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ABSTRACT In this study, we developed a technique for automatically determining upper hybrid reso-
nance (UHR) frequencies using a convolutional neural network (CNN) to derive the electron density along
the orbit of the Arase satellite. We used three CNN models (AlexNet, VGG16 and ResNet) to determine
the UHR frequencies without additional features based on an expert’s knowledge. We also reproduced the
multi-layer perceptron (MLP) model that had been used for the Van Allen probes mission, which requires
observed electric field spectra and additional five features (i.e., decimal logarithm of electron cyclotron
frequency (log10fce), L-value, geomagnetic index (Kp), magnetic local time, and frequency bin with the
highest power spectral density from the electric field spectra (f binmax)). We confirmed that the proposed
method using CNN more accurately determined the UHR frequencies than did the conventional method.
The mean absolute error (MAE) of the VGG16 model was 3.478 bins when the input vector comprised both
the observed electric field spectrum and the additional five features. In contrast, theMAE of the conventional
method was 5.986 bins (72.1% worse). Moreover, we confirmed that the proposed method achieves a high
accuracy regardless of the use of the additional five features (the MAE of the ResNet model was 3.664 bins
when excluding the additional five features). This suggests that the feature map of the ResNet model acquired
a representation ability beyond the five features.

INDEX TERMS Computer aided analysis, machine intelligence, magnetosphere, plasma waves.

I. INTRODUCTION
It is well known that ambient electron density is an impor-
tant property of space plasma. The radial structures of the
terrestrial ionosphere and plasmasphere are characterized by
variations of ambient electron density. For example, the outer
edge of the plasmasphere is called the plasmapause and/or
plasmasphere boundary layer and is defined as the location
of a sudden decrease in ambient electron density [1], [2].
The location of the plasmapause varies according to geo-
magnetic conditions and is well correlated with geomagnetic
indices (Kp), as demonstrated by Carpenter and Anderson [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Wu-Shiung Feng.

The evolution of the plasmasphere is important when study-
ing the role of a geomagnetic storm in geospace.

Another important point is that the generation and propa-
gation properties of plasma waves are strongly dependent on
in-situ ambient plasma conditions [4]. The knee whistler dis-
covered by Carpenter [1] serves as evidence that the ambient
electron density gradient along amagnetic field line can affect
the properties of plasma wave propagation. It is also impor-
tant to note that ambient electron density is a key parameter
of wave-particle interactions and plays an important role in
the cross-energy coupling process in geospace [5], [6].

Direct measurement of the total ambient plasma density
from low energy to high energy is difficult because of space-
craft charging effects. However, the determination of upper
hybrid resonance (UHR) frequency is an established method
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that quantitatively derive ambient electron density. From the
measured frequency of the observed UHR emissions (fUHR),
we can estimate the electron plasma frequency (fp).

fUHR =
√
f 2p + f 2c , (1)

where fc denotes the local electron cyclotron frequency,
which is easily calculated from the in-situ magnetic field
measurement. The ambient electron density, n, is then deter-
mined by inserting the estimated fp into (2):

fp =
1
2π

√
ne2

mε0
, (2)

where e and m denote the charge and mass of an electron,
respectively, and ε0 denotes the permittivity of free space.
The high frequency analyzer (HFA) is a subsystem of

the plasma wave experiment (PWE) aboard Arase [7]–[9].
The HFA measures electric field spectra in the frequency
range of 10 kHz to 10 MHz, which covers the typ-
ical range of UHR frequencies in the inner magneto-
sphere. The UHR frequencies observed using the PWE/HFA
have been utilized in several recent studies. For example,
Shinbori et al. [10] investigated the temporal and spatial vari-
ations of the ionospheric trough during a geomagnetic storm
using in-situ electron density calculated from UHR frequen-
cies observed by the PWE/HFA and from the global naviga-
tion satellite system total electron content (GNSS-TEC) data.
Kotov et al. [11] compared the electron density at Arase’s
altitude and measured the topside ionosphere using the inco-
herent scatter radar at Kharkiv, Ukraine.

Kumamoto et al. [8] proposed a method for the identi-
fication of UHR frequencies using a semiautomatic detec-
tion algorithm with correction by a human operator via
visual inspection. This method is used to determine the
UHR frequencies from electric field spectra observed by the
PWE/HFA aboard Arase. However, this approach requires
enormous effort from the human operator, and two difficulties
were reported: the first is that the number of HFA spectro-
grams is too large for a manual trace of the UHR emis-
sions in the spectrogram; the second is that there are cases
wherein UHR emissions are difficult to identify. In addition,
as long as the Arase satellite continues its scientific operation,
the determination of UHR frequencies from newly observed
electric field spectra will have to continue. Because of these
drawbacks, an alternative state-of-the-art way of determining
UHR frequencies is required.

Kurth et al. [12] developed the automated upper hybrid
resonance detection algorithm (AURA) to effectively deter-
mine UHR frequencies. AURA performs numerical spectrum
analysis based on the theory of plasma waves. Kurth et al.
applied their algorithm to electric field spectra observed by
the Electric and Magnetic Field Instrument Suite and Inte-
grated Science (EMFISIS) equipment aboard the Van Allen
probes [13] and achieved an accuracy of up to 10% of the
resulting electron density, excluding cases of low density.

Zhelavskaya et al. [14] proposed the neural-network-based
upper hybrid resonance determination (NURD) algorithm for
automatic determination of UHR frequencies observed by
EMFISIS, using the local electron cyclotron frequency (fce),
orbital parameters (L andMLT), geomagnetic index (Kp), and
observed electric field spectra. Their results were in good
agreement with the densities obtained by AURA, and they
reported the ultimate error rate of the derived density was
approximately 14%, excluding cases of low density.

In recent years, deep learning (DL) has been applied to
various fields, including space weather research [15]. There
are various types of DL, but the core idea is to improve the
ability to represent the data by deepening the layer of neural
network (NN) combining simple perceptrons [16]. Convolu-
tional neural network (CNN) is a kind of DL technique, which
has a high recognition accuracy mainly in the field of image
recognition. Neocognitron [17], which was conceived on the
basis of neurophysiological findings in the visual cortex of
the brain, is a prototype of CNNs. A CNN is fundamentally
composed of convolution layers, for feature extraction, and
pooling layers, which allow misalignment and are alternately
arranged. CNNs have been actively studied in the field of
image recognition. Many CNN models have achieved the
highest recognized in recent years.

In this study, we propose an automatic determination sys-
tem of UHR frequency by machine learning. Machine learn-
ing is a technique in the field of artificial intelligence to
give computers the ability to learn with data. We defined the
task of UHR frequency determination as a supervised regres-
sion, wherein a computer estimates UHR frequencies using a
dataset comprising electric field dynamic spectra with correct
UHR frequency labels. Zhelavskaya et al. [14] realized UHR
frequency determination by simple NN, using the electric
field spectra and five additional features. In contrast, we pro-
pose a more robust UHR frequency determination without
using five additional features, by adopting recent CNN archi-
tectures (i.e., AlexNet, VGG16 and ResNet). In this study,
we describe our machine learning approach and discuss
results for the UHR frequency determination from electric
field spectra observed by the PWE/HFA.

II. DATA
We used electric field power spectra (Level-2 CDF data)
observed by the PWE/HFA aboard Arase, from April to
December 2017, as an input for machine learning. The HFA
provides wide-frequency-range (0.1–10 MHz) electric power
spectra with a time resolution of 8 or 60 s. We calculated
averaged (60 s resolution) power spectra when the HFA
provided 8 s time resolution data. The time variation of the
UHR frequencies was already determined for specific periods
by a semiautomatic detection algorithm with corrections by
visual inspection [8] and has been provided as Level-3 CDF
data. The time resolution of the determined UHR frequency
data was 60 s. We used the UHR frequency data from the
Level-3 CDF data as labels for training the CNN. We used
DC magnetic field data observed by the magnetic field

VOLUME 7, 2019 163385



T. Hasegawa et al.: Automatic Electron Density Determination by Using a CNN

FIGURE 1. Outline of proposed method. (a) Frequency-time diagram of electric field spectra observed by high frequency analyzer (HFA) and labeled upper
hybrid resonance (UHR) frequency (yellow line.) (b) Observed electric field spectrum, St , at time t. (c) Neural network model using St as an input.
(d) Predicted UHR frequency.

experiment (MGF) aboard Arase [18] to calculate local elec-
tron cyclotron frequencies, fce.

Fig. 1(a) represents an example of the electric field spec-
tra observed by the HFA on April 10, 2017. The UHR
emission was observed during the period in the frequency
range of 100 to 6000 kHz, depending on the variation of the
electron density along the orbit. The yellow line illustrated
in Fig. 1(a) represents the UHR frequency labels determined
by the semiautomatic detection algorithm, with correction
by visual inspection [8]. Because of a weak UHR emission,
there was a dearth of UHR frequency labels at approximately
03:20 UT. The lack of labels from 02:40 to 02:50 UT resulted
from the restriction of spacecraft operation. It should be noted
that the horizontal bands (i.e., those at approximately 1MHz)
were caused by interference from onboard instruments.

III. METHOD
A. FORMULATION
We formulated the problem of UHR frequency determination
to be solvable via machine learning. We used the observed
electric field spectrum at time t as a one-dimensional vector
(St ,) and the label of the UHR frequency as scalar data (ut )
(see Fig. 1(b)). This problem can be formulated as a regres-
sion problem that determines ut from the input St . The loss of
this optimization problem can be expressed by the following
equation:

Lθ =
1
T

T∑
t=1

(ut − fθ (St ))2, (3)

where fθ denotes an NN (see Fig. 1(c)) with parameter θ .
fθ (St ) is an estimation result of this NN when the input is St
(see Fig. 1(d)). Lθ is a function that indicates the loss when
using the NN with parameter θ , and T is the number of St in
the dataset. In this study, we use the mean square error (MSE)

as the loss function, since it is commonly used for regression
problems. Optimizing θ that it minimizes the loss function,
Lθ leads to a high performance by the fθ of the NN in the
UHR frequency determination.

The function f (·), which determines the UHR frequency,
can be constructed using general machine learning algo-
rithms. Zhelavskaya et al. [14] defined five features adopted
on the basis of expert knowledge and determined the UHR
frequencies using a simple multi-layer perceptron (MLP) that
used input spectra, St , and the additional five features. It has
been noted that if raw data, such as images, are used directly
as the input for machine learning, the input becomes high-
dimensional and the generalization performance decreases
owing to the curse of dimensionality. Therefore, as a prepro-
cessing step, the feature representation was extracted from
raw data by several algorithms on the basis of expert knowl-
edge, and the feature representation was used for the training
phase of machine learning. In a related study [14], no such
feature extraction was performed, and a simple MLP had the
role of extracting feature representation. However, it is likely
that such a simple MLP cannot sufficiently learn feature
representations.

Our proposed method improves on the following two
points in relation to the method proposed in the related
study [14]. First, our method does not use the features
adopted in the related study on the basis of expert knowledge;
we instead perform end-to-end UHR frequency determina-
tion using only the observed electric field spectra. Second,
we use a CNN as a method for extracting feature rep-
resentations from the observed electric field spectra. It is
known that CNNs extract more advanced feature represen-
tations than does the simple MLP adopted in the related
study. Furthermore, by adopting an advanced CNN archi-
tecture that has achieved a high accuracy in the field of
image recognition, we can identify a suitable model for UHR
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FIGURE 2. Architectures of the adopted CNN models: (a) AlexNet model, (b) VGG16 model, (c) ResNet model.

frequency determination. For simplicity, we determine UHR
frequencies by using a time-independent system.

B. CONVOLUTIONAL NEURAL NETWORKS
TheCNN architectures described in the next section comprise
the layers described in this section.

The hidden layer used in conventional NNs is called the
fully connected (FC) layer. In the lth FC layer, let the output
for the next layer h(l+1) be the result of a product-sum opera-
tion of all inputs h(l) and the weights vector, as demonstrated
by the following formula:

h(l+1) = g(l)(W (l)Th(l) + b(l)), (4)

where (l) is the lth layer, g(l)(·) is the activation function,W (l)

is the weights vector, and b(l) is the bias. A two-to three-
layer model constructed with only the FC layer is generally
called anMLP, whereas a deepermodel is called a deep neural
network. One problem with the FC layer is that the shape and
order of the data are ignored. Because our input, St , consists
of information that changes continuously in the frequency
direction, the shape and order of the data may provide useful
information for UHR frequency determination.

In the convolutional layer, the shape of the input is main-
tained by performing the operation of convoluting a kernel
value to the input. The output for the next layer in the con-
volution layer is calculated by sliding a convolutional kernel
over the inputs. For example, when the input vector and
convolutional kernel are {1, 2, 3, 4} and {1, 2} respectively,
the output vector is {5, 8, 11}. The convolutional kernel plays
a role similar to that of the weights vector; however, the kernel

value is shared regardless of the convolutional coordinates,
and a single layer handles multiple kernel values.

A pooling layer is generally also used in the CNN. The
pooling layer does not have parameters such as the weights
vector that are optimized in the training phase. The input
is divided by kernel size, and each representative value is
calculated as an output for the following layer. For example,
when the input vector is {1, 2, 3, 4} and the kernel size is 2,
then the output vector is {2, 4} in the max pooling case.

C. CNN ARCHITECTURES
CNN architectures have been studied extensively, particularly
in the field of image recognition. Because no existing models
have been applied to the automatic classification of plasma
waves, we selected several models that demonstrated high
accuracy in image recognition. In this study, we implemented
and compared three models to identify a suitable model for
UHR frequency detection.

The models were AlexNet, VGG16, and ResNet, and all
of them achieved a high accuracy in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC), an image
recognition competition. The architectures of these models
are illustrated in Fig. 2.

AlexNet [19] is an image recognition model that won the
ILSVRC in 2012 and facilitated the recent trend of DL.
Fig. 2(a) shows a one-dimensional vector with a size of 479
elements, given as an input, St , in the AlexNet model. This
input vector was processed using batch normalization in the
five convolution layers and the three pooling layers. Finally,
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the processed tensor was reshaped into a flat vector (one-
dimensional vector form) in the flatten layer, and the flat
vector was processed in two FC layers (dense layers), which
is equivalent to a simple MLP with dropout. The AlexNet
model’s global feature representation is investigated in the
shallow layer using a large kernel size in the first convolution
layer.

VGG16 [20] is an image recognition model that won sec-
ond place in the same contest in 2014 and is a famous model
that exhibits a high accuracy, despite its relatively simple
architecture. Fig. 2(b) shows that the VGG16 comprises five
ConvBlocks and two FC layers. VGG16 uses ConvBlocks
wherein convolutions are performed n times prior to pooling.
Multiple convolution layers with a small kernel size can
generate the same effect as a single convolution layer using a
large kernel size.

ResNet [21] is an image recognition model that won the
ILSVRC in 2015, and most subsequent models are based
on the ResNet structure. Fig. 2(c) shows that ResNet uses
ResidualBlock, which has two paths, to realize a very deep
structure. In the first path, convolutions were performed two
times. In the second path, the original tensor did not go
through any processes, which is called a ‘‘skip connection.’’
The NN comprising two convolution layers learns the differ-
ence between the processed tensor and the original tensor.
ResNet is the first model to enable the residual block structure
to learn residues from the output of the previous layer.

Our method has the advantage that CNN enables auto-
matic feature representations from a dataset without expert
knowledge. In the conventional machine learning approach,
we utilized a feature vector obtained from the raw data
as an input instead of the raw data themselves. Labor and
knowledge were required to perform the feature extraction
because the feature vector was generally designed on the basis
of an expert’s knowledge. In contrast, the CNN learns this
feature representation automatically from the dataset alone.
The CNN has the potential to reduce the expert’s labor and
improve the performance. The outputs of the flatten layers
in Fig. 2 were equivalent to the extracted features, which are
commonly called ‘‘feature maps.’’

Because these models are primarily used in image recog-
nition, the input tensor has two dimensions (height and
width), and each element has three channels (RGB). How-
ever, because our method handles the one-dimensional St
as the input, we reconstructed these models for a one-
dimensional, one-channel input as illustrated in Fig. 2. In the
training phase, we used MSE as the loss function to train
the weights vector in the CNN model. In addition, we used
the Adam optimizer [22] with a learning rate η = 0.001,
β1 = 0.9 and β2 = 0.999, as the optimization method. Each
model was trained for 1000 epochs.

IV. EVALUATION
A. EXPERIMENTAL DESIGN
We evaluated our models by comparing the accuracy of UHR
frequency determination using electric field spectra observed

FIGURE 3. Pre-experimental results to determine the unit size of the
hidden layer in the multi-layer perceptron (MLP), based on the mean
absolute error (MAE).

by the PWE/HFA for 9 months, as described in Section II.
We reproduced the method proposed in a related study [14]
(hereinafter referred to as zMLP) as a baseline for com-
paring the estimation accuracy with that of our proposed
method. zMLP uses the following five features, which are
based on expert knowledge: (1) decimal logarithm of electron
cyclotron frequency (log10fce), (2) L-value, (3) geomagnetic
activity index (Kp), (4) magnetic local time, and (5) frequency
bin with the highest power spectral density from the electric
field spectra (f binmax).

It is common to use a 10-fold cross validation (10-fold CV)
for the evaluation of a machine learning model because it
minimally wastes data, which is a major advantage in cases
where the number of samples is very small, such as in inverse
inference. In this study, we adopted a 2-fold CV for our
evaluation for the following reasons: first, we have a large
amount of data (300000 records consisting of 262 days’ data);
second, a 10-fold CV takes too long to evaluate all models.
More than a month is required to conduct a 10-fold CV for
all models using a GPU (NVIDIA GeForce RTX 2080 Ti).

We used the mean absolute error (MAE) as an eval-
uation criterion for the model’s estimation accuracy. The
MAE is calculated by averaging the absolute value of the
error between the correct labeling scheme and the estimated
result. The HFA performs averaging among the intensities
of raw spectra at neighboring frequency steps. Because the
frequency resolution of observed spectra exhibits stepwise
changes, as illustrated in [8], we performed the UHR fre-
quency determination in bin units.

B. OTHER METHODS TO DETERMINE UHR FREQUENCY
FOR COMPARISON
We compared six regression algorithms: elastic net, stochas-
tic gradient descent (SGD), Bayesian ridge, support vector
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FIGURE 4. The MAEs of the derived UHR frequencies as a function of learning epoch. (a) zMLP model, (b) AlexNet model, (c) VGG16 model, (d) ResNet
model.

regression (SVR) (kernerl = {linear, rbf}), and random forest
in addition to the three CNN models. These algorithms were
implemented in the scikit-learn package in Python 3. Elastic
Net is a simple linear regression with regularization, combin-
ing the squared Euclidean (L2) norm and the absolute (L1)
norm penalty, which is solved by ordinary least squares. SGD
is another simple linear regression that optimizes the loss
function, including the penalty (L2), optimized by stochas-
tic gradient descent learning. Bayesian Ridge is one case
of Bayesian inference for regression tasks. In Bayesian
Ridge, regression coefficients are calculated as stochastic
variables [23], [24]. SVR is a regression algorithm based on
a support vector machine [25]. In this study, we adopted a
kind of SVR algorithm called ε-SVR, which earned robust-
ness on the basis of an epsilon tube. Within the epsilon
tube, no penalty is associated with the training loss function
with points predicted within the distance epsilon from the

actual value. SVR represents non-linear functions using
the kernel method functions. Therefore, we evaluated the two
kernel functions: the linear kernel and the rbf (Gaussian)
kernel. Random forest [26] is a type of ensemble learning, that
combines tree predictors constructed using different boot-
straped data samples. The regression result is equal to the
average values of the predicted results by each tree. Combin-
ing many trees with different bootstrap samples improves the
robustness for prediction.

C. EXPERIMENTAL RESULTS
We conducted preliminary experiments using a baseline
method proposed in a related study [14]. The baseline method
adopted an MLP model using electric field spectra, St ,
and five additional features as input. The number of units
in the hidden layer was 80, which was determined by an
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FIGURE 5. Convergence changes depending on the learning rate, η, and decay, d . The MAEs were evaluated by the ResNet model without the additional
five features using single-fold dataset.

TABLE 1. The MAEs of the derived UHR frequencies according to each
model, by using test data (unit: bins.).

exploratory search. In the present study, we reinvestigated the
appropriate unit size because the number of input dimensions
greatly differed from those in the related study. Fig. 3 repre-
sents the MAE as a function of the number of units of the
hidden layer in the MLP. The blue line represents the MAE
when only the observed spectra, St , was used. In contrast,
the red line represents the MAE when the additional five fea-
tures were used (log10fce, L, Kp, MLT, and f binmax) together
with St . According to the results summarized in this figure,
both methods achieved good performance when the number
of units was 1000; thus, we used 1000 units in our evaluation.

The first column (w/ 5 feat.) of Table 1 presents the
accuracy of the UHR frequencies determined by each model
when both the five features and observed electric field spec-
tra were used. The second column (w/o 5 feat.) presents
the accuracy when only the observed electric field spectra
were used. When we used the five features in the CNN,
we concatenated a feature map and the five features after the
flatten layer, as illustrated in Fig. 2. When we used the addi-
tional five features, the VGG16 model had the smallest error
(MAE = 3.478 bins), whereas the MAE of the zMLP

was 5.986 bins. Of our proposed models, this one greatly
improved the accuracy of UHR frequency determination in
comparison with zMLP. We determined that feature repre-
sentation from the observed electric field spectra was more
effective using the advanced architecture of the CNNs than
using the simple MLP. Our other methods using CNNs
also achieved a higher accuracy (e.g., AlexNet: 5.713 and
3.652 bins) than did the zMLP model. This demonstrates that
feature representation can be effectively obtained by CNNs.

When the additional five features were not used, the accu-
racy of the derived UHR frequencies provided by the zMLP
model was approximately 80.2% lower (10.786 bins) than the
accuracy with features included. In contrast, we discovered
that these five features had almost no impact on the accuracy
when CNN models were used. This may have resulted from
the high representation ability of the ResNet model with
relatively deep layers (32 layers). In addition, the feature
map of the ResNet model may have acquired a representation
ability comparable with five features.

Focusing on the methods using a machine-learning-based
regression, only the random forest achieves a better perfor-
mance than does zMLP. Although the random forest with
the additional five features achieved a better performance
than did the AlexNet model, it is inferior compared with
the VGG16 and ResNet models irrespective of whether of
the additional five features are used. The major difference
between our methods and the other methods is the use of
representation learning by CNN. Therefore, feature represen-
tations learned by the CNN models had a positive impact on
the accuracy of determining UHR frequencies.

Thus, even though our proposed method did not use addi-
tional features based on expert knowledge, it achieved higher
quality determination than did the conventional method.
In particular, the ResNet model achieved a high accuracy
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FIGURE 6. (a) Electric field spectra observed by the PWE/HFA from 12:00 to 23:00 UT, on June 22, 2017. (b) Results of the UHR frequency determination
(yellow: labeled data, orange: zMLP model with the five features, red: ResNet model without the five features).

regardless of whether additional features were used.
As described in the previous section, the frequency band-
width of electric field spectra observed by the PWE/HFA
changes depending on the center frequency [8]. The
ResNet model achieved the highest MAE (3.664 bins)
without using the additional five features. This cor-
responds to 4.5 kHz at the lowest frequency step
(2.4–159.9 kHz) and 358.0 kHz at the highest frequency step
(5.3223–10.1074 MHz).

D. CONVERGENCE OF LEARNING
Fig. 4 displays the errors of the derived UHR frequencies as
a function of learning epoch. Here one epoch is defined as
the time over which an entire dataset is passed both forwards
and backward through the NN (only once.) The blue lines
represent the MAE when the additional five features and
observed electric field spectra were used, whereas the red
lines represent the MAE when the additional five features

are excluded. The light-colored lines represent the MAE for
the training data, while the dark lines represent the MAE for
the test data. As mentioned above, the accuracy of the UHR
frequencies derived by the zMLP model greatly improved
through the adoption of the additional five features. However,
the five features were less effective for the three CNNmodels,
regardless of the learning epochs.

In general, the accuracy in the training data increases,
whereas the accuracy for the test data decreases. Upon
examining the results of the AlexNet and VGG16 models,
we determined that the difference in accuracy between the
training and test data was relatively small, compared with the
results of the ResNet model. This is because the AlexNet and
VGG16 models have a limited representation ability because
of their model architecture; that is, their model structures are
not relatively deep. In contrast, the ResNet model achieved a
high representation ability for the training data, and its MAE
reached almost zero. In other words, ResNet reduced errors
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for the test data using techniques to improve generalization
performance.

The accuracy of the conventional method for the training
data failed to converge around 500 epochs, whereas that
of the ResNet model converged within almost 200 epochs.
Furthermore, because the MAE of the ResNet model for the
test data gradually decreased after 200 epochs, the estimation
error can be further reduced by increasing the number of
epochs.

According to Fig. 4, the MAE of the ResNet model some-
times yielded much worse accuracies. In an NN, the param-
eters of the NN are updated using the gradient of the loss
function. When the gradient increases suddenly, an extreme
deterioration in accuracy is observed, as shown in Fig. 4(d).
This sudden increasing of the gradient is called ‘‘gradient
explosion.’’

We consider the learning rate, η, and decay, d (for decreas-
ing η depending on the learning progress) to reduce the effect
of gradient explosions. Fig. 5 shows the convergence as a
function of epochs under different η and d using the ResNet
model. Fig. 5(a) shows the results when η = 10−3, and
Fig. 5(b) shows the results when η = 10−4. By reducing η,
the sudden deteriorations in the accuracy were suppressed.
However, if we focus on d = 0, theMAE around 1000 epochs
worsens. This is because it takes more epochs to achieve the
best performance when we reduce the learning rate. Focusing
on the decay d, we found that a large d hinders the learning
progress. Considering the balance between the MAE and the
learning speed, we concluded that the parameters η = 10−3

and d = 10−5 were better.

E. VISUALIZED RESULT
Fig. 6(a) presents the electric field spectra observed by
the PWE/HFA aboard Arase from 12:00 to 23:00 UT on
June 22, 2017, whereas Fig. 6(b) displays the results of the
UHR frequency determination. The yellow line represents
the UHR frequency labels determined by the semiautomatic
detection algorithm with correction by visual inspection
(provided as PWE/HFA Level-3 CDF) [8]. The orange and
red lines represent the results of the UHR frequency determi-
nation using the zMLPmodel with the additional five features
(log10fce, L, Kp, MLT, and f binmax), and the results using
the ResNet models without the five features, respectively.
The deviations of the determined UHR frequencies made
by the ResNet model are smaller than those determined by
the zMLP model, over an entire period. The errors of the
UHR frequencies derived by the zMLP model are relatively
high (MAE = 15.4 kHz) in the period from 15:00 UT to
19:00 UT because the observed UHR emission is weak.
In contrast, the ResNet model retained a high accuracy
(MAE = 13.0 kHz) although it was difficult to identify the
UHR emission by visual inspection. As demonstrated by
Kurth et al. [12], a wave spectrogram of UHR emission can
be confounded by a number of factors, such as geomag-
netic conditions and spacecraft location. Further scientific
evaluation is required in future work to make use of a fully

automatic determination system. An important nature of
UHR emissions is that they do not vary discontinuously in
time. In this study, we determined UHR frequencies by using
a time-independent system. We may achieve high accuracy
of UHR frequency determination by focusing on the nature
of UHR emission.

V. CONCLUSION
In this study, we proposed an automatic system for deter-
mining UHR frequencies by DL for electric field spectra
observed by the Arase satellite. We achieved end-to-end
UHR frequency determination in which the end user is only
required to prepare electric field spectra and several labeled
UHR frequencies to train the model. The NURD algorithm
proposed by Zhelavskaya et al. [14] used an MLP whose
input was the observed electric field spectra and additional
five features (log10fce, L, Kp, MLT, and f binmax). We devel-
oped a more robust UHR frequency determination system
without using the five additional features, by adopting recent
CNN architectures. These results indicated that the ResNet
model achieved a high accuracy regardless of whether any
additional features based on expert knowledge were used.
This suggests that the feature map of the ResNet model
acquired a representation ability beyond the five features. We
will analyze the ability obtained by the CNNs by focusing
on the weights and biases in an NN for future work. This
study focuses on the numerical evaluation of the proposed
models; however, scientific evaluation should be conducted
in future work. In addition, we plan to discuss further applica-
tions of DL for other problems regarding plasma wave clas-
sification/determination based on the results of the present
study.
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