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ABSTRACT The reduction in incident-induced delays on freeways is a main objective of transportation
management. The use of travel time estimation model for freeway segments is an important method for
estimating delays resulting from incidents on freeways. In this study, freeways with temporary partial
lane closures were considered to simulate traffic accidents occupying lanes. Travel time, traffic volumes,
and speeds under various traffic conditions on a few typical Chinese freeway segments under regular
and simulated accident conditions were investigated through field experiments. The collected traffic data
collected were used to establish travel time models based on the Bureau of Public Roads (BPR) function for
basic freeway segments under both regular and accident conditions, and to obtain the model parameters. The
results demonstrate that the calibrated BPRmodels established in this study fit the data well. In addition, this
study proposes an application method for the established travel time models by which variations in travel
time can be estimated rapidly and easily. The results of this study can be used to reduce travel time for road
users and contribute to decision making of transportation management systems to improve traffic efficiency
after incidents.

INDEX TERMS Traffic engineering, incidents, travel time, BPR functions, freeway segments, v/C ratio.

I. INTRODUCTION
Travel time is widely recognized as an important performance
measure of highway operating conditions and is also one of
the key factors for road users in arranging travel plans and
choosing travel routes [1]. The estimation and forecasting
of travel time is even more important for traffic operators
and emergency response services. Recently, the prediction
of traffic information as a critical step to achieve the per-
formance of intelligent transportation systems has attracted
significant attention. Tang developed a new travel speed
prediction method based on an evolving fuzzy neural net-
work in 2017 [2]. In 2019, he proposed an improved traffic
flow prediction model based on artificial neural networks
and a traffic flow prediction method combining denoising
schemes and the support vector machine model [3], [4].
In addition, many researchers have focused on predicting
travel time using various methodologies, such as theoretical
model analysis, regression model analysis, machine learning
methods and software simulation. Theoretical models, such
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as Greenshield’s model and Greenberg’s models, as well as
Logistic models [5], are basic models for studying the macro-
scopic characteristics of traffic flow. Based on these mod-
els, Karchroo presented a method to estimate travel time on
highways based on macroscopic models in 2001 [6] and used
the modified Beckman formulation to derive the relationship
between density and travel time in 2016 [7]. Zhang proposed
a method to predict freeway travel time using linear regres-
sion [8]. Wu applied support vector regression for travel time
prediction in 2013 [9], while Innamaa and Khosravi have
each focused on predicting short-term travel time using neu-
ral networks [10], [11]. Lu developed a microscopic traffic
simulation procedure to estimate the travel time functions of
heterogeneous traffic flows on a freeway [12].

However, travel time is affected by various factors, such
as traffic characteristics, roadway physical characteristics,
weather conditions, and incidents [13]. Traffic characteris-
tics include traffic compositions and traffic flow conditions.
The physical characteristics of roads include their widths,
geometric features, and traffic control features. Travel time
models that use only traffic volume or density as an indepen-
dent variable do not fully reflect the state of highway traffic
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flow for all conditions. Many researchers have attempted to
develop models that can work well for all conditions. Yeon
developed a model to estimate travel time on a freeway under
congested conditions using discrete-time Markov chains [1].
Krishna focused on the travel time attributes of traffic flow
and composition to develop a corridor travel time estimation
model using a multiple linear regression approach [14].Wang
verified the existence of significant differences in travel time
among different traffic streams using the Friedman test and
showed that lane width and the number of lanes also influ-
ence travel time [15]. The impact of the number of lanes
on travel time was also examined by He and Muhammad in
their studies on travel time prediction in Dalian and Indone-
sia, respectively [16], [17]. Travel time can also be influ-
enced by other variables and by unpredictable events such as
repair work, traffic accidents, and weather conditions. Kwon
conducted a thorough analysis of the relationship between
macroscopic traffic parameters and inclement winter weather
factors and established a free-flow speed percent reduction
model to describe the relationship [18]. Chitturi proposed
a real-time application for forecasting user delays in work
zones and providing information to motorists upstream of the
work zone [19]. Tan proposed an algorithm for evaluating
the speeds of vehicles in incidents from videos [20]. Sun
developed a traffic model for partial road closures caused by
traffic accidents using the Nagel–Schreckenberg (NS) cellu-
lar automaton model, updated using mean field theory [21].

The phenomenon of traffic congestion on freeways as a
result of the significant growth in vehicle population has
become a ubiquitous problem in China. Congestion delays
reduce productivity by significantly increasing travel time
and decreasing travel time reliability [22]. In China, incident-
related traffic delay is estimated to constitute the largest
proportion of total congestion delay [23]. Sudden traffic acci-
dents may cause traffic congestion upstream and increase
traffic delays and travel time. In comparison with other traffic
parameters, such as vehicle speed, delay rate, and buffer
index, travel time is a parameter that is easier to understand
and can be used directly as a travel reference for road users.
Therefore, choosing travel time as a dependent variable can
make research results more intuitive and practical, especially
for accident conditions.

The best-known model for road link travel time is the
standard Bureau of Public Roads (BPR) function; it is crit-
ical in the calculation of the travel time of vehicles on
road links [24]. To make the BPR model more applicable
and truly reflect the actual traffic condition, a number of
calibrated versions of the BPR model was developed by
researchers. In research done by Skabardonis, the BPR func-
tion was fitted against real field data by searching for the
best parameters values [25]. Hansen developed a modified
BPR function using real-time freeway flow and speed data
for Highway 217 in Portland, Oregon [26]. To differentiate
travel time according to vehicle types, Noriega proposed a
BPR-type function by introducing a time factor for each
vehicle type [27], and Lu proposed a piecewise continuous

BPR-type functions to estimate travel time for each type
of vehicle [12]. Despite the significant research focus on
developing travel time models, limited research has been
conducted on modelling travel time after incidents.

In the present study, traffic data were collected under vari-
ous traffic conditions on a two-lane freeway (G5), a three-lane
freeway (G65), and a four-lane freeway (G30) under regular
and simulated accident conditions. Travel time estimation
models for basic freeway segments under both regular and
accident conditions were established based on the US BPR
function.

The remainder of this manuscript is organized as follows.
Section 2 introduces the methodology employed in this study.
In Section 3, the results obtained from the analysis of the
collected field data are presented and discussed in detail, and
travel time models based on the BPR functions for both nor-
mal and accident conditions are presented. The key findings
of the study are summarized in Section 4.

II. METHODS
The objective of this research was to develop a method for
estimating travel time on basic freeway segments in China
under traffic accident conditions. The effect of a traffic acci-
dent on the normal operation of a freeway depends on the
number of lanes closed near the accident point [28], [29].
When an accident occurs on a roadway, all or part of lane
is typically blocked by the vehicles involved in the crash.
Often, additional lanes are blocked by police, emergency
medical vehicles, and other equipment. When drivers drive
through the accident area, they either must slow down for
safety reasons or may choose to slow down out of curiosity.
In either case, decreased vehicle speeds greatly reduce the
freeway capacity and increase travel time, leading to traffic
congestion. As real-time traffic flow data under actual traffic
accident conditions can be difficult to obtain, an experiment
was designed to simulate a traffic accident spot resulting in
partially closed lanes.

A. FIELD TEST
Software such as VISSIM and TranStar can model complex
traffic operations on freeways, and traffic volume, traffic
flow density, and traffic speed can be calculated. However,
differences in vehicle type and driver behavior in different
countries render the default parameter values of models such
as VISSIM, which was developed by German researchers,
inapplicable to China. The differences mentioned can result
in errors between simulation results and actual situations.
Consequently, in this study, a field test was conducted to
measure traffic volumes, speeds, and travel time under dif-
ferent traffic conditions on some typical basic freeway seg-
ments in China before and after incidents. As it is difficult to
obtain real-time traffic flow data under actual traffic accident
conditions, freeway segments with temporary partial lane
closures were used to simulate traffic accident locations.
To estimate the effect of incidents on travel time for basic
freeway segments, traffic data were also collected on freeway
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segments with the same geometric alignments and lengths as
the freeway segments with temporarily closed lanes.

1) TEST INSTRUMENT
For the purpose of this study, a large amount of data was
required on average travel time under different traffic con-
ditions on basic freeway segments before and after traffic
accidents that occupy lanes. An AxleLight Roadside Laser
vehicle classification device was used to collect traffic flow
data (traffic volumes, instantaneous speeds, etc.) in the field.
A Bluetooth-based travel time detector was used to auto-
matically collect Bluetooth MAC addresses and correspond-
ing time stamps and then save the data on a local storage
device [30]. The hardware used in this study is shown in
Figure 1.

FIGURE 1. Bluetooth-based road travel time detector: ň Portable power
source, ARM Single chip, ő Bluetooth, ŕ Omni-directional antenna, ř GSM
module, ś LED touch panel, š Plastic casing.

As the data source for the whole system, the Bluetooth-
based road travel time detector needs not only real-time
interconnection with vehicles traveling on the road but also
real-time data interaction with a central computer. The data
interaction process is shown in Figure 2.

FIGURE 2. Bluetooth terminal data interaction mode diagram.

As Figure 2 shows, the working mode of the Bluetooth
terminal is paired work. The Bluetooth Terminal 1 and
Terminal 2 are time synchronized, and the data are sent syn-
chronously so that the time taken by the vehicle to pass
through the road segment can be calculated accurately. The
data interaction can be divided into three steps:

i Collecting MAC addresses from a Bluetooth-based
road travel time detector under a full spectrum of envi-
ronmental and traffic conditions.

ii Adding time stamps to the MAC addresses collected so
that travel time samples can be calculated and storing a
large quantity of partial time-stamped MAC addresses
in the memory of the Bluetooth terminal.

iii Sending real-time data from the two Bluetooth ter-
minals simultaneously to the central computer, every
5min, so that the central computer system can calculate
the average travel time.

2) STUDY LOCATION
As mentioned earlier, obtaining real-time traffic flow data
under actual traffic accident conditions is complex. To ana-
lyze variations in the travel time on basic freeway segments
before and after incidents, experiments were designed to sim-
ulate incidents sites resulting in partially closed lanes. In addi-
tion, given the dangers of performing simulation experiments,
freeway segment with temporary partial lane closures for
maintenance work was also used to simulate accident site.

To eliminate variation in the collected traffic data due to
adverse weather conditions, only sunny days with no rain or
snow were selected. To eliminate the effect of differences in
topography on travel time, sites that were not in mountainous
areas and routes with straight alignments or flat large-radius
curves were selected. In addition, only basic freeway seg-
ments (without features such as entrances, exits, tunnels,
or bridges) were considered. Based on these criteria, three
road sections, shown in Figure 3, were selected as the study
areas: K33 + 130 to K38 + 700 on the two-lane freeway
G5, K449 + 100 to K464 + 900 on the three-lane freeway
G65, and K1029 + 800 to K1035 + 900 on the four-lane
freeway G30.

FIGURE 3. Xi’an Metropolitan Area freeway network and the three
selected study segments.

VOLUME 7, 2019 162467



H. Ru et al.: Modeling Travel Time After Incidents on Freeway Segments in China

The three study sections have straight or nearly straight
alignments (curve radii, if any, of 3000 to 5500 m), maximum
longitudinal slopes of -1.5% to 1.5%, and lanes 3.75 m in
width. On road sections G65 and G30, the design speed
is 120 km/h, and on road section G5, the design speed is
100 km/h. Traffic flow data and vehicle type data for the
study segments were examined before the field tests. Based
on the results of the field tests and statistical data from nearby
toll stations, the proportion of trucks was determined to be
approximately 18%, with a variation range of no more than
2% on three study sections.

During the experiment, the Department of Transportation
of Shaanxi Province was conducting pavement maintenance
work on the study segment to improve the pavement condition
of the freeway. This activity resulted in one of two lanes
on G5 being occupied. Figure 4 (a) illustrates the condition
of the study segment on G5. We designed experiments to
simulate incidents that occupied one of three lanes and two
of three lanes on G65, and two of four lanes on G30. The
road condition for segment on G65 is shown in Figure 4 (b).

The objective of this research was to analyze the change
in travel time on a freeway before and after incidents.

FIGURE 4. Lane closure conditions for two of the three study segments.

As mentioned earlier, traffic data on freeways with the
same geometric alignments and lengths as the segments
with temporarily closed lanes were also collected in this
study. Figure 5 illustrates the experiment implementation
process on G30 under normal conditions and under simulated
accident condition.

FIGURE 5. Experiment implementation process (on G30).

B. DEFINITIONS OF TRAFFIC CONDITIONS
Excluding differences in road geometry, road surface con-
ditions, and weather conditions, traffic conditions are per-
haps the most important factors affecting average vehicle
speed and travel time. As the average travel time varies with
respect to traffic conditions, a large amount of travel time data
corresponding to various traffic conditions are required to
estimate vehicle travel time. Traffic conditions are typically
categorized by service level [31]. The Highway Capacity
Manual (HCM) developed in the US uses traffic density as
an indicator of the service level of a freeway segment and
defines six different service levels, represented by letters A
to F [31]. Based on the ‘‘Technical Standard of Highway
Engineering’’ in China, the ratio of traffic volume to freeway
capacity (v/C ratio) was used in this study as an indicator of
the degree of road congestion and of the road service level,
as summarized in Table 1 [32]. There are six different service
levels represented by the numbers 1 to 6 in the Chinese
system, which correspond to US highway service levels A
through F.

The ‘‘Technical Standard of Highway Engineering’’
provides a method for determining freeway capacity under
normal conditions. In this study, the capacity of an experi-
mental freeway segment was calculated based on this method,
and then the v/C ratio was obtained. However, a traffic acci-
dent has a significant impact on the normal operation of
a freeway. Road capacity decreases significantly when an
accident occurs. The issue of capacity reduction due to traffic
incidents is addressed in the HCM. The effect of an accident
on capacity depends on the number of lanes on the roadway at
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TABLE 1. Road service levels of freeway.

that point. Table 2 details the proportion of capacity available
under traffic accident conditions, based on the number of
lanes in the basic freeway segment and the severity of the
incident (i.e., one, two, or three lanes blocked) [21]. In this
study, v/C ratios under accident conditions were calculated
based on the information in Table 2.

TABLE 2. Proportion of freeway capacity available under incident
conditions.

III. ANALYSIS AND DISCUSSION OF FIELD TEST RESULTS
The data for normal conditions and simulated accident con-
ditions (i.e., one of two lanes blocked, one of three lanes
blocked, two of three lanes blocked, and two of four lanes
blocked) for each study section consisted of the average
travel time and 10-min-aggregated traffic volumes and speed.
To understand the characteristics of travel time resulting from
traffic accidents, this section analyzes and discusses themajor
findings that were obtained from the field test.

A. MEASURED FREE-FLOW SPEED
Based on HCM, the free-flow speed was measured by select-
ing the location of low and medium traffic flow rates, and
the average travel speed of passenger cars was calculated as
the free-flow speed of the freeway. Figure 6 shows box plots
of the measured free-flow speed at the three test locations
(G5, G65, and G30) under normal conditions. The horizon-
tal axis represents the locations (lane 1 is the freeway lane
adjacent to the hard shoulder, and lane 2, lane 3, and lane 4
are the freeway lanes adjacent to and to the left of lane 1,

in sequence). The vertical axis represents the free-flow speed
based on 10-min-aggregated data. As Figure 6 (a) shows,
the measured median free-flow speed in lane 2 is 1 km/h
higher than the measured median free-flow speed in lane 1.

FIGURE 6. Box plots of free-flow speed under normal conditions.

As Figure 6 (b) shows, the measured median free-flow
speed in lane 3 was the highest, and the measured median
free-flow speed in lanes 2 and 1 were 1 km/h and 2 km/h
lower, respectively, than that in lane 4. As Figure 6 (c) shows,
the measured median free-flow speed in lane 2 was equal to
that in lane 3. The measured median free-flow speed in lane 1
was 0.5 km/h lower than that in lane 2, and the measured
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median free-flow speed in lane 4 was 1 km/h higher than that
in lane 2.

No differences were observed in the median free-flow
speed among the lanes at any of the locations (G5, G65, and
G30). Therefore, in this study, the lane characteristics were
ignored. The free-flow speeds of the two-lane, three-lane, and
four-lane freeways were 80 km/h, 90 km/h, and 103 km/h,
respectively. The free-flow travel time per unit distance can be
determined by inverting the reported free-flow speed, result-
ing in values of 45 s/km, 40 s/km, and 35 s/km, respectively.

As mentioned earlier, on road sections G65 and G30,
the design speed was 120 km/h, and on road section G5,
the design speed was 100 km/h. In China, the posted speed
limits are set based on the design speed. On the road sections
G65 and G30, the posted speed limit was 120km/h, and
the free-flow speeds of G65 and G30 were 90 km/h and
103 km/h, respectively. When the other road conditions such
as posted speed limit are same, as the number of freeway lanes
decreases, the free-flow speed decreases. This is consistent
with the HCM, which states: ‘‘the reduction in the number of
lanes will result in a reduction in free-flow speed.’’ To reflect
the effect of the number of lanes on the free-flow speed,
adjustments to the free-flow speed can be made, based on
data collected on urban and suburban freeways in the US.
It is estimated that, compared to the free-flow speed of a
freeway segment with four lanes (in one direction), the free-
flow speeds of freeway segments with three lanes and two
lanes are 2.4 km/h and 4.9 km/h lower, respectively.

B. TRAVEL TIME ESTIMATION MODEL
The best-known model for road link travel time is a function
proposed by the US Bureau of Public Roads (1964), known
as the standard BPR function:

ta = t0

[
1+ α

(
va
Ca

)β]
(1)

where ta is the average travel time per unit distance under
normal conditions on link a (s/km); t0 is the free-flow travel
time (i.e., the travel time at zero flow) per unit distance
under normal conditions on link a (s/km); va and Ca are the
demand volume and capacity, respectively, on link a (pcu/h/l);
parameter α determines the ratio of free-flow travel time to
the travel time at capacity; and parameter β determines how
rapidly travel time increases from the free-flow travel time.
Dowling (et al. 1997) empirically evaluated the standard BPR
function with α = 0.15 and β = 4.

Vehicle characteristics and capabilities, as well as driver
behavior, have changed considerably in the years since the
BPR function was introduced. The standard BPR function
is based on data that do not reflect today’s traffic operating
conditions in China. Therefore, firstly, it was considered
important to investigate large sets of data that are representa-
tive of modern traffic characteristics under normal conditions
in China to calibrate the parameters α and β in the BPR
function in this study. Secondly, in the event of a traffic
accident blocking a part of the lane, the traffic characteristics

FIGURE 7. Comparison of the average travel time for v/C < 1 under
normal and accident conditions on two-lane freeway (one of two lanes
blocked).

FIGURE 8. Comparison of the average travel time for v/C < 1 under
normal and accident conditions on three-lane freeway.

and driving behaviors change. A large amount of field data
reflecting the effect of incidents on travel time were collected
to develop the revised impedance function models under
incidents conditions.

Tests were repeated under various traffic conditions
to collect vehicle travel time under normal conditions
and simulated accident conditions on two-lane, three-
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FIGURE 9. Comparison of the average travel time for v/C < 1 under
normal and accident conditions on four-lane freeway (two of four lanes
blocked).

lane, and four-lane freeway segments, as shown in
Figures 7, 8 (a) and (b), and 9, respectively.

In Figures 7, 8, and 9, the relationships between the esti-
mated travel time and volume-capacity ratio for two-lane,
three-lane, and four-lane freeways, respectively, are plotted
based on the standard BPR function as dotted lines. As these
figures show, the standard BPR function is a poor fit to the
field data collected in this study. It was necessary to calibrate
the BPR function to better replicate the traffic behavior,
as represented by the field data collected in this study. Model
calibration generally consists of changing the values of model
input parameters to match field conditions as well as possible
within some acceptable criteria. Calibration was performed
for each freeway segment separately in this study. The curves
for the estimated travel time according to the BPR equation
calibrated with field data for v/C < 1 for each freeway
segment are shown as solid black lines in Figures 7 to 9.
As these figures show, the calibrated BPR curves describe the
field data well.

The parameters of the calibrated BPR function are pre-
sented in Table 3. The calibrated BPR model provides a good
fit (R2) to the field data. In the BPR function, parameter
α determines the ratio of the free-flow travel time to the
travel time at capacity. The calibrated α of each of the three
experimental freeway segments is larger than the α used
in the standard BPR function. Parameter β determines how
rapidly travel time increases with respect to the free-flow
travel time. The calibrated β of each of the three experimental
freeway segments is larger than the β used in the standard
BPR function. Smaller values of β make estimated travel time
more sensitive to the v/C ratio. This means that the average
travel time in China is larger than that in the US.

As Table 3 summarizes, as the number of lanes increases,
the value of parameter α decreases, while the value of param-
eter β increases. In other words, the travel time (i.e., the free-
flow travel time and the average travel time) and road traffic
impedance decrease as the number of lanes increases.

Calibrating parameters for different types of roads can
make the BPR model more applicable. Table 3 presents the

TABLE 3. Parameters of the calibrated BPR function.

calibrated parameters of two-lane freeways with a posted
speed limit of 100 km/h, and three-lane and four-lane free-
ways with a posted speed limit of 120 km/h. According to
this table, travel time models can be obtained for freeways
with different numbers of lanes under normal conditions.

The objective of this research was to estimate the travel
time on basic freeway segments in China as a result of traffic
accidents. In the event of a traffic accident blocking part
of lane, the freeway capacity is decreased, free-flow travel
time is increased, and driving behaviors change. The BPR
function for normal conditions does not applywell to accident
conditions. Based on the classic BPR function, a revised
impedance function model that considers the influence of
incidents can be expressed in the following general form:

t ′a = t0 ∗ γ

[
1+ α ∗ b

(
va
Ca

)β∗c]
(2)

where t′a is the average travel time per unit distance under
accident conditions on link a (s/km), γ is a correction factor
for the influence of free-flow travel time under accident
conditions, and b and c are correction factors for the influence
of capacity under accident conditions.

Field data collected under simulated accident conditions
on two-lane, three-lane, and four-lane freeways were used to
validate the correction factors. To achieve good fit (R2) and
prediction accuracy, the values of the correction factors were
determined and are summarized in Table 4. Curves of esti-
mated travel time based on the revised impedance function
and field data for v/C < 1 on the simulated accident freeway
segments (i.e., with one of two lanes blocked, one of three
lanes blocked, two of three lanes blocked, and two of four
lanes blocked) are shown in Figures 7 to 9.

TABLE 4. Values of correction factors.

Given a known freeway segment length, the average travel
time of a vehicle passing through the freeway segment can
also be predicted, and the calculation method is as follows:

tza = Lta (3)
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t ′za = Lt′a (4)

where tza is the average travel time under normal conditions
on link a (s), t ′za is the average travel time under accident
conditions on link a (s), and L is the length of the freeway
segment (km).

The number of available lanes has been shown to directly
affect the travel time [16], [17]. Parameter γ reflects the influ-
ence of the free-flow travel time under accident conditions,
and its value accounts for both the total number of lanes in the
basic freeway segment and the severity of the incident (i.e.,
one or two lanes blocked), as summarized in Table 4. Traffic
accidents blocking part of lanes can result in the increase in
the free-flow travel time, and the increase varies in freeways
with different lane amount and different accident conditions.
Table 4 indicates the highest increase in free-flow travel time
results when two of three lanes are blocked by accidents,
followed by two of four lanes being blocked, then one of
two lanes being blocked, and finally one of three lanes being
blocked. Clearly, as the number of available freeway lanes
decreases, the free-flow travel time increases nonlinearly.

Overall, when the number of available lanes decreases,
the value of parameter α decreases, while the value of
parameter β increases, under all different accident condi-
tions. In other words, incidents blocking a portion of lanes
can increase travel time and road impedance. The correction
factors b and c reflect the influence of capacity under accident
conditions. The result shows that values of b and c varied in
different accident conditions, which means that the increases
in travel time and road traffic impedances are different on
freeways with different numbers of lanes under different
accident conditions.

As summarized in Table 4 and Figures 7 to 9, traffic acci-
dents blocking part of a lane can result in an increase in road
traffic impedance and travel time becoming more sensitive to
the volume-to-capacity ratio. Compared with the travel time-
vs.-v/C ratio curve under normal conditions, the curve under
accident conditions increases more rapidly when the freeway
is at a level of service of 2 to 5 (0.35 < v/C ≤ 1).

C. MODEL VERIFICATION
The travel time estimation models under normal and acci-
dent conditions can be developed from the results presented
above. However, the models were developed based on the
statistical data obtained from freeways G5, G65, and G30.
Thus, the accuracy of the model needs to be further verified.
Furthermore, the model needs to be validated, and the data
to verify the model accuracy must be collected from another
freeway.

The data that were used to validate the model were col-
lected from a section of the two-lane freeway G70, for which
the posted speed limit was 100km/h. An experiment to simu-
late an accident that occupied one of two lanes was designed.
The road condition is depicted in Figure 10.

For the travel time model in the case where one of the two
lanes is blocked, according to Figure 7 and Table 4, the values

FIGURE 10. Lane closure conditions for study segments on G70.

of the correction factors can be obtained (γ = 1.2814, b =
1.0951, and c = 0.9738). Themodel equation is given below:

t ′a = t0 ∗ 1.2814

[
1+ α ∗ 1.0951

(
va
Ca

)β∗0.9738]
(5)

The values of α and β for freeways with different numbers
of lanes are presented in Table 3. For a two-lane freeway with
a posted speed limit of 100 km/h, α = 0.73 andβ = 1.38.
The field data and plot of the calibrated model under normal
and accident conditions are illustrated in Figure 11.

FIGURE 11. Field data and plot of the calibrated model on G70.

As can be seen in Figure 11, the curves of the calibrated
models under normal and accident conditions fall closely
into the cloud of the field data. To evaluate the model accu-
racy, the travel time values of the models under normal
and accident conditions were compared with the field data
in Figures 12 and 13, respectively. The relative error of the
models under both conditions was below 10%, which sug-
gested that the model accuracy achieved in this study met the
requirements.

D. APPLICATION OF TRAVEL TIME ESTIMATION MODEL
To illustrate the influence on travel time of the v/C ratio
of a basic freeway segment under normal conditions and
accident conditions, the rates of change of average travel
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FIGURE 12. Comparison of the model and field data under normal
conditions.

FIGURE 13. Comparison of the model and field data under accidents
conditions.

time per unit distance of each experimental freeway segment
with changes in the v/C ratio under normal conditions and
under accident conditions were calculated and are summa-
rized in Tables 5 and 6. As |1v/C| increases, the rate of
change of the average travel time per unit distance increases.
The rates of change of average travel time on all three exper-
imental freeway segments under accident conditions were
greater than those under normal conditions.

TABLE 5. Rates of change of average travel time per unit distance
according to

∣∣1v/C
∣∣ under normal conditions.

TABLE 6. Rates of change of average travel time per unit distance
according to

∣∣1v/C
∣∣ under accident conditions.

From a practical point of view, if the v/C ratio can be
accurately determined, the model developed in this study can
be used to calculate the travel time of a specific freeway
segment. In some cases, the value of the v/C ratio is not easy
to obtain directly, but the magnitude of the change in the v/C
ratio can be roughly estimated from historical data or similar
road conditions. In this case, ranges of travel time can be esti-
mated quickly and easily, based on the relevant information
in Tables 5 and 6. This information can be provided to road
users, so that they can adjust their travel arrangements and
optimize their travel routes in a timely manner. For example,
for a three-lane freeway, according to historical statistics,
the v/C ratio during the peak period is 0.35 larger than that
during the normal period. Based on Table 5, the average
travel time during the peak period will increase by 11.99%
compared to the normal period. If drivers plan to pass this
freeway segment during the peak rush hour, to ensure their
arrival at their destination on time, at least 11.99%more travel
time normal period should be reserved. From the perspective
of transportation management systems, the ability to predict
the impact of road traffic efficiency when commuting and
holiday peaks, or traffic accidents occur would be useful in
controlling traffic to decrease traffic saturation of freeway
segments.

IV. CONCLUSION
This research was conducted to obtain a travel time model,
based on the BPR function, for basic freeway segments after
incidents. Field testing was conducted to measure traffic
volumes, speeds, and travel time under different traffic con-
ditions on a few typical Chinese basic freeway segments
under both normal and simulated accident conditions. These
field data were used to develop the travel time estimation
models under both normal and simulated accident conditions
and to obtain the parameters for the models. The versatility
and accuracy of the models were also proven using field
data and relative errors. If the number of available lanes
and v/C ratio can be determined after incidents, the model
developed in this research can be used to calculate accurate
travel times. Vehicle characteristics and driver behavior have
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changed considerably in the years since the standard BPR
function was introduced; thus, the standard BPR function
is based on data that do not reflect today’s traffic operating
conditions in China. The calibrated BPR function proposed
in this research can reflect today’s traffic operating conditions
more accurately and has good versatility. In addition, this
study demonstrates the application of the established travel
time estimation model. The v/C ratio variation can be roughly
estimated based on historical data and similar road condi-
tions, such that variation within the ranges of travel time
can be estimated quickly and easily to guide road users in
arranging reasonable travel plans. The results presented here
can also be used to support traffic assignment decisions made
by a transportation management system.

The results of this study contribute substantially to the
ability to estimate travel time on basic freeway segments
under both normal and simulated accident conditions. These
findings can assist both road users and decision makers in
arranging and assigning travel. However, considering that the
field experiments did not consider driver behaviors under real
accident conditions, the results might represent an underesti-
mation or overestimation within a certain range. Additionally,
it should be noted that driving behavior characteristics in
highway weaving areas and other special sections such as
tunnels and bridges are different from those in basic freeway
segments. The travel time estimation model established in
this research only applies to basic freeway segments, and its
applicability to other types of highways and special sections
remains to be verified. Further research is planned to establish
a model applicable to a wider range of conditions through
field experiments and traffic simulations. However, in this
era of big data and artificial intelligence, obtaining real data
for these systems has become more feasible. In future work,
we will try to obtain an appropriate amount of real incident
and traffic flow data to better estimate travel time.
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