
Received October 6, 2019, accepted October 31, 2019, date of publication November 6, 2019, date of current version November 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2951751

Identifying Malicious Software Using Deep
Residual Long-Short Term Memory
AZIZ ALOTAIBI , (Member, IEEE)
College of Computers and Information Technology, Taif University, Taif 21974, Saudi Arabia

e-mail: azotaibi@tu.edu.sa

ABSTRACT The use of smartphone applications based on the Android OS platform is rapidly growing
among smartphone users. However, malicious apps for Android are being developed to perform attacks,
such as destroying operating systems, stealing confidential data, gathering personal information, and
hijacking or encrypting sensitive data. Several malware detection systems based on machine learning have
been developed and deployed to extract a variety of features to prevent such attacks. However, new efficient
detection methods are needed to extract complex features and hidden structures from malicious apps to
detect malware. This paper proposes a novel framework, namely, MalResLSTM, based on deep residual long
short-term memory to identify and classify malware variants. The framework imposes a set of constraints on
the deep learning architecture to capture dependencies between the extracted features from the Android
package kit (APK) file. These feature sets are mapped to a vector space to process the input sequence
using a sequence model based on the residual LSTM network. To evaluate the performance of the proposed
framework, several experiments are conducted on the Drebin dataset, which contains 129,013 applications.
The results demonstrate that MalResLSTM can achieve a 99.32% detection accuracy and outperforms
previous algorithms. An extensive experimental analysis was conducted, which included machine-learning-
based algorithms and a variety of deep learning-based algorithms, to evaluate the efficiency and robustness
of our proposed framework.

INDEX TERMS Malware Detection, android malware, malware analysis, malware classification, static
analysis, deep learning-based algorithms.

I. INTRODUCTION
Malicious software (malware) is an unwanted program that
intends to harm the victim’s workstations, mobile devices,
servers, and gateways [1]. Common malware programs, such
as viruses, worms, trojans, horses, spyware, ransomware,
scareware, bots, and rootkits, exploit the system vulnerabili-
ties to infect the target. Cybercriminals attack the systems of
individuals and organizations with various objectives, such
as destroying operating systems, damaging computers or net-
works, stealing confidential data, gathering personal informa-
tion, and hijacking or encrypting sensitive data. To protect
users’ computers, mobiles, servers and gateways, malware
detection tools should be developed and deployed to pre-
vent attacks. Many malware tools have been developed by
anti-virus companies for scanning vulnerabilities, detecting
intrusions, and monitoring and preventing malware. These

The associate editor coordinating the review of this manuscript and

approving it for publication was Kaitai Liang .

defense products, such as Semantic, Kaspersky, and McAfee,
are constantly updated to maintain their effectiveness against
malware attacks. The Android OS platform is rapidly grow-
ing and has dominated more than 85% of the smartphone
market [2], [3]; as a result, Android malware development
is increasing and has reached more than 26 million pro-
grams [4]. Thus, an effective detection system is needed for
investigating a variety of malware scenarios [5]. Malware
issues can be detected via three feature extraction analy-
sis methods [6] [7]: static, dynamic, and hybrid analysis
methods. First, static analysis collects the features from the
Android app without executing the APK files. The malicious
code is hidden in the APK file using a packer tool such as
UPX, NsPack, VMprotect, or Andromeda [8]. The APK file
includes features such as Windows API calls, the network
address, byte n-grams, strings, opcodes, and control flow
graphs. However, this method is not effective against dynamic
code loading or code obfuscation. Second, dynamic analysis
is used with more complicated and complex malware, which

163128 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-3342-6716
https://orcid.org/0000-0003-0262-7678

A. Alotaibi: Identifying Malicious Software Using Deep Residual Long-Short Term Memory

TABLE 1. Comparison of static, dynamic and hybrid analysis methods.

cannot be identified via static analysis. Dynamic analysis
observes the behavior of the malware during the program
execution process. Dynamic detection methods utilize infor-
mation flow tracking through the system calls, network traffic
and user interactions. However, challenges are encountered
with this method regarding the duration of the execution,
the observation process, the number of programs that are
assessed by the malware detection system, and technique that
is used to avoid Android virtualization [9]. Third, hybrid
analysis is a combination of static and dynamic analysis.
Typically, the API call information is extracted through the
static analysis, followed by observation of the file execu-
tion behavior [10], which typically achieves higher accu-
racy detection compared to the static and dynamic methods.
However, hybrid analysis has a high time complexity and
requires a framework for utilizing both static and dynamic
features. Table 1 compares the static, dynamic and hybrid
analysis methods.

After extracting the features, malware analysis algorithms
are applied to detect and classify the malware. Recently,
machine learning (ML) algorithms have been intensively
used in malware analysis, especially for unknown malware,
with a variety of techniques, such as support vector machine
(SVM) [11], random forest (RF) [12] [13], neural network
(NN) [14], and convolutional neural network (CNN) [15],
among others [2], [31]. The learning algorithms are cat-
egorized into three domains: supervised, semi-supervised,
and unsupervised. Supervised learning utilizes previously
labeled samples to enable the model to predict a new sam-
ple. Unsupervised learning utilizes unlabeled samples to
extract the underlying structure from the hidden features.
Semi-supervised learning is a combination of supervised and
supervised learning in which a small number of samples are
labeled and most of the samples are unlabeled. In this paper,
we apply supervised learning since the training samples are
labeled. The main contributions of this work are summarized
as follows:

1- Introduce a novel malware detection framework that is
based on residual deep learning;

2- Map the extracted feature sets to a vector space to capture
dependencies and the hidden structure;

3- Propose a specialized residual long short-term memory
(LSTM) architecture and constraints for classifying the
application file;

4- The proposed approach outperforms all other considered
methods on the Drebin dataset;

5- The efficiency and robustness of the proposed framework
are evaluated via several experimental analyses.

The remainder of the paper is organized as follows:
Section II discusses related work in detail. Section III
describes how to construct the feature vector space and
presents the overall architecture of proposed Android mal-
ware detection framework, namely, MalResLSTM, in detail.
The efficiency and robustness of the proposed detection
framework and the experimental results of the proposed
framework are analyzed and discussed in Section IV.
Section V summarizes the proposed framework and discusses
future work.

II. RELATED WORK
The use of the Android OS and its applications, such as
mobile payment systems, has been rapidly increasing. The
Android OS platform has more vulnerabilities because it
uses open-source software. This has attracted many attackers
to write complex malicious programs for infecting users’
devices. Effective malware detection systems are needed
for countering such attacks. In this section, previous mal-
ware detection analysis algorithms are discussed and ana-
lyzed according to their feature extraction and classification/
clustering algorithm types. Malware detection methods can
be categorized into four categories: signature-based meth-
ods, behavior-based methods, intelligence-based methods,
and cloud-based methods.

A. SIGNATURE-BASED METHODS
Predefined pattern matching is one of the most popular mal-
ware detection methods, which is based on known malwares
that are stored in a large database. Methods that use prede-
fined pattern matching are called signature-based methods.
Signature-based methods are widely applied by famous anti-
virus companies, such as Comodo, McAfee, Symantec, and
Kingsoft. When a new malware program is released, anti-
malware software products must create new signatures and
update their databases regularly. Signature-based detection
utilizes a unique pattern and a sequence of bytes that is
extracted from the malware file to identify the malware [16].
Tang et al. [17] proposed a network-based signature genera-
tion (NSG) method for constructing a tree structure, namely,
PloyTree, for defending against polymorphic worms. The
PloyTree algorithm consists of two components for classify-
ing the variant of worms by updating the signature tree con-
struction: a signature tree generator and a signature selector.
Fraley et al. [18] detected polymorphic malware by utilizing
topological feature extraction with data mining techniques.
Alam et al. [19] introduced an Android malware detector
system, namely, DroidNative, which analyzes a control-flow

VOLUME 7, 2019 163129

A. Alotaibi: Identifying Malicious Software Using Deep Residual Long-Short Term Memory

pattern to detect malwares in android native code and other
variants. DroidAnalytics [20] is an Androidmalware analytic
system that is based on a multi-level signature algorithm
for retrieving and associating malicious logic at the opcode
level. DroidAnalytics can detect zero-day repackaged mal-
ware. Signature-based methods are easy to apply and can
quickly identify the malware variants [21]; however, they
can be fooled via encryption, obfuscation and polymorphism
techniques [22].

B. BEHAVIOR-BASED METHODS
Behavior-based methods monitor the program’s behaviors
and activities to detect malware in the executable file. The
malware detection is based on both the object’s code and
structure and uses dynamic analysis. The two main features
that have been utilized in recent behavior malware studies
are system calls and network traffic [7]. In [23], Miao
et al. introduced a bilayer behavior abstraction technique
that utilizes API sequences, in which behavior features are
based on semantic layers. Sun et al. [3] implemented a
detection system that monitors the behavior of an Android
application based on kernel-level monitoring. Furthermore,
Saracino et al. [24] proposed a novel behavior-based android
malware detection system, namely, MADAM. MADAM
monitors, extracts and analyzes features at four levels,
namely, the application, kernel, package, and user levels,
to detect misbehavior in system calls. In [25], Jang et al.
designed a hybrid malware detection system that is based
on behavior profiling, namely, Andro-Profiler, which utilizes
the system logs and calls to detect malware. In addition,
Monet [26] is a malware detection framework that utilizes the
generation of the runtime graph and the system call to form
the runtime behavior signature. Monet consists of a client
and a backend server module for detecting variant malware.
The runtime behavior signature is analyzed by the backend
server to detect and defend against malware attacks such as
the transformation attack. Behavior-basedmethods can detect
unknown and polymorphic malware; however, the time com-
plexity for detecting variant malware at runtime is regarded
as an overhead.

C. INTELLIGENCE-BASED METHODS
Intelligence-based methods use artificial intelligence algo-
rithms to cluster and classify malware apps. With the
advancements in deep intelligent methods, intelligence-based
methods have been used in most recent malware detection
studies, where both data mining and machine learning are
used as intelligent models to identify and classify sophisti-
cated malware apps. Yuan et al. [27] implemented an online
deep-learning-based malware detector, namely, DroidDetec-
tor, for detecting malware applications. The DroidDetec-
tor model is based on two phases: deep belief networks
(DBNs) followed by stacked restricted Boltzmann machines
(RBMs) with a deep neural network, which is available online
for automated detection. LI et al. [28] developed a significant

permission identification (SigPID) malware detection system
that utilized the decision tree model, which is a supervised
machine learning technique, to detect and classify malware
families. In [29], Bat-Erdene et al. proposed a novel technique
for identifying and detecting packing algorithms via symbolic
aggregate approximation (SAX) using naive Bayes and SVM
classifiers. LI et al. [14] proposed a two-level model and a
prediction model that are based on a machine learning frame-
work for identifying and detecting the domain generation
algorithm (DGA). First, the DGA domains are distinguished
from the normal domain. Then, a clustering method is used
to identify the algorithms that form the DGA. Second, a pre-
diction model that is based on the hidden Markov model
(HMM) is used to detect the incoming domain features.
Karbab et al. [30] proposed the MalDoze framework, which
is based on a raw sequence of app’s API calls and uses deep
learning techniques. In [31], Vinayakumar et al. proposed
a deep-learning-based framework, namely, ScaleMalNet, for
identifying and classifying zero-day malware. In addition,
the authors evaluated a variety ofmachine-learning-based and
deep-learning-based algorithms that utilize static analysis,
dynamic and image processing methods for malware detec-
tion systems. Moreover, Kang et al. [32] utilized opcodes
and API function names to classify malicious files into fam-
ilies using a word2vec model and LSTM networks. In [33],
Xiao et al proposed a detection method based on two LSTM
models utilizing semantic information to classify the system
call sequence. Vinayakumar et al. [34] proposed a stacked
LSTM network to detect all individual behaviors of malware
application.

D. CLOUD-BASED METHODS
The use of cloud-based methods has been rapidly increasing
due to the huge number of released malwares and to the
low cost; however, cloud-based methods have shortcomings
in terms of time consumption and data vulnerability. The
detection agents that provide the security services are on the
cloud servers. Users can utilize the services by uploading
any types of files on the cloud servers and receive the detec-
tion result. In [35], Abdelsalam et al. proposed a malware
detection system that is based on cloud infrastructures for
VMs and uses a deep learning approach. Sun et al. [36]
introduced a cloud-based malware detection method, namely,
CloudEyes, that relies on a scanning agent on the cloud.
Furthermore, Zonouz et al. [37] designed a cloud-based
service, namely, Secloud, that emulates a version of the
smartphone device inside the cloud and synchronizes the
devices inputs and the network connections to detect mal-
ware. Mirza et al. [38] introduced a cloud-based scalable
service, namely, CloudIntell, that is hosted on Amazon web
services (AWS) for detecting malware via machine learning
techniques.

Previous malware detection systems have attempted to
address the malware detection issues through either signa-
ture, behavior, cloud or intelligent based methods. However,

163130 VOLUME 7, 2019

A. Alotaibi: Identifying Malicious Software Using Deep Residual Long-Short Term Memory

FIGURE 1. The overview architecture of the proposed deep residual long short-term memory framework.

TABLE 2. Feature extraction set.

intelligent methods have been lately proven to outper-
form other methods in detecting complex malware variants.
Recently, deep learning algorithms have been explored
and utilized to analyze the feature extraction in order to
detect malware variants. However, capturing the dependen-
cies between extracted features has not been fully explored,
thus, this paper has explored the dependent relationship
between API calls to detect malware variants as explained
next.

III. PROPOSED FRAMEWORK
In this section, theMalResLSTM framework architecture and
its components are described, as illustrated in Fig. 1. The
framework utilizes eight sets of features, which are listed
in Table 2: hardware components, requested permissions,
app components, filtered intents, restricted API calls, used
permissions, suspicious API calls, and network addresses.

These sets of features are embedded into a feature vector.
Then, the feature vector is fed to our specialized deep learning
algorithms for classification/detection. The proposed frame-
work consists of four major phases: static extraction of raw
data, feature extraction sets, vector space embedding, and
a residual long short-term memory model process. These
phases are detailed in the next subsections.

A. STATIC EXTRACTION OF RAW DATA
The first step in extracting features from an Android package
kit (APK) file is to access the manifest file and to disassemble
the dex file. Both the manifest and the disassembled files are
decoded using the Android asset packaging tool to retrieve
sets of features as strings, as explained below.

B. FEATURE EXTRACTION SETS
String features are extracted from the APK file and are
divided into eight feature types [39] as shown in Fig. 1.:

(S1)Hardware components: This type is based on a request
to access hardware components such as the camera and GPS.
The requests to access a specified hardware component is
declared in the manifest file and has a security implication.

(S2)Requested permissions: This request is granted by the
user during installation and configuration, which allows the
attacker to access the device resources, such as SEND SMS
permission.

(S3) App components: An Android application consists
of four components: activities, content providers, broadcast
receivers, and services. The name of each component can be
utilized in the feature set to identify well-known malware.

(S4) Filtered intents: The communications between com-
ponents and the applications that enable the components to
register and to receive messages are called intents, such as
BOOT COMPLETED.

VOLUME 7, 2019 163131

A. Alotaibi: Identifying Malicious Software Using Deep Residual Long-Short Term Memory

FIGURE 2. Deep residual long short-term memory network.

(S5) Restricted API calls: The Android system has iden-
tified a list of restricted API calls that can be accessed only
after requesting a permission.

(S6)Used permissions: Matching of API calls with permis-
sions is utilized to monitor the behavior of the application.

(S7) Suspicious API calls: Only a set of API calls are
allowed to access sensitive data and specified resources.
These API calls sometimes lead to suspicious behavior, such
as getDeviceId() and Cipher.getInstance().

(S8) Network addresses: Establishing a connection to
retrieve data from the smartphone device is the last step in the
proposed framework. The obtained data are the IP address,
hostname, and URL, which are found in the disassembled
file.

C. EMBEDDING IN A VECTOR SPACE
Extracted features from the previous feature set process
are utilized to identify malicious software, for example,
sendSMS() is used to access sensitive data in set S7 and
SENDSMS() is used to obtain permission in set S1. However,
deep learning utilizes numerical computations. Therefore,
extracted feature sets are mapped to a vector space to capture
the dependencies between these features and to facilitate the
detection processes. All eight feature sets are joined to define
a vector as shown in Fig. 1.

SV := S1 ∪ S2 ∪ S3 ∪S8 (1)

Each feature S that is extracted from an application (A) is set
to value (1) in the vector space ϕ(a) and the other dimension
is set to value (0).

For a set of applications A:

ϕ : A→ {0, 1}|S| , ϕ (a)→ I (a, s)s∈SV (2)

where I (a, s) is defined as follows:

I (a, s) =

{
1, App (a) has feature (Sx)
0, App (a) has no feature (Sx)

(3)

The vector space of ϕ(a) for a malicious application is:

ϕ (a)

→



0
1
0
1
1
1
1
1
1
1



.

hardware.telephony
. .

 S1

. .

SendSMS
. .

 S2

. .

. .

. .

. .

 Sx

(4)

According to Equation (4), the feature vector of ϕ(a) is:

ϕ (a) = [1, 3, . . . , . . . , . . . , . . . , . . . , 4] (5)

The feature vector is used as an input to the residual LSTM
network, as explained in the next subsection.

D. RESIDUAL LONG SHORT-TERM MEMORY MODEL
Fig. 2 illustrates the architecture of the residual long short-
termmemory network. The long short-termmemory (LSTM)
network is a powerful deep learning method that was pro-
posed by Hochreiter et al. [40] for overcoming the vanishing
gradient and exploding gradient in recurrent neural networks
(RNNs).
In addition, LSTM can learn long-term dependencies

through memory gates based on time series. The entire archi-
tecture consists of thirteen layers, including the input and
output layers.
The shape of the input layer is a tensor with three param-

eters (samples, timesteps, and feature) and the batch size at
each iteration is 400 samples. The second layer is an LSTM
layer with 128 units, which accepts the input tensor as an
input. The third layer has 256 LSTMunits and the fourth layer
has 128 LSTM units. The fifth layer is a residual layer that

163132 VOLUME 7, 2019

A. Alotaibi: Identifying Malicious Software Using Deep Residual Long-Short Term Memory

FIGURE 3. Basic structure of a long short-term memory cell.

accepts inputs from the 2nd layer and the 4th layer and passes
them through a batch normalization layer. The 6th layer has
128 LSTM units and the 7th layer has 256 LSTM units. The
8th layer is an LSTM layer with 128 units. The 9th layer is
a batch normalization layer that accepts residual connections
from the 6th and 8th layers. The 10th layer is an LSTM layer
with 256 units and the 11th layer has 64 LSTM units, which
only outputs one h by setting return sequence to false. The
12th layer is a batch normalization layer that accepts the
output of the 11th layer as an input. The output layer uses a
sigmoid activation function as a classifier. The basic structure
of the long short-term memory cell is explained next.

E. LSTM
The proposed LSTM framework consists of memory blocks,
each of which consists of three gates: an input gate it , a forget
gate ft , and an output gate ot . Fig. 3 illustrates the architecture
of the long short-termmemory cell. These gates and states are
defined as follows:
Input gate:

it = σ (Wxixt +Whiht−1 + bi) (6)

Forget gate:

ft = σ (Wxf xt +Whf ht−1 + bf) (7)

Output gate:

ot = σ (Wxoxt +Whoht−1 + bo) (8)

Input transform:

c_imt = tanh(Wxcxt +Whcht−1 + bcim) (9)

State update:

it = fi ⊗ ct−1 + it ⊗ c_imt) (10)

ht = ot ⊗ tanh (ct) (11)

where σ is the sigmoid activation function; W and b denote
the weights and bias, respectively; xt denotes the input feature
vector at timestep t; ⊗ is the element-wise product; and
ct and ht denote the memory cell and the hidden layer output,
respectively.

Algorithm 1 Batch Normalization [42]
Input: Values of x over a mini-batch: B = {x1.......m};

Parameters to be learned: γ, β
Output:

{
Yi = BNγ,β (xi)

}
1: µB← 1

m

m∑
i=1

xi Mini-batch mean

2: σ 2
B ←

1
m

m∑
i=1
(xi − µB)2 Mini-batch variance

3: x̂i←
xi−µB
√
σ
2
B+ε

Normalize

4: Yi← γ x̂i + β ≡ BNγ,β (xi) Scale and Shift

F. RESIDUAL CONNECTION
Residual networks were introduced in [41] for avoiding van-
ishing gradients and enhancing the generalization perfor-
mance. Residual connection is implemented in the proposed
MalResLSTM framework by utilizing the skip connections,
namely, the shortcut connections, where the identity map
and the output are added to the output of the stacked layer,
as illustrated in Fig. 2. In the framework, both the output of
the hidden states ĥ and the stacked hidden layer must have the
same LSTM units. Throughout the architecture, each residual
layer has 128 LSTM units. Implementing the deep residual
connection increases the detection accuracy by reducing the
convergence rate of the training error. Each residual con-
nection is followed by a normalization layer, as explained
next.

G. BATCH NORMALIZATION
Batch normalization was introduced by Loffe and
Szegedy[42] for stabilizing learning and for overcoming the
poor initialization problem. Batch normalization is applied to
a mini-batch and acts as a regularizer to prevent overfitting.
Batch normalization is implemented by setting the mean to
zero and the variance to one, as specified in Algorithm 1.
However, batch normalization is not applied to all layers in
the framework to avoid model instability; it is applied only
after the residual connection layers and after the last LSTM
layer. Empirically, a mini-batch size of 400 samples was
observed to result in a higher detection rate when the mini-
batch was normalized in the normalization layer.

H. CONSTRAINTS
While training the framework, it is observed that imposing
constraints on the model increased the learning rate and
the stability. First, the fully connected layer is eliminated
from the top of the residual LSTM. Second, the Adam opti-
mizer [43] is used as an optimization algorithm instead of
stochastic gradient descent. Third, the last layer uses a sig-
moid function to classify the input application as benign or
malicious.

VOLUME 7, 2019 163133

A. Alotaibi: Identifying Malicious Software Using Deep Residual Long-Short Term Memory

TABLE 3. Performance comparison with the proposed system (from [44]).

IV. DISCUSSION AND PERFORMANCE EVALUATION
A. DATASET
The Drebin dataset [39], [51] is used to evaluate the per-
formance of our method experimentally. Drebin contains
131,611 applications: 96,150 applications were collected
from Google play, 19,545 from Chinese markets, 2,810 from
Russian markets and 13,106 from other sources. In addition,
all samples in the Android malware genome project [52]
are included. To identify the malicious and benign appli-
cations in the dataset, ten anti-virus scanners are used to
inspect the samples: Kaspersky, ClamAV, Sophos, McAfee,
Panda, AntiVir, AVG, ESET, Bit-Defender, and F-Secure.
An Android app is regarded as malicious if it is detected by at
least two of the anti-virus scanners. The final Drebin dataset
contains 123,453 benign applications and 5560malware sam-
ples. This dataset is one of the largest malware datasets for
evaluating the malware detection system.

B. DISCUSSION AND ANALYSIS
In this subsection, the efficiency of the proposed detec-
tion framework is discussed and analyzed in depth based
on three aspects: the utilization of captured dependencies,
the set of constraints on the architecture, and the framework
stability. The proposed framework was compared with pre-
vious detection systems on samples from the Malgenome
project and it outperformed all the systems, according to
Table 3.

First, most previous works do not utilize the dependencies
between API calls, which effects the performances of their
systems. Deep neural networks (DNNs) are more suitable for

identifying the relationships between input and output vari-
ables, which cannot explicitly capture dependencies between
the input sequences. In contrast, recurrent neural networks
can recognize and capture dependencies between sequences.
When both deep and recurrent neural networks are tested on
the same dataset, DNN achieves a 99.66% detection rate and
MalResLSTM 99.32%. Hence, recurrent model can capture
the dependencies between API call requests.

Second, imposing constraints, such as eliminating the fully
connected layer from the top of the residual LSTM, and
using the Adam optimizer enable the framework to learn
quickly and increase its stability. The LSTM framework with
full connected achieves a 98.60% detection rate, whereas the
framework without the fully connected achieves a 99.32%
detection rate. Third, both batch normalization and residual
connection enable the framework to avoid overfitting and sta-
bilize the learning process. Thus, the LSTM network without
residual connection andwithout batch normalization achieves
a 99.68% detection rate, whereas that with both residual con-
nection and batch normalization achieves a 99.32% detection
rate.

C. PERFORMANCE EVALUATION
In this subsection, the detection performance of the proposed
framework is investigated and evaluated using the Drebin
dataset. The dataset is split into a training set (66%) and a
test set (33%). The training set is used to train the frame-
work, whereas the test set is used to evaluate the perfor-
mance. First, the proposed framework is compared with other
proposed systems in terms of overall accuracy, where the

163134 VOLUME 7, 2019

A. Alotaibi: Identifying Malicious Software Using Deep Residual Long-Short Term Memory

TABLE 4. Performance comparison on the Drebin dataset.

TABLE 5. Performance comparison using evaluation metrics.

Malgenome project is used in most of them, as presented in
Table 3. The accuracy of our proposed framework was higher
than those of other proposed systems, including most of the
deep learning algorithms, such convolutional neural network
(CNN) and recurrent neural network (RNN). In addition, the
MalResLSTM framework outperforms the other systems on
the original dataset that was proposed by D. Arb [39], accord-
ing to Table 3. The proposed framework and various machine
learning algorithms are implemented using Windows 10 with
an Intel i7-8750H CPU and 32 GB RAM. Scikit-learning,
Tensorflow and the Keras library are utilized as tools to
implement the framework. To evaluate the performance of the
MalResLSTM framework, various machine learning algo-
rithms are implemented, such as logistic regression, support
vector machine, random forest and neural network, on the
same dataset as reported in Table 4. For comparison, the fol-
lowing algorithms are tested on the Drebin dataset: logis-
tic regression (LR), support vector machine (SVM),
random forest (RF), neural network (NN), recurrent neural
network (RNN), gated recurrent unit (GRU), and long short-
term memory (LSTM).

The following evaluation metrics are computed to measure
the performance of the classifier:

Accuracy =
TN + TP

TP + FP + TN + FN
(12)

Precision =
TP

TP + FP
(13)

TABLE 6. Performance comparison of two sequence models on the
Drebin dataset.

Recall =
TP

TP + FN
(14)

F1 − score =
2 ∗ TP

2 ∗ TP + FP + FN
(15)

where TN and TP denote the numbers of true-negative
and true-positive results, respectively, and FN and FP
denote the numbers of false-negative and false-positive
results, respectively. According to the comparison results
of these algorithms using the evaluation metrics, the pro-
posed framework achieves the best result, as presented
in Table 5. The precision score of the proposed frame-
work is 0.92 which is the highest score that was
obtained.

According to Table 6, deep residual LSTM outperforms
sequence models RNN and GRU due to its superior ability
to extract the dependence between the features and the model
stability.

VOLUME 7, 2019 163135

A. Alotaibi: Identifying Malicious Software Using Deep Residual Long-Short Term Memory

V. CONCLUSION AND FUTURE WORK
Malware programs have affected manymobile devices by uti-
lizing system vulnerabilities, such as viruses, worms, trojans,
horses, spyware, ransomware, scareware, bots, and rootkits,
to infect the target. Malware programs are used to achieve
various objectives, such as destroying operating systems,
damaging computers or networks, stealing confidential data,
gathering personal information, and hijacking or encrypting
sensitive data. To address these issues and to detect mal-
ware programs, this paper proposes a novel framework that
is based on a deep learning algorithm for identifying and
classifying malware variants. First, Feature sets are extracted
from APK file and then mapped to a feature vector. Then,
the feature vector is utilized to extract the hidden features
and structural dependencies using a sequence model that is
based on the deep residual long short-term memory network,
namely, MalResLSTM. A set of constraints is applied to the
deep learning architecture to capture dependencies between
the extracted features from the Android package kit (APK).
The architecture consists of thirteen layers, including the
input and output layers. Applying residual connection to the
LSTM layers reduces the convergence rate of the training
error and improves the detection performance. An exten-
sive experimental analysis was conducted to investigate the
efficiency of the proposed framework . The performance of
the MalResLSTM framework is evaluated using the Drebin
dataset, on which it achieves 99.32% detection accuracy and
outperforms previously proposed algorithms. In the future,
bidirectional LSTM and the attention mechanism will be fur-
ther explored and investigated. Furthermore, an adversarial
example should be used to evaluate the vulnerability of the
framework.

REFERENCES
[1] S. D. Gantz and D. R. Philpott, FISMA and the Risk Management

Framework: The New Practice of Federal Cyber Security. Newnes,
2012.

[2] N. Chavan, F. Di Troia, and M. Stamp, ‘‘A comparative analysis
of Android malware,’’ 2019, arXiv:1904.00735. [Online]. Available:
https://arxiv.org/abs/1904.00735

[3] S. Sun, X. Fu, H. Ruan, X. Du, B. Luo, andM. Guizani, ‘‘Real-time behav-
ior analysis and identification for Android application,’’ IEEE Access,
vol. 6, pp. 38041–38051, 2018.

[4] J. Clement. (2018). Development of Android Malware Worldwide
2011–2018. [Online]. Available: https://www.statista.com/statistics/
680705/global-android-malware-volume/

[5] E. B. Karbab and M. Debbabi, ‘‘MalDy: Portable, data-driven malware
detection using natural language processing and machine learning tech-
niques on behavioral analysis reports,’’Digit. Invest., vol. 28, pp. S77–S87,
Apr. 2019.

[6] D. Ucci, L. Aniello, and R. Baldoni, ‘‘Survey of machine learning tech-
niques for malware analysis,’’ Comput. Secur., vol. 81, pp. 123–147,
Mar. 2018.

[7] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, ‘‘A review
on feature selection in mobile malware detection,’’ Digit. Invest., vol. 13,
pp. 22–37, Jun. 2015.

[8] S. S. Chakkaravarthy, D. Sangeetha, and V. Vaidehi, ‘‘A survey on malware
analysis and mitigation techniques,’’ Comput. Sci. Rev., vol. 32, pp. 1–23,
May 2019.

[9] A. Qamar, A. Karim, and V. Chang, ‘‘Mobile malware attacks: Review,
taxonomy & future directions,’’ Future Gener. Comput. Syst., vol. 97,
pp. 887–909, Aug. 2019.

[10] W. Han, J. Xue, Y. Wang, L. Huang, Z. Kong, and L. Mao, ‘‘MalDAE:
Detecting and explaining malware based on correlation and fusion of
static and dynamic characteristics,’’ Comput. Secur., vol. 83, pp. 208–233,
Jun. 2019.

[11] L. Sun, Z. Li, Q. Yan, W. Srisa-An, and Y. Pan, ‘‘SigPID: Signifi-
cant permission identification for Android malware detection,’’ in Proc.
11th Int. Conf. Malicious Unwanted Softw. (MALWARE), Oct. 2016,
pp. 1–8.

[12] A. Bhattacharya and R. T. Goswami, ‘‘DMDAM: Data mining based
detection of Android malware,’’ in Proc. 1st Int. Conf. Intell. Comput.
Commun. Singapore: Springer, 2017, pp. 187–194.

[13] L. D. Coronado-De-Alba, A. Rodríguez-Mota, and
P. J. Escamilla-Ambrosio, ‘‘Feature selection and ensemble of classifiers
for Android malware detection,’’ in Proc. 8th IEEE Latin-Amer. Conf.
Commun. (LATINCOM), Nov. 2016, pp. 1–6.

[14] Y. Li, K. Xiong, T. Chin, and C. Hu, ‘‘A machine learning framework
for domain generation algorithm-based malware detection,’’ IEEE Access,
vol. 7, pp. 32765–32782, 2019.

[15] B. Chen, Z. Ren, C. Yu, I. Hussain, and J. Liu, ‘‘Adversarial examples for
CNN-based malware detectors,’’ IEEE Access, vol. 7, pp. 54360–54371,
2019.

[16] Y. Ye, T. Li, D. A. Adjeroh, and S. S. Iyengar, ‘‘A survey on malware
detection using data mining techniques,’’ ACM Comput. Surv., vol. 50,
no. 3, 2017, Art. no. 41.

[17] Y. Tang, B. Xiao, and X. Lu, ‘‘Signature tree generation for polymorphic
worms,’’ IEEE Trans. Comput., vol. 60, no. 4, pp. 565–579, Apr. 2011.

[18] J. B. Fraley and M. Figueroa, ‘‘Polymorphic malware detection using
topological feature extraction with data mining,’’ in Proc. SoutheastCon,
Mar./Apr. 2016, pp. 1–7.

[19] S. Alam, Z. Qu, R. Riley, Y. Chen, and V. Rastogi, ‘‘DroidNative: Automat-
ing and optimizing detection of Android native code malware variants,’’
Comput. Secur., vol. 65, pp. 230–246, Mar. 2016.

[20] M. Zheng, M. Sun, and J. C. S. Lui, ‘‘Droid analytics: A signature
based analytic system to collect, extract, analyze and associate Android
malware,’’ in Proc. 12th IEEE Int. Conf. Trust, Secur. Privacy Comput.
Commun., Jul. 2013, pp. 163–171.

[21] A. Souri and R. Hosseini, ‘‘A state-of-the-art survey of malware detection
approaches using data mining techniques,’’ Hum.-Centric Comput. Inf.
Sci., vol. 8, no. 1, p. 3, Dec. 2018.

[22] W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, ‘‘DL4MD: A deep learning
framework for intelligent malware detection,’’ in Proc. Int. Conf. Data
Mining (DMIN), Steering Committee World Congr. Comput. Sci., 2016,
pp. 1–7.

[23] Q. Miao, J. Liu, Y. Cao, and J. Song, ‘‘Malware detection using bilayer
behavior abstraction and improved one-class support vector machines,’’
Int. J. Inf. Secur., vol. 15, no. 4, pp. 361–379, 2016.

[24] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, ‘‘MADAM:
Effective and efficient behavior-based Android malware detection and
prevention,’’ IEEE Trans. Depend. Sec. Comput., vol. 15, no. 1,
pp. 83–97, Jan./Feb. 2018.

[25] J.-W. Jang, J. Yun, A. Mohaisen, J. Woo, and H. K. Kim, ‘‘Detect-
ing and classifying method based on similarity matching of Android
malware behavior with profile,’’ SpringerPlus, vol. 5, no. 1, p. 273,
2016.

[26] M. Sun, X. Li, J. C. S. Lui, R. T. B. Ma, and Z. Liang, ‘‘Monet:
A user-oriented behavior-based malware variants detection system
for Android,’’ IEEE Trans. Inf. Forensics Security, vol. 12, no. 5,
pp. 1103–1112, May 2016.

[27] Z. Yuan, Y. Lu, and Y. Xue, ‘‘Droiddetector: Android malware characteri-
zation and detection using deep learning,’’ Tsinghua Sci. Technol., vol. 21,
no. 1, pp. 114–123, Feb. 2016.

[28] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, ‘‘Significant
permission identification for machine-learning-based Android malware
detection,’’ IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3216–3225,
Jul. 2018.

[29] M. Bat-Erdene, H. Park, H. Li, H. Lee, and M.-S. Choi, ‘‘Entropy analysis
to classify unknown packing algorithms for malware detection,’’ Int. J. Inf.
Secur., vol. 16, no. 3, pp. 227–248, Jun. 2017.

[30] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, ‘‘MalDozer: Auto-
matic framework for Android malware detection using deep learning,’’
Digit. Invest., vol. 24, pp. S48–S59, Mar. 2018.

[31] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, and
S. Venkatraman, ‘‘Robust intelligent malware detection using deep learn-
ing,’’ IEEE Access, vol. 7, pp. 46717–46738, 2019.

163136 VOLUME 7, 2019

A. Alotaibi: Identifying Malicious Software Using Deep Residual Long-Short Term Memory

[32] J. Kang, S. Jang, S. Li, Y.-S. Jeong, and Y. Sung, ‘‘Long short-term
memory-based malware classification method for information security,’’
Comput. Elect. Eng., vol. 77, pp. 366–375, Jul. 2019.

[33] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah, ‘‘Android
malware detection based on system call sequences and LSTM,’’ Multime-
dia Tools Appl., vol. 78, no. 4, pp. 3979–3999, 2019.

[34] R. Vinayakumar, K. P. Soman, P. Poornachandran, and S. S. Kumar,
‘‘Detecting Android malware using long short-term memory (LSTM),’’
J. Intell. Fuzzy Syst., vol. 34, no. 3, pp. 1277–1288, 2018.

[35] M. Abdelsalam, R. Krishnan, Y. Huang, and R. Sandhu, ‘‘Malware detec-
tion in cloud infrastructures using convolutional neural networks,’’ in Proc.
IEEE 11th Int. Conf. Cloud Comput. (CLOUD), Jul. 2018, pp. 162–169.

[36] H. Sun, X. Wang, R. Buyya, and J. Su, ‘‘CloudEyes: Cloud-based malware
detectionwith reversible sketch for resource-constrained Internet of Things
(IoT) devices,’’ Softw., Pract. Exper., vol. 47, no. 3, pp. 421–441, 2017.

[37] S. Zonouz, A. Houmansadr, R. Berthier, N. Borisov, and W. Sanders,
‘‘Secloud: A cloud-based comprehensive and lightweight security solution
for smartphones,’’ Comput. Secur., vol. 37, pp. 215–227, Sep. 2013.

[38] Q. K. A. Mirza, I. Awan, and M. Younas, ‘‘CloudIntell: An intelli-
gent malware detection system,’’ Future Gener. Comput. Syst., vol. 86,
pp. 1042–1053, Sep. 2018.

[39] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,
‘‘DREBIN: Effective and explainable detection of Android malware in
your pocket,’’ in Proc. NDSS, 2014, pp. 1–15.

[40] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[41] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[42] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ 2015, arXiv:1502.03167.
[Online]. Available: https://arxiv.org/abs/1502.03167

[43] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.org/
abs/1412.6980

[44] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, ‘‘A multimodal deep
learning method for Android malware detection using various features,’’
IEEE Trans. Inf. Forensics Secur., vol. 14, no. 3, pp. 773–788, Mar. 2019.

[45] W. Yu, L. Ge, G. Xu, and X. Fu, ‘‘Towards neural network based mal-
ware detection on Android mobile devices,’’ in Cybersecurity Systems
for Human Cognition Augmentation. Cham, Switzerland: Springer, 2014,
pp. 99–117.

[46] N. McLaughlin, J. M. del Rincon, B. Kang, S. Yerima, P. Miller, S. Sezer,
Y. Safaei, E. Trickel, Z. Zhao, A. Doupé, and G. J. Ahn, ‘‘Deep Android
malware detection,’’ in Proc. 7th ACM Conf. Data Appl. Secur. Privacy,
2017, pp. 301–308.

[47] H. Fereidooni, M. Conti, D. Yao, and A. Sperduti, ‘‘ANASTASIA: Android
malware detection using static analysis of applications,’’ in Proc. 8th IFIP
Int. Conf. New Technol., Mobility Secur. (NTMS), Nov. 2016, pp. 1–5.

[48] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, ‘‘Semantics-aware Android mal-
ware classification using weighted contextual API dependency graphs,’’ in
Proc. ACMSIGSACConf. Comput. Commun. Secur., 2014, pp. 1105–1116.

[49] S. Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik, ‘‘A new Android
malware detection approach using Bayesian classification,’’ in Proc. IEEE
27th Int. Conf. Adv. Inf. Netw. Appl. (AINA), Mar. 2013, pp. 121–128.

[50] S. Y. Yerima, S. Sezer, and I. Muttik, ‘‘High accuracy Android mal-
ware detection using ensemble learning,’’ IET Inf. Secur., vol. 9, no. 6,
pp. 313–320, 2015.

[51] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann,
‘‘Mobile-sandbox: Having a deeper look into Android applications,’’ in
Proc. 28th Annu. ACM Symp. Appl. Comput., 2013, pp. 1808–1815.

[52] Y. Zhou and X. Jiang, ‘‘Dissecting Android malware: Characterization and
evolution,’’ in Proc. IEEE Symp. Secur. Privacy, May 2012, pp. 95–109.

AZIZ ALOTAIBI received the Ph.D. degree in computer science and com-
puter engineering from the University of Bridgeport, Bridgeport, CT, USA.
He is currently an Assistant Professor with the Computer Science Depart-
ment, Taif University. His research interests include machine learning, deep
learning, computer vision, cybersecurity, and web services.

VOLUME 7, 2019 163137

	INTRODUCTION
	RELATED WORK
	SIGNATURE-BASED METHODS
	BEHAVIOR-BASED METHODS
	INTELLIGENCE-BASED METHODS
	CLOUD-BASED METHODS

	PROPOSED FRAMEWORK
	STATIC EXTRACTION OF RAW DATA
	FEATURE EXTRACTION SETS
	EMBEDDING IN A VECTOR SPACE
	RESIDUAL LONG SHORT-TERM MEMORY MODEL
	LSTM
	RESIDUAL CONNECTION
	BATCH NORMALIZATION
	CONSTRAINTS

	DISCUSSION AND PERFORMANCE EVALUATION
	DATASET
	DISCUSSION AND ANALYSIS
	PERFORMANCE EVALUATION

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	AZIZ ALOTAIBI

