
SPECIAL SECTION ON INNOVATION AND APPLICATION OF INTELLIGENT PROCESSING OF
DATA, INFORMATION AND KNOWLEDGE AS RESOURCES IN EDGE COMPUTING

Received September 26, 2019, accepted October 18, 2019, date of publication November 6, 2019,
date of current version December 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2950355

Exploiting User Tagging for Web Service
Co-Clustering
TINGTING LIANG 1, YISHAN CHEN2, WEI GAO2, MING CHEN3,4,
MEILIAN ZHENG4,5, AND JIAN WU2
1School of Computer Science and Technology, Hangzhou Dianzi University, Hanzhou 310018, China
2College of Computer Science and Technology, Zhejiang University, Hanzhou 310027, China
3Hithink RoyalFlush Information Network Company, Ltd., Hangzhou 310023, China
4Zhejiang Hithink RoyalFlush Artificial Intelligence Research Institute, Hangzhou 310023, China
5School of Management, Zhejiang University of Technology, Hangzhou 310023, China

Corresponding author: Meilian Zheng (zmldlk@zjut.edu.cn)

This work was supported in part by the Subject of the Major Commissioned Project— Research on China’s Image in the Big Data of
Zhejiang Province’s Social Science Planning Advantage Discipline —Evaluation and Research on the Present Situation of China’s Image
under Grant 16YSXK01ZD-2YB, in part by the Ministry of Education of China under Grant 2017PT18, in part by the Zhejiang University
Education Foundation under Grant K18-511120-004, Grant K17-511120-017, and Grant K17-518051-021, in part by the Major Scientific
Project of Zhejiang Laboratory under Grant 2018DG0ZX01, in part by the National Natural Science Foundation of China under
Grant 61672453, and in part by the Key Laboratory of Medical Neurobiology of Zhejiang Province.

ABSTRACT We propose a novel Web services clustering framework by considering the word distribution
of WSDL documents and tags. Typically, tags are annotated to Web services by users for organization.
In this paper, four strategies are proposed to integrate the tagging data and WSDL documents in the process
of service clustering. Tagging data is inherently uncontrolled, ambiguous, and overly personalized. Two
tag recommendation approaches are proposed to improve the tagging data quality and service clustering
performance. Comprehensive experiments demonstrate the effectiveness of the proposed framework using
a real-world dataset.

INDEX TERMS Web service, WSDL documents clustering, co-clustering, tag recommendation.

I. INTRODUCTION
A service-oriented computing (SOC) paradigm and its real-
ization through standardized Web service technologies pro-
vide a promising solution for the seamless integration of
single-function applications to create new large-grained and
value-added services. SOC has attracted industry attention
and is applied in many domains, e.g., workflowmanagement,
finance, e-Business, and e-Science. With a growing number
of Web services, discovering the user-required Web services
is becoming an imperative task.

Generally, Web service discovery could be achieved by
two main approaches: UDDI (Universal Description Dis-
covery and Integration) and Web service search engines.
As mentioned in [1], Web service discovery mechanisms
are developed from the agent match-making paradigm and
expanded to UDDI registry. Currently, the availability ofWeb
services in UDDI decreases rapidly, since many Web ser-
vice providers decided to publish services through their own

The associate editor coordinating the review of this manuscript and
approving it for publication was Ying Li.

websites instead of using public registries. The statistics pre-
sented in [2] shows that the percentage of invalid registered
services in UDDI business registries is about 53%, while the
percentage of valid and activeWeb services caught by service
search engines is up to 92%. Compared with UDDI, using
search engine to discover Web services is more effective.

Web service search is typically limited to keyword match-
ing on names, locations, businesses, and buildings defined in
the Web service description file [3]. A service would not be
retrieved if the query does not contain at least one exact word
in service name or description. For example, a service named
‘‘Travel Service’’ may not be returned from the query term
‘‘Tourism’’ provided by a user, though these two terms mean
the same topic. As a consequence, clustering services into
groups with similar functions based on WSDL documents
became a widely accepted method to alleviate the draw-
backs of traditional keyword-based service search engines
[4], [5]. Previous work considered the similarity measure-
ment betweenWeb services by focusing on the feature extrac-
tion and similartity function definition. Work in [4] proposed
techniques to automatically cluster WSDL documents into

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 168981

https://orcid.org/0000-0003-1607-5771

T. Liang et al.: Exploiting User Tagging for Web Service Co-Clustering

functionally similar groups. Meanwhile, some related works
proposed to extract five features from WSDL documents to
cluster Web services [5].

Many existing methods for Web service clustering are lim-
ited by the one-way clustering, which solely clusters WSDL
documents but ignores the distribution of words extracted
from WSDL documents. The previous clustering approaches
mainly considered the semantic similarities based on WSDL
documents through the contents or titles. It should be noted
that different service developers may make quite different
descriptions to the same function in Web services, which
would lead to the deviation of semantic similarity calculation.
To overcome these drawbacks, we proposed an approach
named WCCluster to co-cluster or simultaneously cluster
both documents and words, and modeled service clustering
as a graph partitioning problem in our previous work [6].
The limitation of traditional Web service clustering approach
could be largely relaxed by employing the co-clustering tech-
nique. However, the accuracy of these algorithms is still
unsatisfactory, due to the limitation of service description
data used by clustering.

Some real-world Web service search engines (i.e.,
Seekda!1 and Titan2) allow users to manually annotate Web
services with tags to improve the organization of the stored
content. Tags usually contain meaningful descriptions for
Web services, and provide valuable information for service
clustering. Figure 1 shows the tag number distribution
of 1813Web services crawled fromTitan. The y-axis presents
the number of tags assigned to the corresponding Web ser-
vice. The largest number reaches 31, and for most Web
services, about 77.3%, there are 1-4 labeled tags. Figure 1
shows that the scalability of tagging data for Web services is
quite high.

FIGURE 1. Distribution of the number of tags per web service in Titan.

It should be noted that the set of tags annotated to a Web
service is an explicit set of keywords that users have found
appropriate for categorizing the target Web service. Figure 2
shows the distribution ofWeb service tags over the most com-
mon WordNet3 categories. Following this approach, we can

1Seekda: http://webservices.seekda.com/
2Titan: http://ccnt.zju.edu.cn:8080/
3WordNet: http://wordnet.princeton.edu/

FIGURE 2. Most frequent WordNet categories for web service tags.

classify 58.4% of the tags in the collection, while leaving
41.6% of the tags unclassified, as depicted in the smaller pie
chart of Fig.2. When focusing on the set of classified tags,
it can be observed that Research are tagged most frequently
(12.9%), followed by Development (11.4%), Daily(11.4%),
Location(10%), Business(10%), and Education(7.2%). The
category Other (37.1%) contains the set of tags that is classi-
fied by the WordNet broad categories, but does not belong to
any of the aforementioned categories. Figure 2 demonstrates
that users not only tag the function of the Web services (e.g.,
Business, Education, etc.), but also to a large extent provide
a broader context (e.g., Location).

We use two Web services labeled Tourism, LocationWS
and xmlPostHotel, as a simple example to illustrate the
superiority of integrating tag information with service clus-
tering. The termswith high frequency of occurrence extracted
from the two WSDL documents respectively are ‘‘location’’,
‘‘document’’ and ‘‘post’’, ‘‘hotel’’, which are hardly relevant
to each other. However both the services are tagged with
a same term ‘‘tourism’’, and the strategies of combining
tag information and WSDL document would assist the two
services to be clustered in the same group.

We propose a novel clustering framework, named WTO,
to integrate WSDL documents and service Tags for the
CO-clustering approach. Based on the previously proposed
clustering approach named WCCluster [6], we view the
problem of Web service clustering as a special text cluster-
ing problem and achieve an improvement by simultaneously
clustering Web services and the words extracted from them.
Inspired by the co-clustering algorithm [7], we consider the
co-clustering problem as finding minimum cut vertex par-
titions in the bipartite graph between services and words.
To further improve the performance of WCCluster, we pro-
pose four integration strategies to leverage tags along with
the words extracted from WSDL documents. Furthermore,
two tag recommendation approaches are proposed to improve
the tagging data quality and service clustering performance,
by considering the inherently uncontrolled, ambiguous, and
overly personalized tagging data.

In particular, the main contribution of our paper is summa-
rized as follows:

168982 VOLUME 7, 2019

T. Liang et al.: Exploiting User Tagging for Web Service Co-Clustering

1) We propose a novel framework, named WTO, which
employsWCCluster and exploresWSDL documents &
user tagging data for Web service clustering.

2) Four strategies are proposed to integrate WSDL docu-
ments and user tagging data in the process of service
clustering.

3) Two tag recommendation approaches are proposed and
applied to improve the performance of WTO.

4) We evaluate the performance of the proposed WTO
by employing a real-world dataset crawled from Titan
Web service search engine.

The remainder of the paper is structured as follows.
Section II reviews the related work. Some preprocessing tech-
niques, details of WCCluster and four data integration strate-
gies are introduced in Section III. Section IV discusses the
process of tag recommendation, while Section V describes
the experimental evaluation. Finally, Section VI concludes
this paper.

II. RELATED WORK
The rapid development of service computing makes the
service-oriented tasks draw much attention [8]–[10]. Web
service discovery [11]–[16] is one of the most classical
and imperative among these tasks. The techniques used for
discovering semantic Web services and non-semantic Web
services are quite different, as the former are described by
OWL-S or WSMO while the latter use WSDL as descrip-
tion language [3], [17]–[19]. Study about the semantic Web
service discovery is relatively mature. Benatallah et al. [20]
presented a matchmaking algorithm which takes a service
request and an ontology of service as input, then the algorithm
finds a set of services whose descriptions contain as much
common information with the ontology as possible. In [17],
Klusch et al. proposed high-level match-making techniques
and employed them for semantic Web services as structure
annotations are available for service profiles.

We focus on non-semantic Web service discovery. In [21],
Dong et al. first proposed a basic set of search function-
alities that should be supported an effective Web service
search engine, and then presented algorithms for support-
ing similarity search, which combine multiple sources of
evidence to determine similarity between a pair of web-
service operations. Nayak [3] described an approach based
on the idea of finding search sessions which are similar to
the one by user to locate a specific service and suggest words
used in those sessions for the improvement of Web service
discovery.

Many efforts have been devoted to cluster Web services to
facilitate service discovery [4], [22]–[25]. Platzer et al. [24]
proposed a statistical clustering approach that can improve
an existing distributed vector space search engine for Web
services based on the possibility of dynamically calculating
clusters of similar services. In [22], Skoutas et al. proposed
a methodology to rank the relevant services for a given
request, and investigated methods for clustering the rele-
vant services in a way that reveals and reflects the different

trade-offs between thematched parameters. Liu andWong [4]
proposed techniques to gather, discover and integrate fea-
tures related to a set of WSDL documents and cluster them
into functionally similar homogeneous service communities.
Analogously, Elgazzar et al. [5] presented an approach to
improve service discovery of non-semantic Web services by
clustering services into functionally similar groups through
mining WSDL documents. In [23], Xia et al. developed a
service clustering method named vKmeans which identifies
core services of each category and clusters other services by
the functional similarity.

In our previous work [6], the technique employed for
WSDL documents clustering considers simultaneously clus-
tering WSDL documents and the words extracted from them.
There exists some early research about co-clustering. In [26],
Cheng and Church presented an approach that allows auto-
matic discovery of similarity based on a subset of attributes,
simultaneous clusters both genes and conditions for knowl-
edge discovery from expression data. Dhillon proposed
co-clustering for the first time in [7], which regards the simul-
taneous clustering as a bipartite graph partitioning problem.
The paper also showed that the solution of a real relaxation to
the NP-complete graph bipartitioning problem are singular
vectors of an appropriately scaled word-document matrix.
Co-clustering algorithm has been widely applied in various
fields. George and Merugu [27] designed incremental and
parallel versions of co-clustering algorithm that involves
simultaneous clustering of users and items, and apply it
in building an efficient real-time CF framework. In [28],
Liu and Shah utilized Maximization of Mutual Information
co-clustering approach to discover clusters of intermediate
concepts.

The performance of Web service clustering is limited
by the singleness of WSDL documents, even though the
co-clustering technique is useful. Recently tag information
is becoming an essential component in many online sys-
tems including some Web service search engines. In [29],
Ramage et al. proposed extensions of k-means and LDAusing
tagging data and demonstrated that tag information improves
the performance of clustering algorithms. Cravino et al. [30]
defined a distance metric based on a weighted cosine simi-
larity that combines the textual features and the community
structure of a network of tags to enhance the clustering of
documents. In the field ofWeb service discovery, utilizing tag
information to improve the performance gradually becomes
feasible [31]–[34]. Chen et al. [35] proposed to utilize both
WSDL documents and tags for web service clustering and
adopted two tag recommendation strategies to improve the
proposed approach. In [31], Chen et al. presented a hybrid
mechanism using WSDL documents and tag network infor-
mation to compute tag relevance scores by semantic computa-
tion and HITSmodel. Further, the mechanismwas introduced
into three applications of Web service mining. Wu et al. [32]
presented a hybrid web service tag recommendation strat-
egy to handle the clustering performance limitation. In [33],
Lo et al. proposed a Web service tag learning system which

VOLUME 7, 2019 168983

T. Liang et al.: Exploiting User Tagging for Web Service Co-Clustering

automatically learns high-quality tag annotations for service
discovery.

We propose to utilize bothWSDL documents and tag infor-
mation to improve the accuracy of a co-clustering approach
WCCluster. Specifically, four strategies are proposed to inte-
grate WSDL documents and tagging data in the process of
co-clustering. Moreover, we employ a tag recommendation
process to relax the limitation caused by the uncontrolled
quality of tagging data.

III. TAGGED WEB SERVICES CO-CLUSTERING
We introduce the proposed WTO framework and the detailed
co-clustering algorithm in Section III-A and Section III-B,
respectively. The four data integration strategies for
WCCluster are introduced in Section III-C

A. WTO FRAMEWORK
We propose to extract terms that can represent the seman-
tics or functionality of the Web services, and then use the
co-clustering technique to simultaneously group the tagged
Web services. Figure 3 illustrates the framework of WTO,
which could be divided into four parts. From top to bottom,
the first part is words and tags preprocessing including the
stop words filtration, stemming, and TF-IDF (one kind of
words weighting technique) calculation. The second part is a
crucial component inWTOwhich introduces four integration
strategies for word and tag combination. And the third part is
the application of co-clustering algorithm based on the term-
by-service matrix generated from the integration strategy.
The last part is tag recommendation process which could
be treated as an improvement for the data integration in
the second part. This section introduces the first three parts
of WTO framework, while the last part will be discussed in
Section IV.

FIGURE 3. Framework of WTO.

B. WCCLUSTER
We first show the general result of data preprocessing which
would be described in experiment part detailedly, then intro-
duce the detailed process of WCCluster approach. Figure 4
shows an example of preprocessing including stop words fil-
tration and porter stemmer algorithm. The original words are
finally turned into ‘‘request’’, ‘‘service’’, ‘‘security’’, ‘‘bind’’,
‘‘job’’, ‘‘title’’, as ‘‘Get’’ is filtered as a stop word, ‘‘Titles’’
and ‘‘Title’’ are transformed into ‘‘title’’ by porter stemmer
algorithm.

FIGURE 4. Example of preprocessing.

1) BIPARTITE GRAPH MODEL
Before we describe the major algorithm, we intend to intro-
duce the bipartite graph model to represent a Web service
collection. An undirected bipartite graph can be denoted by
a triple G = (S, T ,E) where S = {s1, ..., sn} and T =
{t1, ..., tm} represent two sets of vertices and E represents a
set of edges

{{
ti, sj

}
: ti ∈ T , sj ∈ S

}
. In the scenario of Web

service clustering, S is the set of Web services while T is
the set of terms extracted from WSDL documents and tags
of services. Figure 5 shows that if tj is extracted from Web
service si, the edge

{
ti, sj

}
exists. Note that there are no edges

between terms or between services.

FIGURE 5. Two bipartite graphs of web services, words and tags.

Each edge represents a relation between a Web service
and a term. In order to capture the strength of the relation,
we set a positive weight for each edge. For instance, the term
frequency could be used as the weight of the corresponding
edge. The adjacency matrix R of the bipartite graph can be
defined as follows,

Rij =

{
Eij, if there is an edge

{
ti, sj

}
0, otherwise

,

168984 VOLUME 7, 2019

T. Liang et al.: Exploiting User Tagging for Web Service Co-Clustering

where Eij denotes the weight of edge
{
ti, sj

}
. We can use the

form of block matrix to represent matrix R as follows,

R =
[
0 B
BT 0

]
,

whereB ism×n term-service matrix and Bij denotes the edge
weight Eij. Here the vertices have been ordered so that the
firstm vertices indicate terms and the next n indicate services.

Given the vertex set mixed by S and T , we can partition it
into two subsets V1 and V2. The cut between the two subsets
plays an important role in WCCluster, which is defined as

cut (V1,V2) =
∑

i∈V1,j∈V2

Rij, (1)

which could be easily extended to k vertex subsets,

cut (V1, ...Vk) =
∑
i<j

cut
(
Vi,Vj

)
.

Apremise ofWCCluster algorithm is the observation of dual-
ity: term clustering and Web service clustering can induce
each other. It could be easily verified that the best clustering
of terms and services would correspond to a partitioning
of graph such that the crossing edges between subsets have
minimum weight.

cut (S1 ∪ T1, ...,Sk ∪ Tk) = min
V1,...,Vk

cut (V1, ...,Vk) ,

where V1, ...,Vk is a k-partition of the bipartite graph.

2) SPECTRAL GRAPH BIPARTITIONING
There exist several effective heuristic methods for solving
graph partition problem. One of them is spectral graph parti-
tioning. Next we intend to specifically introduce the spectral
graph partitioning in the WCCluster approach. Given the
undirected graph G = (S, T ,E) with n vertices in S and
m vertices in T , the Laplacian matrix L = LG of G can be
defined as follows:

Lij =

∑

k Eik , i = j
−Eij, i 6= j and there is an edge {i, j}

0, otherwise

, (2)

where L is an (m+ n)× (m+ n) symmetric matrix with one
row and column for each vertex.

As mentioned above, the optimal partition would be
obtained by minimizing the cut value. In addition to small cut
values reflecting the association between different partitions,
the ‘‘balance’’ of clusters should be considered when solve
a partition problem. Now we can provide a new objective
function,

F (V1,V2) =
cut (V1,V2)

w (V1)
+
cut (V1,V2)

w (V2)
, (3)

where w (Vk) is the weight of a vertex subset Vk , and
w (Vk) =

∑
i∈Vk w (i) =

∑
i∈Vk Wii. Wii is a diagonal

element of the diagonal matrix W , which represents an
assigned positive weight of each vertex i. The smaller value

of F (V1,V2) indicates more balanced partitioning when
two different partitions with the same cut value are given.
Therefore, a balanced partition with a small cut value can
be obtained through the minimization of the new objective
function F (V1,V2).
Given a graph G, let L andW be its Laplacian matrix and

vertex weight matrix, respectively. Assume that we have a
bipartitioning of V into V1 and V2 (V = S ∪ T). In addition,
define a generalized partition vector p with elements

pi =

+

√
µ2

µ1
, i ∈ V1

−

√
µ1

µ2
, i ∈ V2

.

The generalized partition vector satisfies pTWe = 0 and
pTWp = w (V), where µ1 = w (V1) and µ2 = w (V2).

Using above notations, and referring to some properties of
the Laplacian matrix L and theorems presented in [7], we can
achieve the following theorem.
THEOREM 1: Given the Laplacian matrix L of G, the

vertex weight matrixW and a generalized partition vector p,
the Rayleigh Quotient is given by

pTLp
pTWp

=
cut (V1,V2)

w (V1)
+
cut (V1,V2)

w (V2)
. (4)

That is to say, the problem of finding the global minimum
of objective function F (V1,V2) leads to the generalized
partition vector p. Since the problem is still NP-complete,
it is a common practice to find a relaxation to the optimal
generalized partition vector through the following theorem
which is a standard result from linear algebra [36].
THEOREM 2: The problem

min
p6=0

pTLp
pTWp

, subject to pTWe = 0

achieves the optimal solution when p is the eigenvector
corresponding to the second smallest eigenvalue λ2 of the
generalized eigenvalue problem,

Lx = λWx. (5)

3) ASSOCIATION WITH SVD
Next, we intend to give a exact definition of vertex weights.
For convenience, we define the weight of each vertex
equal to the sum of the weights of edges incident on it,
i.e., w (i) =

∑
k Eik , which is a cut objective called

normalized-cut [37]. Based on this definition, the vertex
weight matrixW equals the diagonal degree matrix D.
According to THEOREM2, it is clear that the key to get the

minimum normalized cut is solving the second eigenvector of
the generalized eigenvalue problemLx = λWx. Next, wewill
illustrate how to findWeb service and term clusters using our
bipartite graph model. In our case,

L =
[
D1 −B
−BT D2

]
, and D =

[
D1 0
0 D2

]
,

VOLUME 7, 2019 168985

T. Liang et al.: Exploiting User Tagging for Web Service Co-Clustering

where D1 and D2 are diagonal degree matrices for term
vertex set and Web service vertex set respectively, namely,
D1(i, i) =

∑
j Bij, D2(j, j) =

∑
i Bij. The two matrices can be

plugged into Lx = λWx,[
D1 −B
−BT D2

] [
a
b

]
= λ

[
D1 0
0 D2

] [
a
b

]
, (6)

which can be rewritten in algebraic form on basis of
the assumption that both D1 and D2 are nonsingular.
Through some algebraic calculation, we see the following two
formulas,

D1
−1/2BD2

−1/2v = (1− λ)u,

D2
−1/2BTD1

−1/2u = (1− λ)v,

where u = D1
1/2a and v = D2

1/2b. It is obvious that the two
formulas represent the process of singular value decomposi-
tion (SVD) of the normalized matrix Bn = D1

−1/2BD2
−1/2.

Specifically, u2 and v2 are respectively the left and right
singular vectors corresponding to the second largest singular
value σ2 = 1 − λ2. It shows that the size of the Laplacian
matrix L is much larger than matrix Bn. For brief computa-
tion, we can take solving the left and right singular vectors
corresponding to the second largest singular value of Bn as a
replacement for the computation of the eigenvector of the sec-
ond smallest eigenvalue of (6). Obviously, the left singular
vector u2 offers us a bipartitioning of the terms and the right
singular vector v2 offers the bipartitioning of Web services.

4) WCCLUSTER ALGORITHM
We discuss WCCluster approach in the situation of mul-
tipartitioning as the bipartitioning is a special case where
the number of term and Web service clusters is k = 2.
Analogous to the fact that the second largest singular vectors
contain bi-modal information, the l =

⌈
log2k

⌉
singular

vectors u2,u3, ...,ul+1 and v2, v3, ..., vl+1 usually contain
k-modal information about Web services. Given these
vectors, the crucial task is to extract the ‘‘best’’ partition from
them.

The optimal generalized partition vector for the multipar-
titioning problem must be k-valued. The classical k-means
algorithm [38] can be utilized to find the best k-modal fit
to the k l-dimensional points c1, ..., ck . From the previous
section, we can form the l-dimensional eigenvector of L as
follows,

X =
[
D1
−1/2U

D2
−1/2V

]
, (7)

where U = [u2, ...,ul+1] and V = [v2, ..., vl+1]. Then the
objective function to be minimized can be formed as

k∑
j=1

∑
X2(i)∈cj

∥∥X(i)− cj∥∥2 . (8)

Combined the preprocessing of WSDL documents and tags,
the WCCluster algorithm can be described as Algorithm 1.

Algorithm 1 Framework of WCCluster
Input:

A collection of WSDL documents and tags.
The number of web service and term clusters k .

Output:
The clustered X .

1: Preprocess WSDL documents through extracting fea-
tures, filtering stop words, stems extraction and prepro-
cess tags.

2: Generate a m× n term-service matrix B0.
3: Get a new weighted matrix B by TF-IDF. Normalize B

by Bn = D1
−1/2BD2

−1/2.
4: Compute l =

⌈
log2k

⌉
singular vectors of Bn,

u2,u3, ...,ul+1 and v2, v3, ..., vl+1, then form the matrix
X mentioned in (7).

5: Run the k-means algorithm on matrix X to achieve the
desired k clusters of web services and terms.

6: return X clustered by k-means algorithm.

The major computational cost of WCCluster is generated
in step 2 for generating B0 and step 4 for computing the left
and right singular vectors. The computational cost of the
former is O(m2n) where m and n respectively represent the
number of terms and Web services. The computation of SVD
is a costly process and different algorithms of it need different
cost, and the worst case is O(N 3). The k-means algorithm in
step 5 has the computational cost of O(tk(m + n)l), where k
is the number of clusters, t denotes the iterations and l is the
number of singular vectors to be computed.

C. COMBINATION OF WORDS AND TAGS
A central problem in WTO is how to integrate tags with
WSDL documents to improve the performance of Web ser-
vice clustering. According to WCCluster, this problem is
equivalent to generating the weighted matrix B based on
words and tags. Each column of B indicates a Web ser-
vice represented as a vector in a real-valued space whose
dimensionality is the size of terms. Thus the problem can be
translated into how to model the Web services in the vector
space. Now we introduce four strategies to model a service
with a collection of words Cw and a collection of tags Ct as a
vector V :
• Words Only. First, define V as

[
w1,w2, ...,w|W |

]
where

wi is the weight of term i, and w|W | means the number of
words in Cw. The way to decide the weight can be based
on some function of frequency of terms in Cw. This
paper adopts TF-IDF techniquewhichwill be introduced
in detail in SectionV-C. ThenV is l2−normalized so that
‖V‖2 = 1.

• Tags as New Words. This strategy simply regards tags
as additional words. V is defined as [w1,w2, ...,w|W |,
w|W+1|, ...,w|W |+|T |] where wi is the weight of word i
for i ≤ |W | or the weight of tag i − |W | for
i ≥ |W |. In this way, the same words respectively from

168986 VOLUME 7, 2019

T. Liang et al.: Exploiting User Tagging for Web Service Co-Clustering

Cw and Ct should be treated as different terms. Then V
is l2−normalized.

• Tags as Words Times n. Combine the two collections,
Cw and Ct , but each term in the tag collection Ct is
treated as n terms. It means we use Cw ∪ (Ct × n)
instead of Cw used in Words Only model. For example,
we extract the word ‘‘tourism’’ once from a WSDL
document and the tag ‘‘tourism’’ from the corresponding
Web service twice, then the Web service will be repre-
sented by the word ‘‘tourism’’ five times under the Tag
as Words Times 2 model.

• Words + Tags. Define Vw to be the words only vector
mentioned in Words Only model. Similarly, we define
the tags only vector as Vt . Then theWords+Tags vector

can be placed as Vw+t =
[√

1
2Vw,

√
1
2Vt

]
. It could be

interpreted as a concatenation of the two l2−normalized
vectors with equal weight.

Words Only is the equal of the proposed WCCluster taking
no account of tag information and could be used as baseline
among the mentioned four strategies. The strategy of Tags as
New Words regards tagging data as independent supplemen-
tary information. Words+Tags combines words and tags in
the similar way compared with Tags as New Words except
for the order of vector l2−normalization and concatenation.
Both the two strategies treat tags as separate information
and weight them independently of any words. But for Tags
as Words Times n, it mixes word and tag collections and
emphasizes the weight of terms in tag set. Thus, it might be
more sensitive to the selection of n and the quality of tagging
data.

IV. TAG RECOMMENDATION
We propose to improve the quality of tagging data before
data integration by considering the inherently uncontrolled,
ambiguous, and overly personalized tagging data. It should be
noted that the distribution of tags is not uniform as illustrated
in Fig.1 Some Web services have more than 10 tags while
some contain only 1 or 2 tags. The Web services with few
tags may reduce the effect of WTO because of the limitation
of additional information provided by few tags. To handle
this problem, we propose to recommend some relevant tags
to these web services for better clustering performance.

Figure 6 shows an overview of the tag recommendation
process. It can be found that the process is mainly divided
into two steps. In the first step, given a Web service with
tags, we calculate the co-occurrence between user-defined
tags and any other tags, then select the top-k co-occurring tags
of each user-defined tag in order to generate an ordered list of
m candidate tags. The number of k is set as 4 showed in Fig.6.
There are three defined tags: HR, business and unknown and
a list of 4 co-occurring tags of each is derived. For instance,
the top-4 co-occurring tags of HR are unknown, business,
employee and management. There are some normalization
methods for co-occurrence calculation, and here we choose

FIGURE 6. Overview of the tag recommendation process.

Jaccard coefficient method as follows:

J (ti, tj) =
|ti ∩ tj|
|ti ∪ tj|

, (9)

where |ti ∪ tj| denotes the number of Web services that have
ti or tj, and |ti ∩ tj| denotes the number of Web services that
have both ti and tj. A list of candidate tags could be obtained
for each user-defined tag after the co-occurrence calculation
step.

The second step is a tag aggregation and ranking step in
which we rank the candidate tags and select the top-n tags
as the final recommended tags. In this paper, we present two
aggregation methods based on Vote and Sum method.
• Vote. The voting method is utilized to compute a score
for each candidate tag c ∈ C (C is the set of all candidate
tags). The value of vote(u, c) between a candidate tag c
and each user-defined tag u ∈ U (U is the set of all the
user-defined tags) is computed as follows:

vote(u, c) =

{
1 if c ∈ Cu
0 otherwise,

(10)

where Cu refers to the set of candidate tags of user-
defined tag u. A list of final recommended tags can be
obtained by counting the voting results:

score(c) =
∑
u∈U

vote(u, c) (11)

• Sum. The summing method sums over the co-
occurrence values between a candidate tag c and each
user-defined tag u as the score of tag c:

score(c) =
∑
u∈U

Co(u, c), (12)

where Co(u, c) can be computed by (9).
The performance of these two tag recommendation
approaches will be evaluated in the next section.

V. EXPERIMENT
We first introduce the evaluation metrics and the details
of preprocessing. Then, we evaluate the performance of
WCCluster approch and WTO framework, including the
impact of data integration strategies and tag recommendation.
Further, the performance of tag recommendation is evaluated.

VOLUME 7, 2019 168987

T. Liang et al.: Exploiting User Tagging for Web Service Co-Clustering

A. EXPERIMENT SETUP
To further demonstrate the adaptability of the proposed
approach, the experiments are based on three datasets of
online Web services, D1, D2 and D3, gathered from real-
world Web service search engine Titan. Dataset D1 contains
114 Web services offering WSDL documents for WCCluster
evaluation which is to be discussed in Section V-DDatasetD2
is a set of 120 tagged Web services, and is used to evaluate
tagged Web services co-clustering, i.e., WTO. We make a
manual classification of these Web services to easily evaluate
the experiment results by comparing with the other algorithm.
Section V-F employs dataset D3 consisting of tag records
of 1049 Web services to evaluate the performance of tag
recommendation. Particularly, all the datasets can be down-
loaded from the provided link4.
The preprocessing experiments in our paper are imple-

mented with JDK 8.0.110, Eclipse 4.4.0, co-clustering algo-
rithm is executed with Matlab7.13.0, and tag recommenda-
tion is implemented with Microsoft Visual Studio 2010. All
these processes are conducted on a ASUS K40ID machine
with an 2.20 GHz Intel Core 2 Duo T6670 CPU and 2GB
RAM, runningWindows7 OS.

B. EVALUATION MEASURES
1) PRECISION & RECALL
The evaluation of clustering is a tricky business. Fortunately,
the Web services in the dataset used in this paper are catego-
rized, so that we can compare the experimental results with
true class labels. In this paper, we use two widely employed
metrics, precision and recall, to evaluate the performance of
WCCluster. Precision is a measure of exactness while recall
shows completeness [39]. The two metrics can be respec-
tively described as follows,

Precisionci =
succ(ci)

succ(ci)+ mispl(ci)

Recallci =
succ(ci)

succ(ci)+ missed(ci)
, (13)

where ci represents cluster i, succ(ci) denotes the number of
Web services successfully placed in cluster ci,mispl(ci) is the
number of Web services incorrectly placed in cluster ci, and
missed(ci) represents the number of Web services that should
be clustered in ci but are incorrectly placed in other clusters.

2) F1 SCORE
An integrated metric is required when we compare four
strategies for the integration of words and tags. F1 score could
be treated as a balance between precision and recall. It should
be noted that precision and recall here differ from the ones
mentioned above, and we use precision* and recall* to denote
them for distinction. Thus we choose F1 score as the metric to
compare different data integration strategies. Precision* and
recall* are computed over pairs of Web services for which
two label assignments either agree or disagree. We consider

4Dataset: http://zjujason.com/data.html

that pairs ofWeb services are either the same class or different
classes according to the manual classification predetermined.
The proposed clustering algorithm predicts whether any
given pair has the same or different clusters. Consider all of
the pairs of Web services, we can conclude 4 cases:

1) True Positives (TP): The clustering algorithm placed
the pair of two Web services into the same cluster, and
the predeterminedmanual classification has them in the
same class.

2) False Positives (FP): The clustering algorithm placed
the pair of two Web services into the same cluster, but
the predetermined manual classification has them in
different classes.

3) True Negatives (TN): The clustering algorithm placed
the pair of twoWeb services into different clusters, and
the predetermined manual classification has them in
different classes.

4) False Negatives (FN): The clustering algorithm placed
the pair of two Web services into different clusters, but
the predeterminedmanual classification has them in the
same class.

We calculate precision* as TP
TP+FP , and calculate recall*

as TP
TP+FN . Then F1 score could be obtained by

2×precision∗×recall∗
precision∗+recall∗ .

3) TAG RECOMMENDATION METRICS
According to [40] [41], it is reasonable for recommendation
evaluation to consider the division of tags of each Web ser-
vices into two sets: (1) the past tags, (2) the future tags. Thus,
for a Web service, we generate the recommended tags based
only on the past tags. For example, assume a Web service
has been tagged with 6 tags and 4 of them are assigned to
the past set, then we compute similarities only based on the
past 4 tags to predict the rest 2 future tags. The evaluation of
tag recommendation in this way is more indicative for real-
world applications.

We adopt the following metrics to measure the effective-
ness of tag recommendation based on the evaluation situation
mentioned above.

1) Top-k accuracy: Percentage of Web services correctly
tagged by at least one of the top-k recommended tags.

2) Exact-k accuarcy: Percentage ofWeb services correctly
tagged by the kth recommended tag.

3) Tag-precision: The ratio of the number of relevant tags
in the top-k list (i.e., those in the top-k list that belong
in the future set of tags) to k.

4) Tag-recall: The ratio of the number of relevant tags in
the top-k list to the total number of relevant tags (all
tags in the future set).

C. PREPROCESSING
We first describe the detailed data preprocessing mentioned
in Section III-B before the evaluation process.

168988 VOLUME 7, 2019

T. Liang et al.: Exploiting User Tagging for Web Service Co-Clustering

1) STOP WORDS REMOVAL
We find many words do not make any sense regarded as
stop words (i.e., ‘‘be’’, ‘‘the’’, ‘‘above’’, ‘‘to’’) through the
observation on WSDL documents. In WCCluster approach,
filtering stop words is to eliminate the noise of the parsed
WSDL documents. As there is not a definite list of stop words
for Web services, we employ a widely accepted stop words
list 5 downloaded from the Internet.

2) STEMMING
Stems extraction is another problem to be solved except for
the stop words. The Porter Stemmer algorithm is a process
for removing the commoner morphological and inflexional
endings from words in English. For example, ‘‘create’’ and
‘‘created’’ have the same meaning, while the computer will
view them as two different words. The original stemming
algorithm was proposed in [42]. In our experiment, we apply
the Porter Stemmer algorithm of Java version.

3) TF-IDF
The TF-IDF value of each word in a document increases
with the its frequency in the document, while offsets by its
frequency in the whole collection. In this paper, we utilize
TF-IDF to weight terms after the term-Web service frequency
matrix is generated, and the new weighted matrix could be
used for clustering.

D. PERFORMANCE OF WCCLUSTER
As mentioned, dataset D1 is employed for evaluating the
performance of WCCluster in this section. D1 consists of
following categories: ‘‘Business’’, ‘‘Weather’’, ‘‘Bioinfor-
matics’’, ‘‘Translation’’, ‘‘Music’’ and ‘‘HR’’. Since the per-
formance of clustering different number of categories has
distinction. We use two subsets of dataset D1 in the size
of 3 and 5 categories respectively.

1) CLUSTERING PERFORMANCE ON CATEGORIES3
In this subsection, we show partitioning result based on a
dataset extracted from D1 which we call ‘‘Categories3’’.
Categories3 includes three categories: ‘‘Business’’,
‘‘Weather’’, and ‘‘Bioinformatics’’. As the true class label
of each Web service is pre-known, a confusion matrix can
be formed to show the co-clustering performance. Besides,
the values of metrics (i.e., precision and recall) can be easily
derived from the matrix.

Table 1 clearly demonstrates the effectiveness of
WCCluster on dataset Categories3. In the confusion matrix,

5http://www.ranks.nl/stopwords

TABLE 1. Clustering results for categories3.

it can be found that cluster D1 almost consists entirely of the
‘‘Business’’ category. Cluster D2 includes 20 Web services
of which 19 are categorized as ‘‘Weather’’. And we find
10 out of 11 Web services inD3 belong to ‘‘Bioinformatics’’.
It is worth mentioning that all the Web services categorized
as ‘‘Bioinformatics’’ are placed in the same cluster. The
precision and recall for each cluster aremore than 90%,which
indicates that WCCluster works well on the collection of 3
categories.

WCCluster can discover the structure in the sparse term-
service matrix. Figure 7 shows the original term-service
matrix and the realigned matrix generated by arranging rows
and columns according to the cluster order to reveal the co-
clusters. In Fig.7, WCCluster displays the underlying spar-
sity structure of various co-clusters including 3 Web service

FIGURE 7. Sparsity structure of word-WSDL document co-occurrence
matrix before (a) and after (b) co-clustering. The shaded regions
represent the non-zero entries.

VOLUME 7, 2019 168989

T. Liang et al.: Exploiting User Tagging for Web Service Co-Clustering

TABLE 2. Confusion matrix of the clustering result for categories5.

clusters and the corresponding 3 term clusters. According to
some block diagonal sub-structure, we can find that some
term clusters are highly indicative of individual Web ser-
vice clusters. However, the dense sub-block at the bottom in
the second panel shows that some clusters may have more
uniform distribution over the Web service clusters.

2) CLUSTERING PERFORMANCE ON CATEGORIES5
We intend to show the performance of co-clustering based
on the dataset Categories5 extracted from D1, which con-
tains 5 categories: ‘‘Bioinformatics’’, ‘‘Weather’’, ‘‘HR’’,
‘‘Translation’’, and ‘‘Music’’. Table 2 shows the partitioning
results. It is found that D1, D3, and D4 are purely from
the corresponding categories. The Web services belonging to
‘‘Bioinformatics’’, ‘‘Music’’, ‘‘HR’’ are exactly placed in the
related clusters, as indicated by 100% recall values shown
in Table 3. Cluster D2 and D5 are mixed by 2 or 3 original
classes, which leads to the relatively low precision. It may
attribute to the mutual correlation between two categories,
‘‘Translation’’ and ‘‘Weather’’. Another observation of the
confusion matrix is that Web services supposed to belong to
‘‘Translation’’ are divided into 3 different clusters, because of
the relatively uniform distribution of the terms extracted from
Web services.
K -means method has been widely employed in Web

service clustering task based on the semantic similarity
between WSDL documents. Thus, we take it as baseline
to make comparison with WCCluster. Table 3 demon-
strates the performance results of two methods based on
five identified groups of Web services. WCCluster shows
its superiority with the higher precision and recall values
for most identified categories. For example, WCCluster
improves precision by 30.8% and recall by 10% for category
‘‘Bioinformatics’’. It is noticed that the recall value for each
cluster generated by WCCluster is higher than that of the
baseline.

E. PERFORMANCE OF WTO FRAMEWORK
We will evaluate the impact of different data integration
strategies, the impact of tag recommendation process, and the
overall performance of WTO framework in the following.

1) IMPACT OF DATA INTEGRATION STRATEGIES
We evaluate the impact of four proposed data integra-
tion strategies to the performance of service clustering
based on precision*, recall*, and the comprehensive metric
F1 score. Fig.8 shows the performance comparison results
on 120 tagged Web services. As the Words Only strategy
is equal to the WCCluster, thus it is regarded as baseline.
It could be observed that each strategy that takes tagging
data into account performs better than baseline in all three
metrics. Except for Words Only model, we can also find that
the performance of Tags as NewWordsmodel is the best in all
three metrics, while the rest three have similar performances.
The above observations convincingly demonstrate that tag-
ging data has positive influence on the performance of Web
services clustering. In particular, Tags as New Words model
can more effectively integrate tagging data as complementary
information.

FIGURE 8. Impact of Data Integration Strategies.

2) IMPACT OF TAG RECOMMENDATION
We evaluate the impact of tag recommendation to the per-
formance of service clustering. In particular, Sum tag rec-
ommendation approach is employed, and the number of
recommended tags is set as 4. Table 4 shows the perfor-
mance comparison of service clustering with and without

TABLE 3. Performance comparison between WCCluster and k-means.

168990 VOLUME 7, 2019

T. Liang et al.: Exploiting User Tagging for Web Service Co-Clustering

TABLE 4. Impact of tag recommendation.

TABLE 5. Performance evaluation of WTO framework.

tag recommendation, by considering all data integration
strategies. From Table 4, it could be observed the emplo-
yment of tag recommendation improves the performance
of service clustering in almost all cases in terms of preci-
sion*, recall* and F1 score. In particular, the degree of the
improvement is quite different. For example, the precision*
of Tags as New Words model increases by 0.016 while that
of Words+Tags model increases by 0.156 so that the latter
catches up with the former, which indicates thatWords+Tags
is more sensitive to the amount and quality of tagging data.
F1 score reflects the overall effectiveness of a strategy. And
it is distinct that Tags as New Words and Words+Tags
outperform the rest models, which is basically in conformity
with the results of co-clustering before tag recommendation.
It is mainly led by the alternative information channel that
could be counted separately and weighted independently
of words provided by tagging data. As discussed above,
the employment of tagging data improves the performance
of Web service clustering, it is reasonable that the larger
tag collections obtained by tag recommendation should be
more beneficial to the clustering performance since more tag
information has been received.

3) WTO PERFORMANCE
To evaluate the performance of the proposed WTO
framework, we implement four Web service clustering
approaches:

• k-means. The traditional clustering algorithm based on
the semantic similarity between WSDL documents.

• WCCluster.The co-clustering approach proposed in our
early work.

• WTO1. Based on WCCluster, integrating tagging data
with WSDL documents by using Tags as New Words
model to co-cluster Web services.

• WTO2. In this approach, we first implement the tag
recommendation process, and then cluster Web services
by using WTO1. In particular, Sum method is employed
in this approach.

Table 5 reports the performance comparison of above
4 Web service clustering approaches. It can be observed that
the approaches proposed in this paper (WTO1, WTO2) out-
perform the traditional k-means algorithm and WCCluster in
almost all cases. Using category ‘‘Academic’’ as an example,
WTO (WTO1, WTO2) makes the improvement with 20.8%
in precision and 47.8% in recall comparing with k-means,
and for WCCluster, the promotion of precision and recall
are 63.3% and 43.5% respectively. As mentioned above, tags
promise a reliable source of information on the similarity cal-
culation between Web services. Utilizing these information
improves the performance of Web service clustering. Both
of WTO1 and WTO2 work well, since the worst precision
and recall are able to reach 90%. Moreover, Table 5 shows
that WTO2 which contains tag recommendation is better than
WTO1 approach. It demonstrates that adding relevant tags to
the original tag information can improve the performance of
WTO framework.

F. PERFORMANCE OF TAG RECOMMENDATION
We select 1049 Web services which contain at least two tags
to measure the performance of tag recommendation method.
In particular, for each Web service, 50% tags are identified as
the past tags, and the left 50% as the future tags. The exper-
iment is processed based on two recommendation methods,
Sum and Vote, and at most top 9 tags returned.

The comprehensive performance evaluation on the
1049 Web services data set is described in Fig.9. The per-
formance in terms of top-k accuracy is showed in Fig.9(a),
where we can observe that the Sum method makes 69.8%
correct recommendation when only top-1 tag is returned, for
which Votemethod is 63.4%. The top-k accuracy is gradually
improved with the increase of the number of recommended
tags. The accuracy of top-9 tags for Sum is about 87.6%
while that of Vote reaches 89.3%. Note that Sum has the
higher accuracy in top-1 and top-2 situation, while Vote
holds the better result since the number of recommended tags

VOLUME 7, 2019 168991

T. Liang et al.: Exploiting User Tagging for Web Service Co-Clustering

FIGURE 9. Performance of tag recommendation on 1049 tagged web services.

increase to 3. The gap between Sum and Vote in terms of
top-k accuracy is small as a whole. Fig.9(b) illustrates the
performance comparison in terms of exact-k accuracy. It is
showed that both Sum (69.8%) and Vote (63.4%) achieve their
best performance at the exact top-1 tag, and the performance
becomes worse with the decrease of k. Additionally, Sum
outperforms Vote all the time in terms of exact-k accuracy.
In Fig.9(c), we depict a tag-precision versus tag-recall

curve for two methods, Sum and Vote. It is distinct that tag-
precision of each method falls as k increases. In contrast,
tag-recall for both methods increases with the decrease of
k. Sum reaches 69.8% tag-precision when a top-1 list of
tags is recommended. Vote gets a tag-precision of 63.4% by
comparison. It is analogous to top-k accuracy, Vote exceeds
Sum in both tag-precision and tag-recall after k reaches 4.
And Vote reaches a maximum tag-recall of 77.5%, while Sum
achieves 71.3%. Fig.9(c) demonstrates that Vote outperforms
Sum when the number of recommended tags is relatively
large, such as 4 showed here.

VI. CONCLUSION
It has been widely accepted that clustering Web services into
functional similar classes is an effective approach to improve
Web service discovery. In this paper, we propose to utilize
bothWSDL documents and tagging data to improve the accu-
racy of Web service clustering. In particular, we implement
the integration of WSDL documents and tagging data based
on four distinct strategies in the proposed WTO framework.
In addition, we present a tag recommendation process to
relax the limitation of WTO generated by the uncontrolled
quality of tagging data. To evaluate the performance ofWTO,
a real Web service dataset crawled from Titan is employed.
We evaluate the impact of data integration strategies, tag
recommendation methods, and the overall clustering perfor-
mance of WTO framework, respectively. The experimental
results demonstrate the effectiveness of the proposed WTO
framework.

Efficiency issues will be considered in our future work.
In particular, we will integrate our WTO approach into
Hadoop and MapReduce framework to improve the effi-
ciency for the case of massive and distributed Web services.

REFERENCES
[1] J. Garofalakis, Y. Panagis, E. Sakkopoulos, and A. Tsakalidis, ‘‘Web

service discovery mechanisms: Looking for a needle in a haystack,’’ in
Proc. Int. Workshop Web Eng., vol. 38, 2004, p. 25.

[2] E. Al-Masri and Q. H. Mahmoud, ‘‘Investigating Web services on the
world wide Web,’’ in Proc. 17th Int. Conf. World Wide Web, Apr. 2008,
pp. 795–804.

[3] R. Nayak, ‘‘Data mining in Web services discovery and monitoring,’’ Int.
J. Web Services Res., vol. 5, no. 1, pp. 63–81, Jan. 2008.

[4] W. Liu and W. Wong, ‘‘Web service clustering using text mining tech-
niques,’’ Int. J. Agent-Oriented Softw. Eng., vol. 3, no. 1, pp. 6–26,
Feb. 2009.

[5] K. Elgazzar, A. E. Hassan, and P.Martin, ‘‘ClusteringWSDL documents to
bootstrap the discovery of Web services,’’ in Proc. Int. Conf. Web Services
(ICWS), Jul. 2010, pp. 147–154.

[6] T. Liang, L. Chen, H. Ying, and J. Wu, ‘‘Co-clustering WSDL documents
to bootstrap service discovery,’’ in Proc. 7th Int. Conf. Service-Oriented
Comput. Appl. (SOCA), Nov. 2014, pp. 215–222.

[7] I. S. Dhillon, ‘‘Co-clustering documents and words using bipartite spectral
graph partitioning,’’ in Proc. 7th ACM SIGKDD Int. Conf. Knowl. Discov-
ery Data Mining, Aug. 2001, pp. 269–274.

[8] Y. Yin, J. Xia, Y. Li, Y. Xu, W. Xu, and L. Yu, ‘‘Group-wise itinerary
planning in temporary mobile social network,’’ IEEE Access, vol. 7,
pp. 83682–83693, 2019.

[9] H. Gao, W. Huang, Y. Duan, X. Yang, and Q. Zou, ‘‘Research on cost-
driven services composition in an uncertain environment,’’ J. Internet
Technol., vol. 20, no. 3, pp. 755–769, 2019.

[10] H. Gao, H. Miao, L. Liu, J. Kai, and K. Zhao, ‘‘Automated quantita-
tive verification for service-based system design: A visualization trans-
form tool perspective,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 28, no. 10,
pp. 1369–1397, 2018.

[11] A. L. Lemos, F. Daniel, and B. Benatallah, ‘‘Web service composition:
A survey of techniques and tools,’’ ACM Comput. Surv. (CSUR), vol. 48,
no. 3, p. 33, Feb. 2016.

[12] L. Chen, Q. Yu, P. Yu, and J. Wu, ‘‘Ws-hfs: A heterogeneous feature
selection framework for Web services mining,’’ in Proc. Int. Conf. Web
Services, Jul. 2015, pp. 193–200.

[13] Y. Zhong, Y. Fan, W. Tan, and J. Zhang, ‘‘Web service recommendation
with reconstructed profile frommashup descriptions,’’ IEEE Trans. Autom.
Sci. Eng., vol. 15, no. 2, pp. 468–478, Apr. 2016.

[14] A. Bukhari and X. Liu, ‘‘A Web service search engine for large-scale
Web service discovery based on the probabilistic topic modeling and
clustering,’’ Service Oriented Comput. Appl., vol. 12, no. 2, pp. 169–182,
Jun. 2018.

[15] Y. Yin, W. Zhang, Y. Xu, H. Zhang, Z. Mai, and L. Yu, ‘‘QoS prediction for
mobile edge service recommendation with auto-encoder,’’ IEEE Access,
vol. 7, pp. 62312–62324, 2019.

[16] Y. Yin, L. Chen, Y. Xu, J. Wan, H. Zhang, and Z. Mai, ‘‘QoS prediction
for service recommendation with deep feature learning in edge computing
environment,’’ inMobile Networks and Applications. NewYork, NY, USA:
Springer, 2019, pp. 1–11.

168992 VOLUME 7, 2019

T. Liang et al.: Exploiting User Tagging for Web Service Co-Clustering

[17] M. Klusch, B. Fries, and K. Sycara, ‘‘Automated semantic Web service
discovery with OWLS-MX,’’ in Proc. 5th Int. Joint Conf. Auto. Agents-
multiagent Syst., May 2006, pp. 915–922.

[18] Y. Wu, C.-G. Yan, Z. Ding, G.-P. Liu, P. Wang, C. Jiang, and M. Zhou,
‘‘A multilevel index model to expedite Web service discovery and compo-
sition in large-scale service repositories,’’ IEEE Trans. Services Comput.,
vol. 9, no. 3, pp. 330–342, May/Jun. 2016.

[19] Q. Yu and A. Bouguettaya, ‘‘Efficient service skyline computation for
composite service selection,’’ IEEE Trans. Knowl. Data Eng., vol. 25,
no. 4, pp. 776–789, Apr. 2013.

[20] B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and F. Toumani,
‘‘On automating Web services discovery,’’ VLDB J., vol. 14, no. 1,
pp. 84–96, 2005.

[21] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang, ‘‘Similarity
search for Web services,’’ in Proc. 13th Int. Conf. Very Large Data Bases,
vol. 30, Sep. 2004, pp. 372–383.

[22] D. Skoutas, D. Sacharidis, A. Simitsis, and T. Sellis, ‘‘Ranking and clus-
tering Web services using multicriteria dominance relationships,’’ Trans.
Services Comput., vol. 3, no. 3, pp. 163–177, Jul./Sep. 2010.

[23] B. Xia, Y. Fan, W. Tan, K. Huang, J. Zhang, and C. Wu, ‘‘Category-aware
API clustering and distributed recommendation for automatic mashup
creation,’’ IEEE Trans. Services Comput., vol. 8, no. 5, pp. 674–687,
Sep. 2015.

[24] C. Platzer, F. Rosenberg, and S. Dustdar, ‘‘Web service clustering using
multidimensional angles as proximity measures,’’ Trans. Internet Technol.
(TOIT), vol. 9, no. 3, p. 11, Jul. 2009.

[25] N. Zhang, J. Wang, K. He, Z. Li, and Y. Huang, ‘‘Mining and clustering
service goals for restful service discovery,’’Knowl. Inf. Syst., vol. 58, no. 3,
pp. 669–700, Mar. 2019.

[26] Y. Cheng and G. M. Church, ‘‘Biclustering of expression data,’’ in Proc.
ISMB, vol. 8. 2000, pp. 93–103.

[27] T. George and S. Merugu, ‘‘A scalable collaborative filtering framework
based on co-clustering,’’ in Proc. 5th Int. Conf. Data Mining, Nov. 2005,
p. 4–pp.

[28] J. Liu and M. Shah, ‘‘Scene modeling using co-clustering,’’ in Proc. 11th
Int. Conf. Comput. Vis., Oct. 2007, pp. 1–7.

[29] D. Ramage, P. Heymann, C. D. Manning, and H. Garcia-Molina, ‘‘Clus-
tering the tagged Web,’’ in Proc. 2nd ACM Int. Conf. Web Search Data
Mining, Feb. 2009, pp. 54–63.

[30] N. Cravino, J. Devezas, and Á. Figueira, ‘‘Using the overlapping commu-
nity structure of a network of tags to improve text clustering,’’ inProc. 23rd
ACM Conf. Hypertext Social Media, Jun. 2012, pp. 239–244.

[31] L. Chen, J.Wu, Z. Zheng,M. R. Lyu, and Z.Wu, ‘‘Modeling and exploiting
tag relevance for Web service mining,’’ Knowl. Inf. Syst., vol. 39, no. 1,
pp. 153–173, Apr. 2014.

[32] J. Wu, L. Chen, Z. Zheng, M. R. Lyu, and Z. Wu, ‘‘Clustering Web
services to facilitate service discovery,’’ Knowl. Inf. Syst., vol. 38, no. 1,
pp. 207–229, 2014.

[33] W. Lo, J. Yin, and Z. Wu, ‘‘Accelerated sparse learning on tag annotation
for Web service discovery,’’ in Proc. Int. Conf. Web Services (ICWS),
Jul. 2015, pp. 265–272.

[34] B. Cao, X. F. Liu, J. Liu, and M. Tang, ‘‘Domain-aware Mashup service
clustering based on LDA topic model from multiple data sources,’’ Inf.
Softw. Technol., vol. 90, pp. 40–54, Oct. 2017.

[35] L. Chen, L. Hu, Z. Zheng, J. Wu, J. Yin, Y. Li, and S. Deng, ‘‘Wtcluster:
Utilizing tags for Web services clustering,’’ in Service-Oriented Comput-
ing. Cham, Switzerland: Springer, 2011, pp. 204–218.

[36] G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore,
MD, USA: JHU Press, 2012, vol. 3.

[37] J. Shi and J. Malik, ‘‘Normalized cuts and image segmentation,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, Aug. 2000.

[38] S. Lloyd, ‘‘Least squares quantization in PCM,’’ IEEE Trans. Inf. Theory,
vol. 28, no. 2, pp. 129–137, Mar. 1982.

[39] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel, ‘‘Performance
measures for information extraction,’’ in Proc. DARPA Broadcast News
Workshop, Feb. 1999, pp. 249–252.

[40] Z. Huang, H. Chen, and D. Zeng, ‘‘Applying associative retrieval tech-
niques to alleviate the sparsity problem in collaborative filtering,’’ ACM
Trans. Inf. Syst., vol. 22, no. 1, pp. 116–142, 2015.

[41] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, ‘‘Evaluat-
ing collaborative filtering recommender systems,’’ ACM Trans. Inf. Syst.,
vol. 22, no. 1, pp. 5–53, 2004.

[42] M. F. Porter, ‘‘An algorithm for suffix stripping,’’ Program, vol. 14, no. 3,
pp. 130–137, 1980.

TINGTING LIANG received the Ph.D. degree
in computer science and technology from Zhe-
jiang University. She is currently working with
Hangzhou Dianzi University. Her current research
interests include data mining, recommender sys-
tems, multiview learning, deep learning, and
service oriented computing. Her articles have
been published in some well-known conference
proceedings and international journals, such as
ICDM, ICSOC, ICWS, TSC, KBS, and WWWJ.

YISHAN CHEN received the B.S. degree from
the College of Engineering, Nanjing Agricultural
University, Nanjing, China, in 2017. She is cur-
rently pursuing the Ph.D. degree with the College
of Computer Science and Technology, Zhejiang
University. Her current research interests include
cloud computing, service computing, edge com-
puting, and big data.

WEI GAO received the B.S. degree in computer
science from the Zhejiang University of Technol-
ogy, in 2014. He is currently pursuing the Ph.D.
degree with the College of Computer Science,
Zhejiang University. His current research interests
include service computing, recommender systems,
and data mining.

MING CHEN received the Ph.D. degree in
computer science and technology from Zhejiang
University. He is currently a Chief Technology
Officer with Hithink RoyalFlush Information
Network Company, Ltd. and the Zhejiang Hithink
RoyalFlush Artificial Intelligence Research Insti-
tute. He has published more than ten related aca-
demic articles and has rich practical experience in
the application of AI in financial field and med-
ical field. His current research interests include

machine learning, big data, and computer vision.

MEILIAN ZHENG was born in Zhejiang, China,
in 1972. She received the Ph.D. degree in business
management from the School of Management,
Zhejiang University, Hangzhou, China, in 2008.
She is currently working with the Zhejiang Uni-
versity of Technology. Her current research inter-
ests include corporate financial and financial data
analysis.

JIAN WU received the B.S. and Ph.D. degrees
in computer science from Zhejiang University,
Hangzhou, China, in 1998 and 2004, respectively.
He is currently a Full Professor with the College of
Computer Science, Zhejiang University. He is also
the Director of the Real Doctor AI Research Cen-
tre, Zhejiang University and the Vice-President
of the National Research Institute of Big Data of
Health andMedical Sciences, Zhejiang University.
His current research interests include medical arti-

ficial intelligence, service computing, and data mining. He is a CFFmember,
CCF TCSC member, CCF TCAPP member, and a member of the 151 Talent
Project of Zhejiang Province.

VOLUME 7, 2019 168993

