ϕ0 = 45◦ is given in Fig. 8.

FIGURE 8. Patterns with main beam scanning at (θ0 = 19.9◦, ϕ0 = 45◦).
(a) 3-D pattern, and (b) u-cuts and v-cuts.

FIGURE 9. Weighting phases.

TABLE 3. Sll in Subspace II.

Subspace II
The weighting phases are depicted in Fig. 9. The gain loss

is 1.72 dB and the power is not attenuated, therefore, the taper
loss is 1.72 dB, less than the required 2 dB.

The SLL values in the two regions, 0 ≤
√
u2 + v2 ≤ 0.2

and 0.2 <
√
u2 + v2 ≤ 1 are summarized in TABLE 3 when

the main beam scans at representative directions. The results
meet all SLL requirements.

Similarly, the radiation patterns with main beam scans at
θ0 = 35◦, ϕ0 = 0◦ and θ0 = 35◦, ϕ0 = 55◦ are given
in Fig. 10 and Fig. 11, respectively.

Subspace III
The synthesized weighting phases are depicted in Fig. 12.

The gain loss is only 0.51 dB and the power is not attenuated,
hence the taper loss is 0.51 dB, far less than the required 2dB.
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FIGURE 10. Patterns with main beam scans at (θ0 = 34.9◦, ϕ0 = 0◦).
(a) 3-D pattern, (b) u-cuts.

FIGURE 11. Patterns with main beam scans at (θ0 = 34.9◦, ϕ0 = 55◦).
(a) 3-D pattern, (b) 2D pattern with ϕ = 55◦.

FIGURE 12. Weighting phases.

TABLE 4. Sll in Subspace III.

The SLL values in the two corresponding regions are sum-
marized in TABLE 4 when the main beam scans at represen-
tative directions. The SLL meets all requirements.

FIGURE 13. Patterns with main beam scanning at (θ0 = 60◦, ϕ0 = 0◦).
(a) 3-D pattern, (b) u-cuts.

FIGURE 14. Patterns with main beam scanning at (θ0 = 60◦, ϕ0 = 55◦).
(a) 3-D pattern, (b) 2D pattern with ϕ = 55◦.

FIGURE 15. Weighting phases.

The radiation patterns with main beam scans at θ0 =60◦,
ϕ0 =0◦ and θ0 =60◦, ϕ0 =55◦ are given in Fig. 13 and
Fig. 14, respectively.

Subspace IV
The weighting phases are depicted in Fig. 15. The gain loss

is 1.69 dB and the power is not attenuated, therefore, the taper
loss is also 1.69 dB, less than the required 2 dB.

The SLL values in the two regions, 0 ≤
√
u2 + v2 ≤ 0.2

and 0.2 <
√
u2 + v2 ≤ 1, are summarized in TABLE 5 when

the main beam scans at representative directions. Therefore,
the synthesized SLL also meets all requirements.

The radiation patterns withmain beam scans at θ0 = 34.9◦,
ϕ0 = 90◦ and θ0 = 34.9◦, ϕ0 = 125◦ are given in Fig. 16 and
Fig. 17, respectively.
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TABLE 5. Sll in Subspace IV.

FIGURE 16. Patterns with main beam scanning at (θ0 = 34.9◦, ϕ0 = 90◦).
(a) 3-D pattern, (b) v-cuts.

FIGURE 17. Patterns with main beam scanning at (θ0 = 34.9◦, ϕ0 = 125◦).
(a) 3-D pattern, (b) 2D pattern with ϕ = 125◦.

FIGURE 18. Weighting phases.

Subspace V
The weighting phases are depicted in Fig. 18. The gain loss

is only 0.88 dB and the power is also not attenuated, thus the
taper loss is 0.88dB, far less than the required 2dB.

TABLE 6. Peak Sll and Taper Loss in Subspace V.

FIGURE 19. Patterns with main beam scanning at (θ0 = 50◦, ϕ0 = 90◦).
(a) 3-D pattern, (b) v-cuts.

FIGURE 20. Patterns with main beam scanning at (θ0 = 50◦, ϕ0 = 125◦).
(a) 3-D pattern, (b) 2D pattern with ϕ = 125◦.

The SLL values in the two regions, 0 ≤
√
u2 + v2 ≤ 0.2

and 0.2 <
√
u2 + v2 ≤ 1 are summarized in TABLE 6 when

the main beam scans at representative directions. Obviously,
PSLL meets the requirements.

The radiation patterns withmain beam scans at θ0 = 34.9◦,
ϕ0 = 90◦ and θ0 = 34.9◦, ϕ0 = 125◦ are given in Fig. 19 and
Fig. 20, respectively.

Subspace VI
The weighting phases are depicted in Fig. 21. The gain loss

is only 1.11 dB and the power is also not attenuated, thus the
taper loss is also 1.11 dB, far less than 2 dB.

The SLL values in the two corresponding regions are sum-
marized in TABLE 7when themain beam scans at representa-
tive directions. The synthesized SLL meets all requirements.

The radiation patterns with main beam scans at θ0 = 60◦,
ϕ0 = 90◦ and θ0 = 60◦, ϕ0 = 125◦ are respectively given
in Fig. 21 and Fig. 22 so that to have a more straightforward
illustration of the SLL.
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TABLE 7. Sll and Taper Loss in Subspace VI.

FIGURE 21. Weighting phases.

FIGURE 22. Patterns with main beam scanning at (θ0 = 60◦, ϕ0 = 90◦).
(a) 3-D pattern, (b) v-cuts.

FIGURE 23. Patterns with main beam scanning at (θ0 = 60◦, ϕ0 = 125◦).
(a) 3-D pattern, (b) 2D pattern with ϕ = 125◦.

In conclusion, all specific requirements from the practical
application have been successfully met as summarized in
TABLE 8.

TABLE 8. Sll in Each Subspace.

VI. CONCLUSION
In recent years, APAA has been increasingly applied in
satellites. In a practical satellite application, at some MBSA,
extremely SLL in some local space is needed. The harsh lim-
itation on APAA taper loss further complicates the problem
seriously. It imposes tough challenge to antenna engineers.
Classic synthesis methods applying a single set of weights
regardless of the scanning angle fail to produce qualified
APAA.

In this paper, a scanning space-division and array-
decomposition approach is proposed to solve this hard prob-
lem. Different weights are implemented when the APAA
is scanning at different angles. This transforms the nearly
unsolvable problem into multiple solvable problems. In addi-
tion, to ease the synthesis problem in each subspace, the entire
array is simplified as an assembly of multiple sub-arrays.
Each and every sub-array shares the same set of scanning
angle-dependent weights. The number of synthesis parame-
ters is therefore reduced to the order of the subarray that the
synthesis is much easier to solve without sacrificing toomuch
synthesis performance.

Based on the proposed approach, SFFT has been applied
to solve the amplitudes of the APAA corresponding to the
subspace I, and DDE has been applied to optimize the phases
of sub-array corresponding subspace II∼VI. All specific
requirements including SLL and taper loss have been success-
fully met.

Although the practical application problem has been suc-
cessfully solved, however, due to security and commer-
cial restrictions, publishing measurement results is strictly
prohibited.
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