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ABSTRACT Vehicle-pedestrian conflicts have been the major concern for traffic safety. Surrogate safety
measures are widely applied for pedestrian safety evaluation. However, how to quickly identify the vehicle-
pedestrian surrogate safety measures at the individual site is challenging due to the difficulty of obtaining
the high-resolution trajectories of road users. This paper presented an effective method to generate the high-
resolution traffic trajectories from the roadside deployed Light Detection and Ranging (LiDAR) sensor.
The vehicle-pedestrian conflicts can then be identified from the trajectories simply using the speed-distance
profile (SDP) of the vehicles. The SDP can be used to develop a rule-based method for vehicle-pedestrian
identification. The events can be divided into different risk levels based on the spatial distribution of the SDP.
The case study shows that the rule-based method can detect vehicle-pedestrian near-crash events effectively.
The other indicators, such as widely used time-to-collision (TTC) or deceleration rate to avoid a crash
(DRAC), can be also obtained from the SDP. The engineers can also adjust the thresholds in the rule-based
method to meet the specific requirements at different sites. The proposed method can be extended to identify
vehicle-vehicle conflicts or vehicle-bicycle conflicts in future studies.

INDEX TERMS Roadside LiDAR, vehicle-pedestrian conflicts, surrogate safety measures, high-resolution
trajectories, pedestrian safety.

I. INTRODUCTION
Pedestrians are vulnerable groups on the roads compared to
motor vehicles. The vehicle-pedestrian conflict has been a
major concern of public health worldwide [1]. According to
the traffic safety facts released by National Highway Traffic
Safety Administration (NHTSA), a total of 79,000 pedestri-
ans were involved in vehicle-pedestrian crashes, including
5,977 fatalities in the United States in 2017 [2]. Intersections
have been the most dangerous traffic element for pedestri-
ans due to the complex traffic conflicting movements [3].
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For unsignalized intersections, pedestrians need to make a
go/waiting decision when they reached or are close to the
crossing line [4]. Due to aggressive driving behavior or
driving distraction, drivers may fail to yield to pedestri-
ans at unsignalized intersections, which can result in severe
crashes [5]. For signalized intersections, pedestrians crossing
the road may have conflicts with right-turn-on-red vehicles
or left-turn-on-green vehicles [6]. How to assess the status
of pedestrian safety and to provide the corresponding coun-
termeasures for pedestrian safety improvements are impor-
tant tasks for traffic engineers. The most common approach
for vehicle-pedestrian conflicts analysis is the crash-based
method; however, the frequency of vehicle-pedestrian crashes
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is lower than other crash types [7]. Therefore, it is usually
difficult to obtain adequate crashes to perform the crash-
based evaluation at a specific site. Furthermore, the detailed
descriptions of the crash (e.g., crash time, driver behavior,
and pedestrian movements) usually rely on the investigating
officers’ judgment and the involved road users’ self-reports.
It could not be guaranteed that the actual situation of the
crash is recorded and human errors are inevitably included
in the crash statistics. Surrogate safety measures are widely
applied in traffic safety analysis [8]. In general, a surrogate
safety measure refers to the situation that two or more road
users would collide or be near-collision if they remain on
their paths or speeds on the roads [9]. Though crashes and
surrogate safety measures are two different types of events,
the previous study [3] already showed that using surrogate
safety measures can be used for conflict analysis when the
historical crash data were not available.

Different types of data collection methods for surro-
gate safety measures have been developed by previous
researchers, including site-based methods [10], simulation-
based methods [11], and naturalistic driving studies (NDS)
[12]. Manual observation might be the first site-based
method. For manual observation, the vehicle-pedestrian con-
flicts were observed in the field and the details of the conflicts
were recorded and post-processed [13]. Since manual obser-
vation in the field was time-consuming and labor-intensive,
other types of site-based methods were then developed.
The most widely used site-based method is video detection
technology [14]. Sayed et al. developed a computer-based
method for vehicle-bicycle conflict identification from video
detectors [15]. The computer vision module mainly includes
feature detection, tracking, grouping, and classification. The
safety analysis module includes trajectory generation, pat-
terns analysis, and conflicts identification. The case study
shows that indicators, such as time-to-collision (TTC) can
be successfully gained from the computer-based method.
Ismail et al. [16] developed an automatic procedure that can
extract the vehicle-pedestrian conflicts using video data. The
indicators such as TTC, deceleration-to-safety time (DST),
and post-encroachment-time (PET) can be calculated using
the proposed method. Jiang et al. [17] analyzed the relation-
ship between TTC and vehicle speed profile using the video
data. It was found that the smaller TTC occurs when the driver
chooses harder braking, whereas a larger TTC corresponds
to a lower deceleration rate. Tageldin and Sayed developed
evasive action-based indicators using video detectors [18].
Pedestrian evasive actions usually involve a sudden change
in their walking mechanism. This reaction is reflected in
the pedestrian gait parameters (step frequency and/or step
length). Threshold: max absolute rate of change in step fre-
quency> 0.7 steps/s2 and Jerk<−8m/s3. The threshold was
developed for a congested intersection. The transferability
of the thresholds needs to be further investigated. Though
the above-mentioned video-based studies indicated that video
detection was a good method for vehicle-pedestrian conflicts
data collection, the video-based method suffered a major

limitation that the performance of video sensors can be
greatly influenced by light conditions, especially during sun-
rise and sunset time.

Researchers have made efforts to analyze vehicle-
pedestrian conflicts by investing the existing indica-
tors or developing their indicators using the simulation-based
method [19]. Gettman and Head [20] investigated the perfor-
mance of different indicators from traffic simulation models.
It was found that maximum speed and the speed differential
are two indicators that can measure the risk level effectively.
Ozbay et al. [21] developed and validated two new safety indi-
cators: derived crash index (CI) and modified (TTC) using
a calibrated simulation model. Wang and Stamatiadis [22]
compared the performance of a simulation-based surrogate
safety metric-aggregate conflict propensity metric (ACPM)
with TTC and found ACPM can provide the results highly
consistent with the Highway SafetyManual (HSM). The high
correlation between simulated and field-measured conflicts
was found after calibration [23]; however, the calibration
parameters varied considerably among different traffic envi-
ronments, meaning extract efforts were required to calibrate
the models in different situations. Therefore, simulation-
based methods can be a good approach to analyze vehicle-
pedestrian conflicts under a specific environment, and to
validate the performance of different indicators, but may
not be effective to assess pedestrian safety for massive real
sites.

Surrogate safety measures extracted from NDS can pro-
vide drivers’ and pedestrians’ real behaviors at the occur-
rence of the conflicts [24]. The emerging use of naturalistic
driving studies (such as the use of the Strategic Highway
Research Program 2 database-SHRP 2) provides a good
approach to capture the detailed and real surrogate safety
measures. The NDS data can be extracted through a series
of sensors installed on the vehicles, including but not lim-
ited to on-board cameras, radars, GPS, and accelerometers.
Wu and Jovanis [25] used receiver operating characteristic
(ROC) methods to extract the near-crash events from the
Virginia Tech Transportation Institute (VTTI) 100-car study.
Wang et al. [8] used a tree-based model to assess the driving
risks using the near-crash database. Though the NDS data
has a bunch of benefits, their application for site-based safety
evaluation is still limited since the number of captured trips
at the individual site is uncontrolled.

Other researchers using light detection and ranging
(LiDAR) to generate the trajectories of road users for vehicle-
pedestrian conflicts analysis [26]. Compared to the video sen-
sor, the LiDAR can work day and night with the influence of
different light conditions [27]. And the LiDAR doesn’t have
the problem of shade. The performance of the LiDAR can be
reduced under rainy or snowy weather. But the researchers
have improved the algorithms of detecting the objects under
severe weather conditions using the LiDAR sensors [28].
Tarko et al. [29] investigated the feasibility of using LiDAR
for safety analysis at intersections and concluded that the
LiDAR sensor can provide high-resolution micro traffic data
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(trajectories of all road users with second-by-second or even
higher frequency) and can be a good option for vehicle-
pedestrian conflicts collection. Zhao et al. [30] predicted the
pedestrians’ decision-crossing/not crossing the intersection
using the trajectories extracted from the 360-degree LiDAR
sensor deployed in a static location. A deep autoencoder-
artificial neural network (DA-ANN) was applied to process
the data and predict pedestrians’ behaviors. About 95% pre-
diction accuracy was achieved in the case study. However,
that paper did not provide an effective method to iden-
tify the vehicle-pedestrian conflicts from the LiDAR data.
Wu et al. [13] developed three indicators for vehicle-
pedestrian near-crash identification using the roadside
deployed LiDAR. The three indicators include time differ-
ence to the point of intersection (TDPI), distance between
stop position and pedestrian (DSPP), and speed-distance pro-
file. The field evaluation showed that a lot of ‘‘false’’ events
(not near-crash events) were reported due to the undefined
region of interest (ROI) and the occlusion issues in the
LiDAR data. Therefore, the accuracy of vehicle-pedestrian
conflicts identification algorithms or indicators in those
LiDAR-related pioneer studies still needs to be further
improved.

The limitations of previous studies related to vehicle-
pedestrian conflicts are summarized as follows: 1. The res-
olution of the extracted trajectories used for surrogate safety
measures analysis needs to be further improved. 2. The stud-
ies related to the site-based pedestrian safety assessment were
limited. 3. The feasibility of the indicators (most of them
were developed for vehicle-vehicle conflicts) on the vehicle-
pedestrian conflicts analysis needs to be investigated sys-
tematically. This paper developed a systematical procedure
to extract the high-resolution traffic data from the roadside
LiDAR sensors. Those trajectories were then used as the
input to evaluate the feasibility of different indicators. A new
indicator, which was designed for vehicle-pedestrian con-
flicts especially, was also introduced and validated through
case studies. The major contribution of this paper is that
an automatic procedure for the vehicle-pedestrian conflicts
is developed with its performance evaluated. The proposed
method can be used at any site as long as the trajectories of
vehicles and pedestrians are available. The extracted surro-
gate safety measures can be either used for pedestrian safety
evaluation or be possibly used to develop the near-crashwarn-
ing system for connected-vehicles since the real-time identi-
fication can be achieved in the future. The following parts of
the paper are structured as follows. Section 2 documents the
procedure of extracting high-resolution trajectories of road
users from the roadside LiDAR. Section 3 introduces the
speed-distance profile (SDP) designed for vehicle-pedestrian
conflicts identification. Section 4 evaluates the performance
of different indicators for vehicle-pedestrians conflict identi-
fication using real-world data. Section 5 discusses the major
limitations of this research. The last section summarizes
the findings and provides the research directions for future
studies.

II. TRAJECTORIES EXTRACTION FROM ROADSIDE LIDAR
The high-resolution traffic data can benefit traffic safety,
traffic operation, and a lot of other traffic aspects [49].
Unlike vehicle-vehicle conflicts which can last in a relatively
long distance (such as rear-end near-crashes), the vehicle-
pedestrian conflicts normally occurred at a limited area-
crosswalk at the intersection. Therefore, the resolution of
the trajectories can directly influence the identification of
vehicle-pedestrian conflicts due to the short conflict time
between the vehicles and pedestrians. The roadside LiDAR,
also known as side-fire LiDAR or stationary LiDAR, has
been an emerging application to providing the high-resolution
traffic data for connected vehicles. The 360-degree LiDAR
can create point clouds for its scanned objects with a high
frequency (usually 5-20 Hz) in a wider range compared to
radars or cameras [31]. Another reason why this research
selected the roadside LiDAR was that the LiDAR can be
easily installed on a tripod for temporarily data collection
without many calibrations. This means pedestrian safety at
the individual site can be assessed with the high-resolution
trajectories extracted from 360-degree LiDAR.

A. TRAJECTORY EXTRACTION PROCEDURE
The whole data processing of the trajectory extraction con-
tains parts: point registration, background filtering, point
clustering, object classification, lane identification, and data
association. Figure 1 shows the flow-chart of the data pro-
cessing procedure.

The occlusion issue is the object blocking by another one
can cause point loss in the roadside LiDAR. As a result,
the shape of the object may be only partially visible or totally
invisible. This issue has been reported by a bunch of stud-
ies [32]. One effective and simple solution to fixing the
occlusion is installing another LiDAR at a different nearby
location [33]. The LiDARs can have some overlapping areas,
which can reduce the probability of full occlusion. Since each
LiDAR reports the point cloud in a local system, it is neces-
sary to integrate the point clouds into one unit coordinating
system. This paper applied a revised iterative closest point
(ICP) developed by the author in a previous study [34] for
point registration among different LiDARs. Firstly, the algo-
rithm synchronized the timestamp of different LiDARs using
GPS time. Then at least three controlling points in the point
cloud of each LiDAR were selected as the input of the ICP.
The point pairs were integrated into a 2D space (XY coor-
dinates) using the ICP. To find the best match in Z-axis,
the ground surface was selected to adjust the offset in the
height using the ICP. The two-point clouds from different
LiDARs can be then integrated. The data integration step is
optional since in real-world applications, not all LiDARs are
linked with GPS and the occlusion issue may be weakened by
selecting an appropriate height for the LiDAR installation.

The definition of ‘‘background’’ here is the object unre-
lated to road users in the space. More specifically speak-
ing, the background includes buildings, trees, as well as
ground points. Background filtering is to identify and exclude
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FIGURE 1. Flow chart of data processing algorithm.

backgrounds, which is an important step for LiDAR point
reduction [35]. The background filtering can accelerate the
following data processing steps by removing the irrelevant
points from the space. The proposed background filtering
algorithm includes three major parts: frame aggregation,
rasterization, and threshold identification. For one frame,
without comparing to other frames, it is difficult to know
which cube represents background when there are mov-
ing objects in the space. By aggregating multiple frames
(1500∼3500 frames) into one coordinate based on the
XYZ location, the density of background points should be
higher than that of non-background points. The whole space
can be then rasterized into small cubes with the same side
length. By giving a pre-defined threshold of point density
for each cube, the cube can be identified as background
cube or non-background cube. The location of the back-
ground points can be then stored in a 3D array (containing
the spatial location with XYZ). Any points detected in the
3D array are identified as background points and are excluded
from the space. The detailed background algorithm can be
found from an earlier version [35] and a later improved
version [36].

The purpose of object clustering is to group the points
belonging to one object into one cluster. The density-based

spatial clustering application with noise (DBSCAN) was
selected for object clustering considering its powerful per-
formance on processing spatial points. The point p whether
belongs to one cluster is determined by two parameters:
searching radius (ε) and minimal points (MinPts). The
ε is used to determine whether another point is the neigh-
borhood (N) of p. The N containing the number of points
(nN) equal to or larger than MinPts is considered as high
density. Based on ε and MinPts, one point can be assigned
to one of the three categories: core point (p ∈ N & nN ≥
MinPts), border point (p ε N&nN<MinPts), and noise point
(p/∈ N ). A cluster contains core points and border points.
The traditional DBSCAN using the fixed values of ε and
MinPts could not cluster the points with varying density. For
the points scanned by the roadside LiDAR, the density of
points decreased with the increasing distance to LiDAR [37].
Therefore, it is difficult to cluster the points using fixed
MinPts and ε. Dynamic parameters were then developed for
DBSCAN considering the LiDAR sensor’s mechanical struc-
ture and the features of LiDAR points. The primary criterion
of the ε selection is to make sure points scanned by different
beams (different heights) can be detected as the neighbor.
Therefore,

ε ≥ d (1)

where d is the height difference between two adjacent laser
beams. d can be estimated based on the distance between
points to LiDAR [37]. A previous study [38] showed that
the modified DBSCAN can achieve an accuracy of more
than 97%.

The classification of one object is critical for the analysis
of the vehicle-pedestrian conflict. It is necessary to know
whether the object is a vehicle or a pedestrian. Since the
LiDAR can generate the point cloud for its scanned object,
the shape information can be generated for each object. The
selected features used to distinguish the vehicles and pedes-
trians include the number of points, object length, height pro-
file, the difference between height and length, and distance
to the LiDAR. Those features can be automatically calcu-
lated from the LiDAR data. By comparing the performance
of different classification methods including Naive Bayes,
K-Nearest Neighbor, Support Vector Machine, Random For-
est, and Backpropagation Artificial Neural Network, it was
found that random forest can achieve the best performance
with the relatively low computing cost [39]. The vehicles
and pedestrians can then be successfully distinguished using
random forest with the six features.

Lane information is another important part of HRMTD.
Lane information plays a key role in the identification of
vehicle-pedestrian conflicts. For example, the lane infor-
mation can help identify whether the vehicle passed the
road before the pedestrian crossing the road or after the
pedestrian crossing the road. These two types of events
should have different levels of risks (vehicles passing the
road before the pedestrian crossing the road is more dan-
gerous). This research used a density-based method for lane
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identification [40]. It is assumed that the number of lane-
changing vehicles is less than that of non-lane-changing vehi-
cles. After aggregating multiple frames of vehicle points in
the space, the vehicle points should be concentrated within
each lane, which means the point density within the lane
should be higher compared to that on the lane boundary.
By applying the DBSCAN algorithm, the vehicle points
located in the same lane can be grouped into one cluster.
Then the boundary of each cluster can be considered as the
boundary of the lane.

To generate the trajectory of one object, the target should be
continuously tracked, which is also called object association.
The object tracking should consider two factors: the distances
between an object in a previous frame to all objects in the
current frame and the time difference between two considered
frames. Two objects were matched if the distance between
them was the shortest among all the candidate objects within
a certain time period. Then a discrete Kalman filter method
was applied for object tracking. The position and the speed
information of the object in the previous and the current frame
were the input of the Kalman Filter to estimate the status
of the object in the current frame. For some frames where
clusters cannot be detected, the Kalman filter can be used to
predict the status of the missing object, thus improving the
tracking continuity [40].

B. TRAJECTORY EVALUATION
The trajectory of each road user can then be generated using
the above-described procedure. Table 1 shows the summary
of the elements of the trajectory from the roadside LiDAR.
Figure 2 shows an example of trajectories extracted from the
roadside LiDAR. The detailed trajectories made the analysis
between the vehicles and pedestrians possible.

Before using the proposed data processing algorithm to
extract the trajectories for the input of the vehicle-pedestrian
conflict analysis, the performance of the data processing
algorithm was firstly evaluated. Three elements (vehicle vol-
ume, pedestrian volume, and vehicle speed) were evaluated
based on feasibility and simplicity. The vehicle volume and
pedestrian volume were evaluated by the counting number of
vehicles, the number of pedestrians in trajectories generated
by the proposed algorithm, and comparing the results with
the volume counted from a 360-degree camera. One-hour
(10:30 am to 11:30 am) of traffic data was collected at a
pedestrian crossing midblock of Baring Blvd in Sparks. This
was used for evaluation. This site was selected since the
pedestrian volume was high during the peak hours (11:00 am
to 12:00 pm) based on the historical pedestrian volume
counting results [41]. This site is located at the front of the
Edward C Reed High School. The error rate can be calculated
in Equation 2.

ER =
|NL− NC|

NC
× 100% (2)

where ER is the error rate; NL is the number of traffic volume
extracted from LiDAR data; NC is the number of traffic

TABLE 1. Elements in the trajectories.

FIGURE 2. Example of trajectories extracted from roadside LiDAR.

volume counted from the camera. Table 2 shows the results
of volume evaluation.

The high pedestrian volume from 11:00 am to 11:30 am
was caused by the students out for lunch after school. It was
shown from 10:30 am to 11:00 am (non-peak time), the
proposed method can achieve 100% accuracy and 96.9% for
pedestrian volume counting and vehicle volume counting,
respectively. The vehicle volume extracted from LiDAR data
was higher than that counted from the camera, which was
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TABLE 2. Traffic volumne evaluation.

mainly caused by the occlusion issue. For example, one
vehicle might be blocked by another vehicle and the blocked
vehicle re-appeared after several frames. The blocked vehi-
cle may discard its original ID and obtain a new one since
the algorithm could not continuously track the same vehicle
under this situation. The error got larger when the traffic got
congested (error rate raised to 5.1% from 3.1%). The error
in the pedestrian volume also got larger when the volume
increased dramatically from 11:00 am. The algorithm may
count two close-by pedestrians as one pedestrian if they walk
side by side. Overall, the proposed data extractionmethod can
achieve a relatively high accuracy to count pedestrian volume
and vehicle volume.

The second site was selected at a parking lot to evalu-
ate the speed of the vehicle calculated from the trajectory.
The speed information was recorded using the On-Board
Diagnostic System Information (OBD-II) logger from the
vehicle. During the testing time, only the testing vehicle was
in the parking lot, which can be easily matched to the corre-
sponding vehicle in the LiDARdata. The speed recorded from
the testing vehicle and from the LiDAR data were compared.
Figure 3 shows two examples of the comparison results.

It was shown that the speed tracked using the LiDAR data
can match the speed read from the logger well in general.
To quantitively measure the speed difference from the speed
from the logger and the LiDAR data, the cumulative differ-
ence in tenminutes was documented in Figure 4. It was shown
that 98.8% of speed records from the logger and the LiDAR
data had a difference of less than 2 mph.

The evaluation showed that the overall accuracy of the data
processing algorithm was high, indicating the trajectories can
be used for vehicle-pedestrian conflict analysis.

III. INDICATORS OF SURROGATE SAFETY MEASURESTES
A. THE DEVELOPED INDICATOR
There have been a lot of indicators developed for surro-
gate safety measure analysis. The indicators can be roughly
divided into three groups: time-proximity indicators [42],
evasive action-based indicators [43], and distance-based indi-
cators [44]. Table 3 summarizes the major indicators of sur-
rogate safety measures developed in previous studies.

It is shown in Table 3 that a lot of indicators (well
known or less known) have been developed and used for

FIGURE 3. Speed evaluation.

FIGURE 4. Speed difference distribution.

safety surrogate measures. A previous study [46] compared
the performance of different types of indicators and found
that it is hard to say which indicator is better since the perfor-
mance of different indicators varied at different investigating
sites. For a sole indicator, it usually only suited a specific
situation and one indicator usually had limited transferability.
Therefore, the combined use of the indicators can be a good
option to improve the accuracy of conflict analysis [47].
This paper developed a rule-based method using the speed-
distance profile (SDP) of the vehicles for vehicle-pedestrian
conflicts identification. The rule-based method can be
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TABLE 3. Indicators of surrogate safety measures.

considered as a combination of different types of indicators.
The SDP in this paper is ‘‘the speed profile of a vehicle
calculated with the distance between the vehicle and the
pedestrian with a consistent time interval.’’ The SDP can be
described in Equation 3, as shown at the bottom of the this
page, where t0 is the time when the pedestrian and the vehicle
can both be detected firstly in the LiDAR; V represents the
speed; XP, YP, ZP are the XYZ coordinate of the pedestrian;
XV, YV, ZV are the XYZ coordinate of the vehicle; tI is the
timewhen the trajectory of the pedestrian and the trajectory of
the vehicle intersect; TI is the time interval. In Equation (3),

as shown at the bottom of this page, TI equals to the time
interval between the adjacent frames of the LiDAR data. The
total number of records (N) can be calculated as

N =
tI− t0

F
+ 1 (4)

where F is the rotation frequency of the LiDAR.
Figure 5 shows an example of SDP.

The green cycles in Figure 5 represent the SDP of a normal
event (no conflicts) and the red squares represent the SDP
of a near-crash (the vehicle did not yield to the pedestrian).

SDP =



Vt0 ∼
√
(XPt0 − XVt0)

2
+ (YPt0 − YVt0)

2
+ (ZPt0 − ZVt0)

2

Vt0+TI ∼

√
(XPt0+TI − XVt0+TI)2 + (YPt0+TI − YVt0+TI)2 + (ZPt0+TI − ZVt0+TI)2

.

.

.

VtI ∼
√
(XPtI − XVtI)2 + (YPtI − YVtI)2 + (ZPtI − ZVtI)2


(3)
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FIGURE 5. Examples of SDP.

Evidently, the SDPs of these two types of events are different.
The technical difficulty here is how to assess the safety status
based on the SDP. Each point (P) in Figure 5 represents
the status of the vehicle at the specific timestamp. Given
the speed of the vehicle at P is VP and the deceleration of
the vehicle (DC) is constant, the distance (D) required for
deceleration before hitting the pedestrian can be calculated
in Equation 5.

D = (
Vp − Vi

2
)× T (5)

where T is the time used for the vehicle moving from P to
the intersection of vehicle and pedestrian trajectories. Vi is
the vehicle speed at the intersection of vehicle and pedestrian
trajectories. To avoid a crash, Vi should be equal to 0. Since
DC was assumed to be constant, T can be easily calculated as

T =
Vp − Vi

DC
(6)

Then Equation 5 can be revised as

D =
V2
p

2× DC
(7)

The max DCs recommended by the Institute of Trans-
portation Engineers (ITE) Traffic Engineering Handbook and
AASHTO are -3.0 m/s2 and −3.4 m/s2, respectively [48].
In this paper, we used the −3.4 m/s2 as the acceptable DC.
Assuming the distance of the vehicle and the pedestrian at P
is DP, a vehicle-pedestrian crash can occur if

D ≥ Dp (8)

However, D did not consider the brake reaction distance
(BRD). To give a more accurate calculation, the stopping
sight distance (SSD) was used here. SSD is the minimum
sight distance required along a roadway to enable a vehi-
cle to stop before reaching a stationary object in its path.
SSD can be represented as

SSD = 0.278V× t+ 0.039V2/DC (9)

where V is the vehicle speed, t is brake reaction time, and
DC is the deceleration rate. The traditional SSD used the

TABLE 4. Near-Crash identification using SDP.

design speed for calculation. In the real situation, the actual
speed can be offset from the design speed under different
traffic situations. With the trajectory data extracted from the
LiDAR, the actual speed of the vehicles can be obtained.
Therefore, the SSD used in this paper can be considered as an
improved version of the traditional one. The design standards
of the American Association of State Highway and Trans-
portation Officials (AASHTO) use 1.5 seconds for perception
time and 1.0 second for reaction time [49]. Therefore, t is
assumed as 2.5 seconds in this research. DC was selected
as 3.4m/s2.

Therefore, SSD can be simplified:

SSD = 0.695V+ 0.011V2 (10)

The engineers or researchers can choose their own values
for DC and t based on different purposes. In other words,
the SSD can be customized based on the requirements of
different users. Even if SSD is less than DP, pedestrians
may still feel in danger or uncomfortable if the distance
between the vehicle and the pedestrian is short. As intro-
duced in the previous paper [13], the vehicle should stop
before the yield/stop line to avoid any uncomfortable feeling
to the pedestrians. The distance between yield/stop line to
crosswalk (LTC) varied based on different control types of
the intersections (e.g. signalized midblock crosswalk-40ft;
uncontrolled midblock crosswalk-9.1 meters) [50]. If the
vehicle could not stop before the crosswalk, then the event can
be considered as near crash. The near crash refers to the event
that should be avoided since, by definition, a successful, last-
second evasive maneuver is needed to avoid a crash. If the
vehicle stopped between the crosswalk and the yield/stop
line, this event can be considered as crash relevant. The
crash relevant in this paper can be defined as the event that
requires a crash avoidance response that is less severe than a
rapid evasive maneuver, but greater in severity than a normal
maneuver. The crash relevant may also cause the pedestrian
to feel uncomfortable. Therefore, vehicle-pedestrian conflicts
can be identified using the criteria in Table 4.

The SDP considered the brake time, vehicle speed, dis-
tance, and deceleration for near-crash identification. The only
missing part was the evasive action of the pedestrian. This
was due to the variance in the speed calculation. The previous
study found that it’s difficult to track the pedestrian’s speed
accurately using the roadside LiDAR due to the occlusion
issue [13].

If the pedestrian did not reach the boundary of the intersec-
tion, the vehicle using the lane close to the pedestrian may not
slow down. This case should be considered as a normal event.
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FIGURE 6. ROI selection.

FIGURE 7. Example of SDPs.

However, using the rule-based method can identify this case
as a near crash or crash relevant. To reduce the false reports,
we set a region of interest (ROI) for the analyzing area. The
road boundary was used as the ROI here. Figure 6 shows an
example of ROI (only on the major road). We only focused
on the pedestrians and vehicles within the road boundaries.

Figure 7 shows several SDPs collected at Baring Blvd in
Reno.

The threshold line 1 was generated based on Table 4 to
distinguish near crash and crash relevant, and the threshold
line 2 was used to distinguish crash relevant and normal
behavior. The whole space can then be divided into three
parts. Below the threshold line 2, this area means that drivers
can stop before reaching the LTC with the max deceleration
rate-3.4m/s2 and the reaction time -2.5s. Between threshold
line 1 and 2, this area means that drivers can stop but could
take a longer distance. Any event located in this area can be
considered as crash relevant. Above the threshold line 1, this
area means that the drivers are more likely to hit the pedes-
trian and the drivers may need to brake sharply to avoid the
potential crash, which means near-crash occurs. In Figure 7,
there were five different SDPs (A, B, C, D, E), SDP A
was located in the area below the threshold line 2, which
means this was a normal event (no risks for the pedestrian).
SDP B was originally located in the area below the threshold
line 2 (the speed was relatively low), but the drivers did not

FIGURE 8. Different risk levels in SDP.

slow down until about 16 meters away from the pedestrian.
As a result, the SDP reached the area between threshold
line 1 and 2. This situation was considered as a crash-relevant
event. SDP C was totally above the threshold line 2 and the
vehicle did not slow down to yield to the pedestrian. Though
this event did not lead to a crash eventually, the aggres-
sive driving behavior could be potentially dangerous for the
pedestrians. SDP D represented a situation where the vehicle
slowed down a little at a distance of about 27m from the
pedestrian, then the vehicle moved forward with relatively
low speed but did not fully stop though the distance between
the pedestrian and the vehicle was short. SDP E represented
a situation where a vehicle slowed down (almost stopped)
at a distance of about 19m from the pedestrian. Then the
driver decided to speed up. This was another type of dan-
gerous driving behavior. However, in Figure 7, one missing
factor was the speed limit. Any behavior above the speed
limit or above a specific value (e.g. 5%∼10% above the speed
limit) can be dangerous though theymay be located in the area
below the threshold line 2. To address this issue, the speed
limit was involved in the SDP chart. Then Figure 7 can be
plotted as Figure 8. Figure 8 was divided into six subareas
(Area A, B, C, D, E, F) using the speed limit line and the
threshold lines 1 and 2. In Figure 8, area A has the highest
level of crash risk. The speed of the vehicle located in Area A
was higher than the speed limit, and the distance between the
vehicle and the pedestrian was shorter than SSD. For area B,
the speed of the vehicle was lower than the speed limit but
the distance between the vehicle and the pedestrian was still
shorter than SSD. The risk of the event with SDP located
in area B was lower than that in area A. The same rule can
be applied to areas C, D, E, and F. Area F has the lowest
level of crash risk. The speed of the vehicle located in area F
was lower than the speed limit and the distance between the
vehicle and the pedestrian was longer than SSD plus LTC. For
an SDP, it may cross different areas in Figure 7 or Figure 8.
The final level was selected based on the most dangerous area
where the SDP was located. For most situations, the traffic
engineers may not need to have such detailed levels for the
crash risk. Therefore, the rules shown in Figure 7 can usually
meet the requirements of most users.
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FIGURE 9. SDP and TTC.

B. EXTENDED USE OF TRAJECTORIES
For some researchers or traffic engineers, they may prefer
the widely used indicators (e.g. TTC or DRAC). In fact,
those indicators can all be generated from the trajectories.
The following parts of this subsection show the calculation
of those indicators from the SDP.

The TTC can be calculated as

TTC =
D
V

(11)

where D is the distance between the vehicle and the pedes-
trian and V is the vehicle speed. Figure 9 shows the TTC
calculation results of SDP A and E.

It can be seen that for each SDP, the corresponding
TTCs can be easily calculated.

The DRAC can be easily calculated in Equation 12.

DRAC = (Vt − Vt+1)/T (12)

where Vt represents the vehicle speed at frame t. T is the time
interval between two adjacent frames. Figure 10 shows the
DRAC calculation results of SDP A and E.

It can be seen that for each SDP, the corresponding DRACs
can be easily calculated. The other indicators can also be cal-
culated from the SDP or from the trajectories. This means that
our proposed procedure can be used to generate different indi-
cators based on the requirement of different users. Another
thing should be noted here is that the law of some states (such
as Nevada) requires the vehicles waiting at the intersection
until the pedestrians finished crossing the intersection. This
means that if the vehicle starts to move before the pedestrian
finish as his/her crossing, then the drivers will break the law.
The level of this kind of risk may not be as high as near-crash.
But the traffic engineers or researchers may want to know
the number of these kinds of events. These types of events
can be identified using the following procedure. Assuming
the pedestrian reached the road boundary at Ta and finished
crossing the road at Tb, and the vehicle passed the crosswalk

FIGURE 10. SDP and DRAC.

FIGURE 11. SDPs of normal events.

at Tc, these kinds of events meet the following criteria:

Ta < Tc < Tb (13)

The time information was not covered in the SDP but
was stored in the trajectory data, as shown in Appendix A.
Therefore, extracting ‘‘breaking the law’’ events from the
trajectories is possible.

IV. CASE STUDY
To evaluate the performance of the proposed method, the pro-
posedmethodwas applied to the data collected at an unsignal-
ized crosswalk at Baring Blvd in Reno. The LTCwas selected
as 6.1m and the break time was set as 2.5 s. The rotating
frequency of the LiDAR was set as 10 Hz. A total of 235 nor-
mal events were manually extracted from the Veloview- a
visualization software to show the raw LiDAR data in a
local system. The normal events were selected based on the
adjustment of the data analyst at the University of Nevada,
Reno (UNR). Figure 11 shows the results of the SDPs of those
normal events.

In Figure 11, a total of 15 events was located between the
two threshold lines, meaning they were identified as crash
relevant. It should be mentioned that the bias between the
results of the SDPs and the LiDAR video was inevitable.
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TABLE 5. Near-Crash identification with two different methods.

FIGURE 12. SDPs of near crash events.

The difference rate was 6.4%, which was acceptable. It can be
also seen that the variance of the calculated speed was high
when the vehicle was far away from the LiDAR and went
smaller when the vehicle moved close to the LiDAR. Those
variances can also influence the accuracy of the rule-based
method.

A total of 57 near crashes were manually identified
by the data analyst. The selection criteria were fuzzy
and were selected based on the information provided
by the Strategic Highway Research Program (SHRP 2)
Naturalistic Driving Study InSight Data Access Website-
https://insight.shrp2nds.us. Those events were then checked
using the rule-based method. Figure 12 shows the SDPs of
those events.

It is shown that all the 57 events had part of the SDP
located above the red threshold line. In other words, all the
57 events were identified as near-crashes by the proposed
method. The case study shows that the proposed method can
be used to identify the vehicle-pedestrian near-crash events
though there were some misidentifications between normal
events and crash relevant events.

To further evaluate the performance of the proposed
method, this paper used the method developed in [13] to
process the data collected at the same unsignalized crosswalk
at Baring Blvd in Reno. The thresholds for near-crash were
illustrated as follows: TDPI < 2.5 or 0 < DSPP < 6.1m
or vehicle speed within area A in speed-distance profile
(See Figure 5 in [13]). Table 5 shows the results of the two
methods.

It was shown that the proposed method can successfully
extract all the 57 near-crash events while the method in [13]
can only extract 51 near-crash events (89.5%). The proposed

method considered the distance between the vehicle and the
pedestrian, vehicle speed, deceleration, and driver reaction
time in the algorithm, and therefore provided accuracy for
near-crash identification compared to the method in [13].

V. DISCUSSION
The focus of this paper was through the vehicle aspect, which
means all the indicators were developed based on the features
of vehicles and drivers. The pedestrian side was not well
addressed. This is mainly caused by the variance in the pedes-
trian speed. A 1.0 km/h variance in vehicle speed may not
be a big problem, but the same variance in pedestrian speed
can cause a big problem for evasive action identification.
Therefore, at this stage, we did not analyze the behavior of the
pedestrian. The future studies should improve the accuracy
of the trajectories extracted from the roadside LiDAR. The
previous study also found that pedestrians prefer to finish
crossing as soon as possible when he/she perceives potential
risk [51]. Therefore, it will be an interesting topic to validate
the behavior change of the pedestrian under potential risks.

All the recommended values in this paper were based on
the features of light-duty small vehicles. The deceleration
features of the trucks should be dramatically different. Fur-
ther studies should focus on how to provide the thresholds
for indicators regarding truck-pedestrian crashes. This paper
shows the ability of LiDAR using high-resolution trajecto-
ries for vehicle-pedestrian near-crash identification. A similar
idea can be extended to vehicle-vehicle conflict analysis.
Since the trajectories can be generated in real-time, the rule-
based vehicle-pedestrian conflict identification method can
be implemented for the crash-avoidance system development.
The previous study found that earlier warning leads to shorter
reaction times and lower deceleration rates [52]. Therefore,
our research can help improve pedestrian safety by detecting
the near-crash events and broadcasting warning information
through Infrastructure to Vehicle (I2V) communication.

VI. CONCLUSION
This paper developed a systematic method for vehicle-
pedestrian conflicts identification using the HRMTD
extracted from the roadside LiDAR data. The HRMTD can be
successfully generated using the LiDAR data processing pro-
cedure. The developed SDP-an indicator for surrogate safety
measure can illustrate the status of the vehicle-pedestrian con-
flict vividly. The case study in Reno showed the effectiveness
of using the SDP for vehicle-pedestrian conflicts identifica-
tion. The other indicators such as TTC or PET can also be
calculated from the trajectory data. The proposed method
can extract near-crash events with higher accuracy compared
to the state-of-the-art method. Besides traffic safety, driver
behavior analysis, fuel consumption analysis and other trans-
portation aspects can all benefit from the HRMTD.

As mentioned before, all the recommended values in this
paper can be adjusted by the engineers based on their own
requirements. This paper used the raw LiDAR data (shown
in visualization software) to evaluate the performance of
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the proposed method. Further studies should consider using
video data to further evaluate the proposed method.
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