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ABSTRACT This paper proposes a notional radar concept, named hybrid distributed multi-input multi-
output (MIMO) radar, which brings together the distributed MIMO radar concept and the phased-array (PA)
radar one. In particular, the hybrid distributed MIMO radar is composed of K sub-arrays which are randomly
distributed with wide separations. Each sub-array consists of Q all-digital colocated antenna elements with
T/R modules separated by half-wavelength inter-element spacing. In the transmitting end, each sub-array
operating as a PA radar, is driven by an independent waveform that is orthogonal with waveforms transmitted
by other sub-arrays. In the receiving end, the reflected signals are received by all elements in the whole array
and jointly processed. The hybrid distributed MIMO radar is a promising technique, due to its capability of
providing spatial diversity gains and high resolutions. In this paper, as the first stage of studying the target
detection and localization problem for hybrid distributed MIMO radar, we present its signal model, and
then develop the optimal detection theory and ambiguity function. Finally, sufficient numerical examples
are provided to verify the effectiveness of the proposed radar system.

INDEX TERMS Radar, multi-input multi-output (MIMO), phased-array (PA), hybrid distributed MIMO,
optimal detection, ambiguity function (AF).

I. INTRODUCTION
As a new array radar paradigm, the multi-input multi-output
(MIMO) radar has been focused by the radar community in
the last two decades [1]–[5]. It uses multiple antennas to
simultaneously transmit multiple probing signals that may
be orthogonal or partially correlated with each other [4]–[7],
while it also uses multiple antennas to receive the reflected
signals. Generally speaking, MIMO radars can be catego-
rized into two main types depending on the array configu-
ration [2], [3]. One is the colocated MIMO radar, for which
the spacing of the antenna elements is in the level of half-
wavelength; and the other one is the distributed (or statistical)
MIMO radar, for which the antenna elements are widely
separated. The colocated MIMO radar mainly exploits the
waveform diversity to achieve improved parameter identi-
fiability and enhanced flexibility of transmit beampattern
design [2]. While, for the second type of MIMO radar,
the target’s spatial diversity can be exploited by widely
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separated transmit/receiver antennas. Therefore the dis-
tributed MIMO radar can be applied to overcome the radar
cross section (RCS) scintillation which is like the channel
fading in the wireless communications [3]. Furthermore,
the distributed MIMO radar can also be applied to provide
high resolution target localization, improved direction finding
and moving target detection [8]–[11]. However, these advan-
tages do not come free of cost. More transmit/receive chan-
nels, usually, lead to more complicated system realizations.
The generation of large number of orthogonal waveforms is
quite difficult both in the theoretical design and engineering
realization [5]–[7]. Moreover, for the distributed MIMO
radar, time and phase synchronizations are also required [3].
Note that recent progresses on the distributed transmit beam-
forming in the communication community provide the possi-
bility of solving the synchronization issue in the distributed
MIMO radar [12]. The detailed discussion of these techniques
is beyond the scope of this paper.

Another important array radar paradigm is the phased-
array (PA) radar, which has been well developed and widely
used in many fields [13]. In contrast, the PA radar usually
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transmits a single waveform using multiple antennas, and
thus can exploit coherent processing gain and flexible beam-
forming abilities. There have been many comparisons and
debates between the PA radar and the MIMO radar [14], [15].
In this paper, wewould rather try to exploit jointly the benefits
of these two techniques than discuss which one will supplant
the other one. In fact, several relevant attempts have been
done [16]–[21].

In [16]–[19], the hybrid MIMO phased-array radar
(HMPAR) concept was proposed. The array organization of
HMPAR is two-level hierarchical. At the higher level there
are M transmitting units. The phase centers of these trans-
mitting units, taken together, could form an M-element array,
i.e. the meta-array [18]. At the lower level, each transmitting
unit consists of a phased array of P colocated elements [18].
Through exploiting flexible waveform design, the HMPAR
can achieve arbitrary transmit beampatterns while retaining
phased-array-like resolution on receive [16], [17]. The signal-
ing strategies of the notional HMPAR architecture to achieve
various transmit beampatterns was developed in [18], and a
target localization algorithm was provided in [19]. In [20],
a similar radar concept that is called the phased-MIMO radar,
in which the partitioned subarrays are allowed to overlap,
was proposed. It was shown that the phased-MIMO radar
enjoyed better beampattern and signal-to-interference-plus-
noise ratios (SINRs) performances when compared with
conventional phased-array and MIMO radars. Later,
the phased-MIMO radar was extended into the transmit
beamspace (TB)-based MIMO radar concept, which focuses
the energy of multiple transmitted orthogonal waveforms
within a certain spatial sector using beamspace design tech-
niques in [4], [21]. However, it is worth noting that, for the
Phased-MIMO radar, the power management when an ele-
ment is part of two (or more) different sub-arrays is not easy
in the engineering realization. Recently, a novel technique
for optimizing the performance of a hybrid phased-MIMO
radar in the presence of strong jamming effects was proposed
in [22]. In the hybrid phased-MIMO radar, two orthogonal
waveforms beam-formed by coherent operation of two sub-
arrays are used to combine the advantages of both colocated
MIMO and PA radars simultaneouly.

It is worth noting that aforementioned studies, including
the HMPAR, phased-MIMO, TB-based MIMO and hybrid
phased-MIMO radars, are associated with the colocated
MIMO radar. These hybrid concepts mainly focus on the sig-
nal design to achieve flexible transmit beampatterns. On the
contrary, the study of combining the distributed MIMO radar
and the PA radar is far from enough. In fact, the distributed
MIMO radar does have many merits, such as spatial diver-
sity gains and resolution improvement. In [23], a general
MIMO radar configuration where both the transmitter and
receiver have several well-separated sub-arrays with each
sub-array containing closely spaced antennas was introduced,
and an iterative generalized-likelihood ratio test (iGLRT)
algorithm for target detection and parameter estimation was
also proposed and numerically demonstrated using the linear

FIGURE 1. The system concept of hybrid distributed MIMO radar.

array configuration. Later, a notional MIMO radar system
consisting of widely distributed phased arrays was proposed
and studied in [24]. The distributed phased arrays consist of
5 uniform linear arrays (ULA) of 48 omnidirectional ele-
ments at half-wavelength spacing. The sub-arrays are spaced
with their phase centers separated by 500 wavelengths.
Therefore, this radar concept can be seen as a simplified
hybrid distributed MIMO radar. In this paper, some prelim-
inary simulations of transmit beampatterns and maximum-
likelihood position estimations were presented. It was pointed
out that, for the proposed distributed phased arrays, the coher-
ent processing may not be desirable. However, since the
lack of necessary theoretical analyses and detailed simu-
lation parameters, the work presented in [24] is not very
comprehensive and convincible. This motivates us to further
study the hybrid distributedMIMO radar, which combines the
distributed MIMO radar and the PA radar with more general
configurations.

In this paper, we consider a particular hybrid dis-
tributed MIMO radar concept using T/R reciprocal antennas.
As shown in Fig.1, the Hybrid distributed MIMO radar is
composed of K sub-arrays which are randomly distributed
with wide enough separations. Each sub-array consists of Q
all-digital colocated antenna elements with T/R modules sep-
arated by half-wavelength inter-element spacing. The whole
number of elements of this Hybrid MIMO is M = K×Q.
In the transmitting end, each sub-array operates as a PA
radar and steers the transmit beam to cover the sector of
interest where the desired target is likely to appear. Moreover,
each sub-array is driven by an independent waveform that is
orthogonal with waveforms transmitted by other sub-arrays.
In the receiving end, the reflected signals are received by all
elements in the whole array and jointly processed.

The proposed hybrid distributed MIMO radar offers a
tradeoff between the PA radar and the distributed MIMO
radar. This implies that:

1) Different sub-arrays viewing the target from dif-
ferent angles provide the possibility of exploiting spatial
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diversity gains. This can be applied to overcome the target’s
RCS scintillation and achieve a reliable detection of spatial
fluctuating targets.

2) The aperture size of each sub-array is smaller than that
of the PA radar with the same number of elements, thus
the transmit beam is relatively wide, which leads to wide
surveillance coverage and long dwell time at the price of
transmit coherent gain losses.

3) Thewhole array is applied to receive the reflected signal,
thus high resolution can be obtained using jointly processing.

4) The number of orthogonal waveforms needed is equal
to the number of sub-arrays, and thus much less orthogo-
nal waveforms are needed as compared to the distributed
MIMO radar.

For a radar system, two of most important issues are the
target detection and localization [25]. As the first stage of
resolving these two problems, here we intend to develop the
optimal detection theory and the ambiguity function (AF) for
the hybrid distributed MIMO radar.

In [26], the spatial diversity was exploited to improve
detection performance of fluctuating targets for the
distributed MIMO radar. The optimal detector in Neyman-
Pearson sense was developed and the optimal detection
performance was evaluated using the concept of ‘detector’s
signal-to-noise ratio (SNR)’. In [27], the relative entropy was
introduced to evaluate the optimal detection performance for
MIMO radar. In [28], the likelihood ratio test (LRT) detector
was developed and optimization problems were discussed for
a novel multisite radar system (MSRS) with MIMO radars,
i.e., MIMO-MSRS system. To confirm the better detection of
fluctuating targets for MIMO radar systems, numerical and
experimental studies incorporating realistic RCS properties
were performed in [29].

The AF that was first developed by Woodward in [30]
is a useful tool to study the localization problem of radar
systems [4], [8]. For MIMO radar systems, the AF expres-
sions were extended based on the optimum detection the-
ory in [31], [32] and based on the log-likelihood function
in [33], [34]. In fact, these two approaches are inherently
equivalent. Recently, some new definitions of MIMO radar
AF associated with the information theory are introduced
in [35], [36]. Moreover, the properties of MIMO radar
AF were studied and used to optimize the waveform design
in [37]–[39].

In this paper, we develop the signal model of the pro-
posed hybrid distributed MIMO radar considering its unique
system configuration and using the spatial Swerling-I target
model [40]. For the target detection problem, the optimal
detector in Neyman-Pearson sense is derived and, the detec-
tion performance is evaluated using the receiver operating
characteristic (ROC) curve and the relative entropy. For the
target localization problem, the AF is derived for the hybrid
distributed MIMO radar, based on the optimal detection prin-
ciple. It will be shown that the hybrid MIMO radar AF is a
general AF definition for the distributed MIMO radar and the
PA radar.

The rest of this paper is organized as follows. In section II,
the preliminary theory of MIMO radar is presented and
the signal model of the hybrid distributed MIMO radar is
developed. In section III, aiming at the optimal detection of
fluctuating targets, we derive the optimal detector in Neyman-
Pearson sense and evaluate its performance. In section IV,
the AF is developed for the hybrid distributed MIMO radar
based on the optimal detection principle, and the relationships
between the hybrid distributedMIMO radar AF and the exist-
ing several AFs are discussed. Several numerical examples
are presented to validate the effectiveness of the proposed
hybrid MIMO radar in section V. Finally, conclusions and
future work are drawn in section VI.

II. THEORETICAL BACKGROUND AND SIGNAL MODEL
In this section, we firstly present the preliminary theory of the
traditional MIMO radar, and then develop the signal model
of the proposed hybrid distributed MIMO radar in a concise
form, with considering its system characteristics.

A. PRELIMINARY THEORY OF MIMO RADAR
Let us consider a general MIMO radar system with M
transmitting elements and N receiving elements.The position
coordinate of the i th transmitting element isTi = (xti, yti, zti),
and that of the jth receiving element is Rj = (xrj, yrj, zrj) .
Then the position vectors of the transmitting and receiving
arrays are

T = [T1,T2, . . . ,TM ] (1)

R = [R1,R2, . . . ,RN ] (2)

The signal transmitted from the ith transmitting element is

sti(t) =
√
E/M · si(t) · exp [j2π fct] (3)

where E is the total average transmitted energy, t denotes the
time variable, fc is the carrier frequency, and si(t) is the signal
envelope and satisfies the ideal orthogonal assumption∫

si(t) · s∗i′ (t)dt =

{
1, i = i′ ;
0, i 6= i′ .

(4)

For a target in the observed region, we assume that its
position vector is P, its velocity vector is V, and its scatter-
ing coefficient in the (i, j)th transmit-receive channel is ζji,
respectively. To get a concise expression in the following
derivation, we use a parameter vector2 = [P;V] to describe
the target. The position and velocity vectors are defined in
the same coordinate system as the transmitting and receiv-
ing arrays. Therefore, the two-way time delay of the target
located at position P associated with the (i, j)th transmit-
receive channel can be written as

τij(P) = τi(P)+ τj(P) =
‖P− Ti‖

c
+
‖P− Rj‖

c
(5)

where c is the light speed, and ‖·‖ is the Euclidean vector
norm [31].
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Similarly, for the transmit-receive channel, the Doppler
frequency of the moving target with velocity V can be given
by

fd,ij(2) = fd,i(2)+ fd,j(2)

=
1
λ
·

〈
P− Ti
‖P− Ti‖

,V
〉
+

1
λ
·

〈
P− Rj

‖P− Rj‖
,V
〉

(6)

where λ is the wavelength, and 〈·, ·〉 is the inner product
operator [32].

In the receiving end, the signal received by the jth receiving
element, after demodulation, can be given by

rj(t) =
√
E/M ·

M∑
i=1

ζji · si
(
t − τij(P)

)
exp

[
j2π fd,ij(2)t

]
· exp

[
−j2πτij(P)(fc + fd,ij(2))

]
+ nj(t) (7)

where nj(t) denotes the background noise at the jth receiving
antenna [29].

B. SIGNAL MODEL OF HYBRID DISTRIBUTED MIMO
RADAR
For the hybrid distributed MIMO radar, the signal model
given by (7) can be rewritten to get a concise matrix form,
considering of its system configuration characteristics. First
of all, the number of transmitting elements is equal to that of
the receiving elements, i.e. M = N . Furthermore, we define
the following denotations

aj = exp
[
−j2π fcτj(P)

]
bi = exp [−j2π fcτi(P)]
αji = ζji · exp

[
−j2π fd,ij(2)τij(P)

]
dji(t) = exp

[
j2π fd,ij(2)t

]
(8)

Then the signal received by the the j th receiving element
can be rewritten as

rj(t) =
√
E/M ·

∑M
i=1 αjiajbidji(t)si

(
t − τij(P)

)
+ nj(t) (9)

where aj is the jth element in the receiver steering vector a,
bi is the ith element in the transmitter steering vector b, αji is
the jith element of the extended channel matrixH, i.e. [H]ji =
αji, dji(t) is the ji th element of the Doppler phase matrixD(t),
i.e., [D]ji = dji(t), respectively.

To get a concise form of the signal model, some simpli-
fications should be reasonably made based on the unique
system configuration of the hybrid distributed MIMO radar.
As mentioned before, the hybrid distributed MIMO radar
is composed of K widely separated sub-arrays, and each
sub-array is formed with Q closely spaced elements. There-
fore, for an arbitrary sub-array, some approximations of the
receiver/transmitter steering vectors, the extended channel
matrix and the Doppler phase matrix can be made. Firstly,
the elements within an arbitrary sub-array are close enough
to each other so that for a target located in the far-field,
the Line-of-Sight (LOS) of these elements is nearly identical.
Therefore, for an arbitrary sub-array, the scattering coeffi-
cients of the target for its elements can be reasonably assumed

to be fixed. Furthermore, for a moving target, the projec-
tion of the velocity vector onto the LOS of each element
within an arbitrary sub-array is nearly identical. This implies
that all the elements in an arbitrary sub-array might see
nearly same frequency shifts for a moving target. Finally,
we assume that narrow-band signal is applied in the hybrid
distributed MIMO radar, and then the effect of the time delay
on the signal envelope is almost the same for all elements
in an arbitrary sub-array [31]. Based on these assumptions,
the receiver/transmitter steering vectors can be rewritten as
block vectors

a=
[
aT1 , . . . , a

T
p , . . . , a

T
K

]T
, ap =

[
ap1, ap2, . . . , apQ

]T
b=

[
bT1 , . . . ,b

T
q ,. . ., b

T
K

]T
, bq =

[
bq1, bq2,. . ., bqQ

]T (10)

where ap is the receiver steering vector of the pth sub-array
and the bq is the transmitter steering vector of the qth sub-
array, respectively. The extended channel matrix and the
Doppler phase matrix can be expressed as block matrices

[H]pq = αpq · 1QQ, p, q = 1, 2, . . . ,K

[D]pq = dpq(t) · 1QQ, p, q = 1, 2, . . . ,K (11)

where αpq denotes the extended scattering coefficient in the
pqth observing channel (the qth sub-array acts as the trans-
mitter, and the pth sub-array acts as the receiver), dpq(t)
denotes the Doppler phase term in the pq th observing chan-
nel, respectively, and 1QQ is the all-one matrix with Q × Q
elements.

In the hybrid distributed MIMO radar, sub-arrays are
randomly distributed with wide separations, which implies
that different sub-arrays observe the target from different
aspects. Moreover, it is assumed that the observed target
conforms to the Swerling-I model [40]. Therefore, αpq is
independent with each other and the distribution of α =
[α11, . . . , α1K , α21, . . . , αKK ] is

α ∼ CN
(
0, IK2

)
(12)

where IK2 is the identity matrix with K 2
× K 2 ele-

ments, CN (·, ·) is the complex normal distribution. Further,
the probability density function of α can be given by

p(α) = c1 · exp
[
−‖α‖2

]
(13)

where c1 is a normalized constant.
In the transmitting end, each sub-array operates in the

PA radar mode, thus all the elements in each sub-array trans-
mit fully correlated waveforms. Therefore, the transmit signal
can be expressed as a block vector

s(t) =
[
wT
1 s1(t), . . . ,w

T
q sq(t), . . . ,w

T
K sK (t)

]T
(14)

where wq is the beamforming weight vector and sq(t) is the
transmitted signal for the qth sub-array, respectively. More-
over, since each sub-array transmits as a PA radar, the transmit
coherent gain for the qth sub-array can be realized by taking
bq = wq, i.e., bHq wq = Q.
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Finally, the received signal of the hybrid distributedMIMO
radar can be formed into a block vector

r(t) =
[
rT1 , . . . , r

T
p , . . . , r

T
K

]T
(15)

where the received signal vector of the pth sub-array is

rp(t) =
√
E/M ·

K∑
q=1

αpqapbHq wqdpq(t)sq(t − τpq)+ np(t)

=
√
E/M · Q·

K∑
q=1

αpqapdpq(t)sq(t−τpq)+np(t) (16)

where np(t) =
[
np1(t), . . . ,np2(t), . . . ,npQ(t)

]T is the noise
vector associated with the p th sub-array, and its correlation
matrix is σ 2

n IQ, σ
2
n is the noise variance of each receiver

element, IQ is the identity matrix with Q×Q elements.

III. OPTIMAL DETECTOR AND ITS PERFORMANCE
In this section, we will refer to the optimal detection of the
hybrid distributed MIMO radar, including the derivation of
the optimal detector in the Neyman-Pearson sense and the
distribution of statistics. Furthermore, the best achievable
detection performance will be evaluated using the concept
of relative entropy, followed by some comparisons between
the optimal detection performance of the hybrid distributed
MIMO radar and that of the traditional MIMO and PA radars.

A. OPTIMAL DETECTOR IN THE NEYMAN-PEARSON
SENSE
Generally, the radar detection problem can be treated as
a binary hypothesis test. Among many detection theories,
the optimal detector in the Neyman-Pearson sense, which
maximizes the detection probability given that the probabil-
ity of false alarm is fixed, is the most frequently-used one.
Assuming that the target status parameter 2 and the noise
variance σ 2

n are known, the optimal detector in the Neyman-
Pearson sense is the Likelihood Ratio Test (LRT),

T =
f (r(t)|H1)

f (r(t)|H0)

>H1

<H0

δ0 (17)

where f (r(t)|H1) and f (r(t)|H0) are the likelihood functions
under two hypotheses, and δ0 is the threshold. The binary
hypotheses are

H1:Target exists with status parameter2;
H0:Target does not exist with status parameter2.
According to (15) and (16), the received signals of each

sub-array have the same expressions. Without the loss of
generality, the received signals of an arbitrary sub-array (e.g.,
the pth sub-array) under different hypotheses can be given as

rp(t) =

{
sp(t)+ np(t), H1 ;

np(t), H0 .
(18)

where

sp(t) =
√
E/M · Q ·

K∑
q=1

αpqapdpq(t)sq(t − τpq) (19)

Therefore, under the null hypothesis, the probability den-
sity function (PDF) of the received signals r(t) can be given
by

f (r(t)|H0) = c2 · exp

[
−

∫
‖r(t)‖2dt
σ 2
n

]
(20)

Under the alternative hypothesis, after some tedious math-
matical derivations (see AppendixA), the PDF of the received
measurements can be given by

f (r(t)|H1) =

∫
f (r(t)|H1,α) p(α)dα

= c3 · exp

−∫ ‖r(t)‖2dt
σ 2
n

+

EQ2

M ‖X‖
2

σ 2
n

(
σ 2
n +

EQ3

M

)


(21)

where c2 and c3 are normalized constants that are negligible
in the following derivations, x = [x11, . . . , x1K , x21, . . . , xKK ]
is the output of a bank of matched filters and

‖X‖2=
K∑
p=1

K∑
q=1

|xpq|2 (22)

where

xpq =
∫

aHp rp(t)d
∗
pq(t)s

∗
q(t − τpq)dt (23)

It should be pointed out that the assumption of bq = wq
was applied in the above derivation, i.e., bHq wq = Q. This
implies that the beamforming direction is exactly pointing to
the desired target, and then the best detection can be achieved.

Therefore, the optimal detector of the hybrid distributed
MIMO radar in the Neyman-Pearson sense can be given by

T = ‖X‖2>
H1

<H0

δ (24)

where the threshold δ depends on the FA probability.
For MIMO radar, all the information of receive signal

should be considered together to achieve the optimal detec-
tion. However, as shown in (22) and (24), we only need to
send the output of a bank of matched filters to a ‘‘decision
module’’. In this way, the cost of the data transmission is not
very high.

B. DISTRIBUTION OF STATISTICS
In this sub-section, we further derive the distribution of
statistics based on the optimal detector expression given
by (24). To evaluate the best acheivable detection perfor-
mance, we assume that the effect of the Doppler frequency
shift is negligible or the Doppler frequency shift is perfectly
matched, i.e., dpq(t) = 1.

Under the null hypothesis,

xpq = aHp

∫
np(t)s∗q(t − τpq)dt = npq (25)

The noise is independent with the signal and np(t) is a zero-
mean complex Gaussian white noise with the variance of σ 2

n ,
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therfore, the output of matched filter npq is still a zero-mean
complex Gaussian white noise and, npq ∼ CN

(
0,Qσ 2

n
)
.

Under the alternative hypothesis,

xpq = Q2

√
E
M
· αpq

∫
sq(t − τpq)s∗q(t − τpq)dt

+aHp

∫
np(t)s∗q(t − τpq)dt

= Q2

√
E
M
· αpq + npq (26)

where
∫
sq(t − τpq)s∗q(t − τpq)dt = 1 is applied. As men-

tioned before, αpq is a zero-mean complex Gaussian random
variable, thus the output of matched filter npq is still a zero-

mean complex Gaussian and, xpq ∼ CN
(
0, Q

4E
M + Qσ

2
n

)
.

The optimal detetor statistics of the hybrid distributed
MIMO radar ‖X‖2 is the quadratic sum of K 2 independent
zero-mean, equal variance, complex Guassian random vari-
ables, thus its distribution can be given by

T = ‖X‖2∼


(
Q4E
2M
+
Qσ 2

n

2

)
· χ2

2K2 , H1 ;

Qσ 2
n

2
· χ2

2K2 , H0 ;

(27)

where χ2
d is the chi-square distribution with d degrees of

freedom.

C. DETECTION PERFORMANCE
In this sub-section, we will evaluate the performance of the
derived LRT detector of the hybrid distributed MIMO radar,
using two useful performance measures. One of these is the
Receiver Operating Characteristic (ROC) curve, another one
is the upper bound of the detection performance.

1) ROC CURVE
In the radar detection theory, the ROC curve is created by
plotting the probability of detection PD against the proba-
bility of false alarm PFA. Usually, the ROC curve represents
the inherent trade-off between sensitivity and specificity of
a detector. Based on (27), the probability of false alarm,
the threshold and the probability of detection of the hybrid
MIMO radar can be derived. Firstly, the probability of false
alarm is given by

PFA = Pr(T > δ|H0)

= Pr
(
Qσ 2

n

2
· χ2

2K2 > δ

)
= Pr

(
χ2
2K2 >

2δ
Qσ 2

n

)
(28)

where Pr(·) denotes the cumulative distribution function
(CDF) operator.

Further, we can get the threshold

δ =
Qσ 2

n

2
· F−1

χ2
2K2

(1− PrFA) (29)

where F−1
χ2
2K2

(·) denotes the inverse CDF of a chi-square ran-

dom variable with 2K 2 degrees of freedom [42]. Finally,
the probability of detection can be expressed as

PD = Pr(T > δ|H1)

= Pr
((

Q4E
2M
+
Qσ 2

n

2

)
χ2
2K2 > δ

)
= 1− Fχ2

2K2

(
2δ

Q4E/M + Qσ 2
n

)
(30)

According to (29), the ROC curve of the optimal detector
of the hybrid MIMO radar can be given by

PD = 1− Fχ2
2K2

(
1

Q3ρ/M + 1
· F−1

χ2
2K2

(1− PFA)
)

(31)

where ρ = E/σ 2
n represents the SNR level of the hybrid

MIMO radar, Fχ2
2K2

denotes the CDF of a chi-square random

variable with 2K 2 degrees of freedom. In the section V, ROC
curves with different system configurations and parameters
will be presented and further discussed.

2) UPPER BOUND OF THE DETECTION PERFORMANCE
Another measure of a detector is the upper bound of detec-
tion performances. To evaluate the detection performance
of the distributed MIMO radar, a index named ‘detector’s
SNR’, which is equivalent to the ‘divergence’ in [42], was
introduced in [26]. Using the concept of ‘detector’s SNR’,
the detection performances of the statistical MIMO radar,
traditional PA radar and multi-input single-output (MISO)
radar were presented and compared. Later, the concept of
relative entropy in the information theory was introduced
to measure the detection performance of the MIMO radar
in [27]. Since the ‘detector’s SNR’ can be seen as a spe-
cial case of the relative entropy in the Gaussian assump-
tion [27], hereafter we use the relative entropy to measure
the upper bound of the detection performance of the hybrid
MIMO radar.

According to the Stein lemma, the best achievable detec-
tion performance is bounded by the relative entropy that is
defined as [43]

D(P0‖P1) =
∫
P0(x) ·

P0(x)
P1(x)

dx (32)

where P0 and P1 are the probability density functions (PDF)
of the statistic under the null and alternative hypotheses,
respectively.

Based on (27), the upper bound of the detection perfor-
mance of the hybrid distributed MIMO radar can be given
by

DHM =

∫
0(K 2,Qσ 2

n ) · ln
(

0(K 2,Qσ 2
n )

0(K 2,Qσ 2
n + Q4E/M )

)
dt

= K 2
·

(
ln
(
1+

ρQ3

M

)
−

ρQ3

M + ρQ3

)
(33)

where 0(·, ·) denotes the Gamma distribution function,
the detailed derivation of (33) can be found in Appendix B.
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D. DISCUSSION
In this sub-section, we further discuss the derived opti-
mal detection theory of the hybrid distributed MIMO radar,
including its relationships with other radar systems, and its
effect on system configurations.

As previously mentioned, the hybrid distributed MIMO
radar serves as a compound of the distributed MIMO and
PA radars. Therefore, compared with the works in [25]–[27],
the derived optimal detector is a more general expression.
In some special cases, the derived optimal detector can
degrade into existing expressions for the distributed MIMO
and PA radars.

1) RELATIONSHIPS WITH OTHER RADAR SYSTEMS
If the number of sub-array K is decreased to 1, and Q = M ,
then the hybrid distributed MIMO radar will degrade into the
traditional PA radar. If the number of sub-arrayK is increased
toM , andQ = 1, then the hybrid distributedMIMO radar will
degrade into the traditional distributed MIMO radar.

The detailed discusstions can be seen in Appendix C.

2) EFFECT OF SNR ON DETECTION PERFORMANCES
As presented in (33), the relative entropy of the hybrid
distributed MIMO radar is related to the system SNR ρ.
Therefore, the effect of SNR on the best achievable detection
performance should be properly studied.

For the case of high SNR, i.e., ρ is very large, the relative
entropy of the hybrid distributed MIMO radar can be rewrit-
ten as

DHM = K 2
·

(
ln
(
1+

ρM2

K 3

)
− 1

)
(34)

whereM = K ×Q is applied. It can be seen that, in the high
SNR case, the optimal detection performance improves with
the increasement of the number of sub-arrays.

Similarly, for the case of low SNR, i.e., ρ is very small,
the relative entropy of the hybrid distributedMIMO radar can
be rewritten as

DHM ≈
1
2
·

(
M
K

)2

· ρ2 (35)

It can be seen that, on the contrary, the optimal detection
performance improves with the decrement of the number of
sub-arrays in the low SNR case.

These conclusions of the hybrid distributed MIMO radar
are also coincident with the results presented in [26], [27].
For high SNR, the distributed MIMO radar provides better
detection performance than the PA radar. In this case, even
though the PA radar can enjoy the coherent processing gain,
it may also encounter very low received power with non-
negligible probability due to the target fluctuation. On the
other hand, the distributed MIMO radar can be seen as plenty
of independent radar systems. Therefore, it can exploit spa-
tial diversity by viewing the target from different aspects to
overcome the target fluctuation. For low SNR, in contrast,
the PA radar provides better detection performance than the

distributed MIMO radar. In this case, the PA radar’s disad-
vantage becomes its advantage. When the transmitted power
is low, the PA radar may still achieve relative high received
power with nonnegligible probability, since the target is spa-
tially fluctuating. However, the distributed MIMO radar does
not enjoy this benefit.

In this paper, for the case of small number of sub-arrays,
the hybrid distributed MIMO radar tends to the traditional PA
radar configuration. In this case, the hybrid distributedMIMO
radar can achieve better detection performance for fluctuating
targets with low SNR. While for the case of larger number of
sub-arrays, the hybrid distributed MIMO radar tends to the
distributed MIMO radar configuration. Therefore, the hybrid
distributed MIMO radar system mainly enjoys the spatial
diversity gain, and achieves better detection performance for
fluctuating targets with high SNR.

IV. AMBIGUITY FUNCTION
As a useful theoretical tool, AF has been deeply studied
and widely applied in many radar fields, such as waveform
design, resolution measurement and system analysis. Up to
now, the AF expressions have been extended for MIMO radar
systems in [30]–[35]. Even though there are many different
definitions of MIMO radar, the most popular and acceptable
one is asscociated with the optimal detection concept and
the matched filter theory. In this paper, without the loss of
generality, we derive the AF of the hybrid distributed MIMO
radar based on the above derived optimal detector.

A. AF DEFINITION OF THE HYBRID DISTRIBUTED MIMO
RADAR
As given by (22), the optimal detector of the hybrid dis-
tributed MIMO radar is the square summation of the output
of a bank of matched filters, and the output of arbitrary one
matched filter is given by (23). In the following derivation,
we assume that the received signal is associated with a point
target (the ideal target) with the status parameter 2 and,
the matched filter is associated with another point target (the
real target) with the status parameter2′. Omitting the negli-
gible magnitude term and noise term, the output of arbitrary
one matched filter can be written as (36), as shown at the
bottom of the next page, where αpq = 1 is applied, i.e., the
ideal point target is assumed in the derivation.

Letting that 1τpq(2,2′) = τpq(2) − τpq(2′) and
1fd,pq(2,2′) = fd,pq(2) − fd,pq(2′), the integration term
in the last step in (36) can be rewritten as the well-known
Woodward’s AF

χpq(1τpq,1fd,pq)=
∫
sq(t)s∗q(t−1τpq)· exp

[
j2π1fd,pqt

]
dt

(37)

and (36) can be rewritten as

xpq(2,2′)=aHp (2
′)ap(2)bHq (2)wq(2′)χpq(1τpq,1fd,pq)

(38)
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According to the derived optimal detector presented
in (22), the AF of the hybrid distributed MIMO radar is
defined as the square summation of the output of matched
filter that is associated with the ‘pure’ signal.

χHM (2,2′)

=

K∑
p=1

K∑
q=1

|xpq(2,2′)|2

=

K∑
p=1

K∑
q=1

|aHp (2
′)ap(2)|2|bHq (2)wq(2′)|2|χpq(1τpq,1fd,pq)|2

(39)

where the first term |aHp (2
′)ap(2)|2 and the second term

|bHq (2)wq(2′)|2 denote the phase shift information associ-
ated to the relative target position and motion for the cor-
responding receiver and transmitter sub-arrays, respectively.
Since each sub-array in the hybrid distributed MIMO radar
operates with the PAmode, the first term and the second term
in (39) also represent the receive coherent processing gain
and the transmit coherent processing gain, respectively. The
last term |χpq(1τpq,1fd,pq)|2, denoting the auto-correlation
of the transmitted waveforms with the time delay error and
Doppler shift, is the traditional Woodward’s AF for the
bistatic radar configuration.

B. RELATIONSHIPS WITH OTHER SYSTEMS
It can be found from (39) that the hybrid distributed MIMO
radar AF is a non-coherent summation of the bistatic PA
radar AF. This expression reflects the unique system config-
uration of the hybrid MIMO radar. As a whole, the hybrid
distributed MIMO radar is a distributed MIMO radar, while
from the local viewpoint, each sub-array of the hybrid dis-
tributed MIMO radar is a relative small PA radars. Therefore,
the hybrid distributed MIMO radar AF given in (39) serves
as a general AF definition for different radar configurations.

If the number of sub-array K is decreased to 1, and Q =
M , then the hybrid distributed MIMO radar will degrade
into traditional PA radar. In this case, the hybrid distributed
MIMO radar AF can be rewritten as

χPA(2,2′)=|aH (2′)a(2)|2|bH (2)w(2′)|2|χ (1τ,1fd )|2

(40)

where a is the receiver steering vector, b is the transmitter
steering vector, and w is the beamforming weight vector of

the PA radar, respectively, and |χ (1τ,1fd )|2 is the traditional
narrow-band Woodward’s AF. In this case, the target is usu-
ally assumed to be in the far field, and the relative geometry
between transceivers and the target can be described using
the azimuth and elevation angles. Accordingly, the degraded
AF expression shown in (40) is consistent with the one form
defined in [4], [18] and [21].

If the number of sub-array K is increased toM , andQ = 1,
then the hybrid distributed MIMO radar will degrade into the
distributed MIMO radar. In this case, the hybrid distributed
MIMO radar AF can be rewritten as

χMIMO(2,2′)

=

M∑
j=1

M∑
i=1

|aHj (2
′)aj(2)|2|bHi (2)bi(2′)|2|χji(2,2′)|2

(41)

where a and b have been defined in Section II, and
|χji(2,2′)|2 is the traditional delay-Doppler AF between
the ith transmitting element and the jth receiving element.
It should be pointed out that theMIMO radar AF given in (41)
is consistent with the one developed in [38]. It can be seen that
the MIMO radar AF given in (41) takes into account not only
the effect of waveforms, but also that of the system geometry
configuration.

V. NUMERICAL EXAMPLES
In this section, we present several numerical results asso-
ciated with the derived theoretical work and validate the
effectiveness of the proposed hybrid distributedMIMO radar.

A. DETECTION EXAMPLES
Here we mainly focus on the optimal detection of a fluctuat-
ing target with the spatial Swerling-I model [40]. According
to (31), for the hybrid distributed MIMO radar, the prob-
ability of detection is a function of the system configura-
tion, SNR and the probability of false alarm (PFA). In the
first example, given that PFA is fixed as 10−6, we study the
probability of detection (PD) of the hybrid distributed MIMO
radar with different system configurations versus SNR. Here,
we assume that the total number of elements M = 16,
and the number of sub-arrays is K = [1, 2, 4, 8, 16]. Note
that the hybrid distributed MIMO radar degrades into the
traditional PA radar and distributedMIMO radar whenK = 1
and K = 16, respectively. The calculated PD of the hybrid
distributed MIMO radar versus SNR using (31) is shown

xpq(2,2′) =
∫

aHp (2
′)rp(t,2)d∗pq(t,2

′)s∗q(t − τpq(2
′))dt

=

∫
aHp (2

′) exp
[
−j2π fd,pq(2′)t

]
s∗q(t − τpq(2

′)) ·
K∑
q=1

ap(2)bHq (2)wq(2′) exp
[
j2π fd,pq(2)t

]
sq(t − τpq(2))dt

= aHp (2
′)ap(2)bHq (2)wq(2′) ·

∫
sq(t − τpq(2))s∗q(t − τpq(2

′)) · exp
[
j2π

(
fd,pq(2)− fd,pq(2′)

)
t
]
dt (36)
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FIGURE 2. The probability of detection of the hybrid distributed MIMO
radar with different configurations VS. SNR. The total number of elements
M = 16 and the probability of false alarm PFA = 10−6.

in Fig.2. It can be found from this figure that, except for
the low SNR region (smaller than −5.60 dB) where the PA
radar achieves the highest PD, the hybrid distributed MIMO
radar benefits from the best detection performance. Note that
the hybrid distributed MIMO radar with higher number of
sub-arrays requires higher SNRs to achieve good detection
performance. When the SNR is larger than 9.52dB, the PD of
the distributed MIMO radar (largest number of sub-arrays)
becomes to outperform that of the PA radar. The reason for
this is that, as presented in section III and [26], for the case
of high SNR, the hybrid distributed MIMO radar with more
number of sub-arrays can exploit more spatial diversity gains
to achieve better detection performance. This will be further
validated by the third example.

In our second example, we present ROC curves of the
hybrid distributed MIMO radar. In this example, the total
number of elements M is still chosen as 16, the number of
sub-arrays K is fixed to be 4, and the SNR is chosen to
be 0 dB. Fig.3 depicts the ROC curves of the hybrid MIMO
radar with this particular system configuration. Meanwhile,
the ROC curves of the PA radar (K = 1) and the distributed
MIMO radar (K = 16) are presented, as well. It can be seen
from this figure that the hybrid distributed MIMO radar is
the best system to detect fluctuating targets over both the
PA and distributed MIMO radars for most cases. Only when
PFA < 4 × 10−10, the PA radar enjoys higher PD than the
hybrid distributed MIMO radar.

The third example is conducted to show the best achievable
detection performance of the hybrid distributed MIMO radar
using relative entropy. According to (33), the relative entropy
is only related to the system configuration and SNR. Here,
the system configuration set of this example is the same as
that of the first example, and the SNR varies from−20 dB to
20 dB. Fig.4 depicts the generated relative entropy. We can
see from this figure that, the hybrid distributed MIMO radar
enjoys the best detection performance for most SNR cases,
while the PA radar is the optimal system for very low SNR
(lower than −11.30 dB) and the distributed MIMO radar is

FIGURE 3. The ROC curves of the hybrid distributed MIMO radar (M = 16
and K = 4), the PA radar (M = 16 and K = 1) and the distributed MIMO
radar (M = 16 and K = 16), respectively. The SNR is set to be 0dB.

FIGURE 4. The Relative Entropy of the hybrid distributed MIMO radar
with different configurations VS. SNR. The total number of elements M is
set to be 16.

the best system for very high SNR (higher than 15.8dB). Note
that, again, with the increase of SNR, the hybrid distributed
MIMO radar with more number of sub-arrays provides better
detection performance. This result is in accordance with the
expectation. According to section III and [26], for the case
of high SNR, it is better to use the hybrid distributed MIMO
radar with more number of sub-arrays, while for the case of
low SNR, it is better to use the hybrid configuration with less
number of sub-arrays.

B. AMBIGUITY FUNCTION
Here we present the numerically generated AFs for the pro-
posed hybrid distributed MIMO radar and also present com-
parisons to the PA and distributed MIMO radars. According
to the developed AF definition, the AF of the hybrid dis-
tributed MIMO radar depends on the system configuration,
transmitted waveform and target’s status parameter. There-
fore, in this paper, instead of presenting many AF examples
for different cases, we present one typical hybridMIMO radar
AF example to show its unique resolution performance.
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FIGURE 5. One realization of the system configurations of the hybrid
distributed MIMO radar.

TABLE 1. Waveform parameters.

For the hybrid distributed MIMO radar, the total number
of elements is selected to be 100, the number of sub-arrays
is set to be 4, each sub-array is with 5 × 5 elements, and
these sub-arrays are randomly distributed in a disk with a
radius 5000m. Fig.5 illustrates one realization of this system
configuration assumption. The frequency division multiple
access (FDMA) waveforms are used in the simulation. Each
sub-array transmits a train of Linear Frequency Modulation
(LFM) pulses with different carrier frequencies. The specific
parameters of the train of chirp pulses, as listed in the Table 1,
are chosen to be the same as that used in [32]. The pulse
number is 5, the pulse duration is 5µs, the bandwidth is
50MHz, and the pulse repetition frequency (PRF) is 10KHz.
Accordingly, the chirp rate is 1×1013Hz/s, and the time-
bandwidth product is 250. The carrier frequency of each of
four sub-arrays is set to be 9.95 GHz, 10.00GHz, 10.05GHz,
and 10.10GHz, respectively.

Correspondingly, for the PA radar, the system configura-
tion is set to be 10 × 10 elements, and the central posi-
tion is located at the origin of the disk. The PA radar only
needs one waveform, and thus the carrier frequency is set to
be 10GHz, other parameters are set to be the same as before.
For the distributed MIMO radar, 100 elements are assumed
to be randomly located in the disk with radius 5000m. How-
ever, the generation of 100 OFDM waveforms is practically
difficult and unnecessary for the calculation the distributed
MIMO radar AF using (41). Here, for the sake of simplicity,
we assume that each element transmit the same waveform as
the PA radar and calculate the corresponding AFs.

FIGURE 6. The Monte Carlo AFs of the Hybrid distributed MIMO radar,
the PA radar and the distributed MIMO radar VS. position deviation along
(a) X axis, (b) Y axis and (c) Z axis. For the hybrid distributed MIMO radar,
the total number of elements is selected to be 100, the number of
sub-arrays is set to be 4, each sub-array is with 5× 5 elements, and these
sub-arrays with are randomly distributed in a disk with a radius 5000m.
The motionless target is assumed to be located at [0m,0m,10000m]T .

Firstly, we consider a motionless target case, where the
ideal target is located at [0m,0m,10000m]T and, the position
parameter of the real target is chosen to be varying in the
vicinity of that of the ideal target. In this case, the Doppler
effect can be ignored, and only the position resolution is
considered. Fig.6 depicts the numerical results. Note that,
since the sub-arrays of the hybrid distributedMIMO radar are

VOLUME 7, 2019 160795



Q. Zhang et al.: Optimal Detection and AF of Hybrid Distributed MIMO Radar

FIGURE 7. The Monte Carlo AFs of the Hybrid distributed MIMO radar,
the PA radar and the distributed MIMO radar VS. velocity deviation along
(a) X axis, (b) Y axis and (c) Z axis. For the hybrid distributed MIMO radar,
the total number of elements is selected to be 100, the number of
sub-arrays is set to be 4, each sub-array is with 5× 5 elements, and these
sub-arrays with are randomly distributed in a disk with a radius 5000m.
The target is assumed to be located at [0m,0m,10000m]T with velocity
[10m/s,10m/s,100m/s]T .

assumed to be randomly located, the AFs shown in Fig.6 are
the Monte Carlo result (100 times). Similarly, the distributed
MIMO radar AFs are also the Monte Carlo results. It can
be seen from this figure that the hybrid distributed MIMO
radar can achieve much better position resolution than the
PA radar, and the advantage mainly appears along the X-axis
and Y-axis. Moreover, it can also be found that the hybrid

MIMO radar provides a close position resolution as compared
with the distributed MIMO radar. The main advantage of the
hybrid distributed MIMO radar over the distributed MIMO
radar is that much less orthogonal waveforms are needed.
This will remarkably enhance the possibility of the engineer-
ing realization.

Secondly, we consider a moving target case, where the
location is still fixed to be [0m,0m,10000m]T for both the
ideal and real targets. The velocity parameter of the ideal
target is set to be [10m/s,10m/s,100m/s]T , and the veloc-
ity parameter of the real target is chosen to be varying in
the vicinity of this value. The numerical results are shown
in Fig.7. It can be seen from this figure that, the hybrid
distributed MIMO radar can be able to provide a close 3-
dimensional velocity resolution as compared with the dis-
tributed MIMO radar, while the PA radar can only resolve
the radial velocity.

It is worth noting that to reduce the grating lobe phe-
nomenon, the sub-arrays are randomly located in the simu-
lations of Fig.6 and Fig.7. However, the derived ambiguity
function of the hybrid distributed MIMO radar takes into
account not only the effect of waveforms, but also that of the
system geometry configuration. Therefore, if an optimized
objective (cost function) is properly selected, there should
be optimal positions to locate the sub-arrays. The detailed
discussion of this issue is beyond the scope of this paper. This
will be the research point in the next step.

Overall, as compared with the PA radar, the hybrid dis-
tributed MIMO radar can provide much better resolution
both on position and velocity. While, as compared with the
distributed MIMO radar, the hybrid MIMO radar can provide
a close resolution using much less orthogonal waveforms.

VI. CONCLUSION
In this paper, a novel radar concept named hybrid distributed
MIMO radar is proposed. The proposed hybrid distributed
MIMO radar brings together the distributed MIMO radar
concept and the phased array radar one, and thus it might be
able to provide wide surveillance coverage, long dwell time,
spatial diversity gains, and high resolution. As the first stage
of studying the target detection and localization problems for
hybrid distributed MIMO radar, this paper focuses on the
issues of optimal detection and ambiguity function. Taking
into account of the specific system configuration, the signal
model of the hybrid distributed MIMO radar is re-derived
using spatial Swerling-I target model. Then the optimal detec-
tor in the Neyman-Pearson sense is developed and the detec-
tion performance is evaluated. Furthermore, the AF of the
hybrid distributed MIMO radar is developed. It is shown that
the hybrid distributedMIMO radar AF is a general expression
for the traditionalMIMO radar and the PA radar. At last, some
relevant numerical examples are presented. It is demonstrated
that the hybrid distributed MIMO radar is capable to provide
better detection performance of fluctuating targets than the
PA and MIMO radars in many cases. Moreover, it is also
shown that the hybrid distributed MIMO radar can provide
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much better resolution both on position and velocity than
the PA radar, and provide a close resolution, as compared
with the distributed MIMO radar, using much less orthogonal
waveforms. Theoretical results and numerical examples show
that the proposed hybrid distributed MIMO radar is a promis-
ing technique. The next step of this research is to conduct
the localization algorithm development and corresponding
signal-level simulations.

APPENDIX
A. DERIVATION OF EQ.(21)
In this sub-section, we present the derivation of the likelihood
functions of r(t) under the alternative hypothesis for the
hybrid distributed MIMO radar, given in (42), as shown at
the bottom of this page, where bHq wq = Q was assumed in
the derivation, and c′ is a negligible constant.
It should be pointed out that the integration term in the last

line of (42) is a constant. Therefore, we can get

f (r(t)|H1)=c3 · exp

−∫ ‖r(t)‖2dt
σ 2
n

+

EQ2

M ‖X‖
2

σ 2
n

(
σ 2
n +

EQ3

M

)
 (43)

where c3 is a normalized constant that are ignored in the
following derivations, x = [x11, . . . , x1K , x21, . . . , xKK ] is
the output of a bank of matched filters and

xpq =
∫

aHp rp(t)d
∗
pq(t)s

∗
q(t − τpq)dt (44)

B. DERIVATION OF EQ.(33)
In this sub-section, we present the derivation of the relative
entropy of the hybrid distributed MIMO radar, given in (45),
as shown at the bottom of this page, where ρ = E/σ 2

n is the
SNR of the hybrid MIMO radar.

C. RELATIONSHIPS WITH OTHER RADAR SYSTEMS
If the number of sub-array K is decreased to 1, and Q = M ,
then the hybrid distributed MIMO radar will degrade into the
traditional PA radar. In this case, the distribution of statistics,
ROC, and the relative entropy of the hybrid MIMO radar can
be rewritten as

T = ‖X‖2∼


(
Q3E
2
+

Mσ 2n
2

)
· χ2

2 , H1 ;

Mσ 2
n

2
· χ2

2 , H0 ;

(46)

PD = 1− Fχ2
2

(
1

M2ρ + 1
· F−1

χ2
2
(1− PFA)

)
(47)

DHM = ln
(
1+ ρM2

)
−

ρM2

1+M2 (48)

If the number of sub-array K is increased toM , andQ = 1,
then the hybrid distributed MIMO radar will degrade into the
traditional distributed MIMO radar. In this case, the distribu-
tion of statistics, ROC, and the relative entropy of the hybrid

f (r(t)|H1) =

∫
f (r(t)|H1,α) p(α)dα

=

∫
c′ · exp

− 1
σ 2
n

∫ K∑
p=1

‖rp(t)−

√
E
M
Q

K∑
q=1

αpqapdpqsq(t − τpq)‖2dt

 · exp [−‖α‖2] dα
= c′ exp

[
−

∫
‖r(t)‖2dt
σ 2
n

]
·

∫
exp

[
−

1
σ 2
n

(
−

√
E
M
QXHα −

√
E
M
QαHX+

EQ3

M
‖α‖2

)]
· exp

[
−‖α‖2

]
dα

= c′ exp

−∫ ‖r(t)‖2dt
σ 2
n

+

EQ2

M ‖X‖
2

σ 2
n

(
σ 2
n +

EQ3

M

)
 · ∫ exp

− 1
σ 2
n

∥∥∥∥∥∥
√
σ 2
n +

EQ3

M
α −

√
E
MQ√

σ 2
n +

EQ3

M

X

∥∥∥∥∥∥
2 dα (42)

DHM =

∫
0(K 2,Qσ 2

n ) · ln
(

0(K 2,Qσ 2
n )

0(K 2,Q2σ 2
n + Q4E/M )

)
dx

=

∫
0(K 2,Qσ 2

n ) · ln


(
Qσ 2

n
)−K2

· exp
[
−
(
Qσ 2

n
)−x]

(
Qσ 2

n + Q4E/M
)−K2

· exp
[
−
(
Qσ 2

n + Q4E/M
)−x]

 dx

= K 2 ln
(
Qσ 2

n + Q
4E/M

Qσ 2
n

)
·

∫
0(K 2,Qσ 2

n )dx +
(

1
Qσ 2

n + Q4E/M
−

1
Qσ 2

n

)
·

∫
x0(K 2,Qσ 2

n )dx

= K 2 ln
(
Qσ 2

n + Q
4E/M

Qσ 2
n

)
+

(
1

Qσ 2
n + Q4E/M

−
1

Qσ 2
n

)
· K 2Qσ 2

n

= K 2
·

(
ln
(
1+

ρQ3

M

)
−

ρQ3

M + ρQ3

)
(45)
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MIMO radar can be rewritten as

T = ‖X‖2∼


(
E
2M
+

σ 2n
2

)
· χ2

2M2 , H1 ;

σ 2
n

2
· χ2

2M2 , H0 ;

(49)

PD = 1− Fχ2
2M2

(
1

ρ/M + 1
· F−1

χ2
2M2

(1− PFA)
)

(50)

DHM = M2
·

(
ln (1+ ρ/M)−

ρ

M + ρ

)
(51)

It should be noted that the above expressions are coinci-
dent with corresponding results presented in [26], [27]. This
indirectly proves the correctness of the results derived in this
paper.
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