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ABSTRACT Code reuse has been perceived to be an effective tool for user interface development that is
known to be complex and messy. A fundamental problem in user interface code reuse is how to effectively
retrieve working code from existing code repositories, which renders functional interfaces similar to a
programmer’s input sketch. Existing generic code retrieval techniques are normally inadequate for user
interface code due to its associated visual information. In this paper, we put forward a novel approach
that retrieves matching candidate code of an interface sketch based on their visual-representation trees.
To better capture sub-region similarities, we propose to decompose a visual-representation tree into an
ordered list of paths (or sequences). We then devise a novel algorithm to measure the similarity between two
sequences by leveraging various visual information and another algorithm to calculate the similarity of two
ordered lists by considering the relative positions of different widgets. To evaluate our solution, we carefully
design an experiment to generate the similarity scores of 6,750 user interface pairs based on real users’
judgement. Based on this ground truth, we show that our method is able to generate accurate similarity
scores, outperforming several state-of-the-art competitors.

INDEX TERMS User interface code retrieval, visual-representation tree, tree matching, sequence matching.

I. INTRODUCTION
Code reuse refers to the concept of leveraging existing sec-
tions of code, templates, functions, and procedures to build
new software. With the upsurge in the open-source software
movement, code reuse has been an important and active
research area, and various code reuse techniques have been
proven to be effective tools to speed up software development
and/or improve code quality. Code reuse is particularly useful
for user interface development, which is indispensable to
today’s applications.

User interface development is known to be complex and
messy [1], [2]. It typically involves understanding com-
plicated widgets, building multiple prototypes, realizing
dynamic user interactions and generating enormous test
cases [3]. The resultant code is often redundant, bug-ridden,
and difficult to maintain. It is thus desirable to have a pow-
erful (semi-)automated tool for programmers to efficiently
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generate high-quality functional user interfaces from a sketch
(e.g., a picture, an SVG file or an XUL file) by making
use of the existing code repositories (e.g., GitHub and Black
Duck Open Hub), which contain a huge amount of lines
of well-maintained code. The key challenge here is how to
retrieve working code that renders similar interfaces so that
the programmers can easily judge its usefulness and make
slight modifications to match the sketch.

There has been some research on code retrieval in more
general cases [4]–[6]. Unfortunately, such techniques do not
fit user interface code well. This is because user interface
code, compared with generic code, has the following unique
characteristics. First, user interface code can normally be
represented by a tree structure, which encodes the visual
hierarchical relationship of UI components (see Figure 1 for
an example of a user interface, its code snippet and the corre-
sponding tree structure).We call such a tree structure a visual-
representation tree. In contrast, while it is possible to extract
some tree structures, for example, the abstract syntax tree
(AST) [7], from generic code, they encode code’s semantic
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FIGURE 1. A user interface, its corresponding code and the visual-representation tree. In the visual-representation tree, the ‘‘V’’ label of an internal node
indicates that its children are organized in a vertical layout, and the numbers in the leaf nodes indicate the indexes of the widgets they represent.

structure, not its visual representation information. Second,
user interface code is written to render a visual user interface.
Intuitively the usability of returned candidate code is often
judged based on its visual representation by a programmer,
without knowing the exact underlying code logic. Making
use of this fact can largely improve the performance of user
interface code retrieval.

To our best knowledge, the only method tailored to user
interface code retrieval is the ad-hoc rule-based method
[1], [2]. The general idea is to first collect candidate code
by using a set of keywords that are provided by users and
then validate the candidates by a rule-based tree matching
algorithm. There are at least two observable limitations of
this approach. First, while keywords provide an effective way
to narrow down the search space, identifying the appropriate
keywords requires much trial and error, and keyword-based
retrieval generally cannot provide the fine-granularity capa-
bility to examine candidate code. Second, the rules used
are ad-hoc in essence (e.g., every user-specified component
has to be matched with a UI widget). The resulting scores
are not well justified and do not necessarily reflect one’s
intuition. Our experiments also confirm that this ad-hoc
method is often unable to achieve reasonable performance
in practice. In this paper, we put forward a novel algorithm
for effective user interface code retrieval by addressing the
two aforementioned unique characteristics. Our insight is to
match candidate code with the sketch directly based on their
visual-representation trees, which effectively bypasses the
bottleneck of keyword-based search. However, designing an
effective treematching algorithm that takes into consideration
the visual representation is a challenging task for several
reasons. First, the final visual effects and tree structures
often do not have ‘‘one-to-one correspondence’’. Consider
the examples given in Figure 2. The tree structures of the

FIGURE 2. Several sample user interfaces and their visual-representation
trees, where ‘‘V’’ indicates a vertical layout and ‘‘H’’ a horizontal layout.
For example, in (a) the user interface is vertically divided into the upper
region containing widget 1 and the lower region containing widgets
2 and 3; the lower region has a horizontal layout between widgets
2 and 3.

four interfaces in Figure 2(a)-(d) are identical, but their lay-
outs are substantially different. In contrast, the tree struc-
tures of the interfaces in Figure 2(c) and (e) or the ones in
Figure 2(d) and (f) are very different, but the visual effects are
similar. Second, user interface code retrieval often does not
expect a global match, which is an unlikely event in reality.
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A user might provide an incomplete sketch or an initial
idea for code retrieval. Having a highly similar and reusable
sub-region is also desirable for code reuse. Third, not only
the tree structure of user interface code but also the attributes
of tree nodes play an important role in determining the sim-
ilarity between the sketch and candidate code. For example,
the relative sizes of different UI widgets largely affect a user’s
perception of a user interface. For these reasons, traditional
tree matching algorithms [8]–[10] are generally not suitable
for our purpose.

The focus of this paper is then to design a novel tree
matching algorithm that considers both the tree structure and
the visual representation information for user interface code
retrieval. We summarize our key technical contributions as
follows.

• We put forward a novel visual-representation-aware
solution for user interface code retrieval, which well
addresses the peculiarities of user interface code.
To bypass the bottleneck of keyword-based code search,
as used in the existing research, we propose to use a
visual-representation tree based approach.

• We propose to decompose a visual-representation tree
into an ordered list of paths, which gives the flexibility
of identifying similar sub-regions and better efficiency.
We then devise a novel algorithm to compare the sim-
ilarity of two sequences by leveraging various visual
information and another algorithm to calculate the sim-
ilarity between two ordered lists of paths, which takes
into consideration the relative positions of different UI
widgets in the original interfaces.

• Since there is no standard dataset available for evalu-
ating user interface code retrieval, we perform a care-
fully designed experiment to collect a ground truth test
set, which requires non-trivial efforts. We make this
dataset public to facilitate the research on user interface
code retrieval and relevant fields. Based on the ground
truth, we compare our method with a few state-of-the-
art methods, including the only existing method for user
interface code retrieval, and show the superiority of our
solution.

The rest of our paper is organized as follows. We pro-
vide a literature review in Section II. In Section III, we dis-
cuss the details of our solution. Section IV presents an
experimental study to demonstrate the effectiveness of our
approach. Finally, we conclude the paper in Section V.

II. RELATED WORK
In this section, we review the literature in several relevant
fields, including code retrieval, tree matching and sequence
matching.

A. CODE RETRIEVAL
Code retrieval is one of the fundamental directions in code
reuse research. Most studies focus on generic code retrieval.
Early works [11], [12] typically adopt keyword-based

approaches, which retrieve candidate code by matching the
input keywords. In view of the limitations of keyword-based
methods, Ye and Fischer [13], [14] present a system called
CodeBroker that uses developers’ partially written programs
as implicit queries for code retrieval. Chien and Chien [15]
propose to retrieve software code by using natural language
processing (NLP) to identify the variation points (VPs) and
components from software product lines. The similarity of
code is then computed by weighting the similarity of VPs
and components.Wang et al. [16] develop a specialized graph
query language that allows users to specify both free-form
topics and complex dependence relations. Based on this
language, a semantic dependence search engine is designed
to retrieve code snippets which are represented by System
Dependence Graphs (SDGs).

In recent years, code retrieval has been widely used in
code clone detection, an important problem for software
maintenance and evolution. Roy and Cordy [17] categorize
the existing works on code clone detection into four clone
types based on the extent of code similarity. The first three
types mainly focus on textual similarity whereas the last type
considers functional similarity. Some representative works
along this line include [4], [18]–[21]. Ducasse et al. [18]
propose a language independent approach based on a sim-
ple string matching method which directly compares source
code. Li et al. [19] develop a token-based code clone detec-
tion tool called CP-Miner, which treats each line of the source
code as a collection of segments to construct a sequence and
utilizes frequent subsequence mining techniques to detect
duplicate segments. Jiang et al. [20] present an efficient tree
similarity algorithm called DECKARD. It represents source
code as trees which can be subdivided into subtrees with
numerical vectors and clusters these vectors to compute sim-
ilarity. Chen et al. [21] make use of a geometry characteris-
tic of dependency graphs to measure the similarity between
code fragments of two different applications. White et al. [4]
propose to use recurrent neural networks (RNNs) to encode
source code in the lexical level and construct abstract syntax
trees (ASTs) in the syntactic level, and combine these two
levels of information to detect code clone.

All the above methods are designed for generic code and
in general do not address the particularities of user interface
code well. In contrast, our solution is tailored to user interface
code retrieval with an emphasis on the visual effects rendered
by code.

B. TREE MATCHING
Since we propose to match candidate code with a sketch
by comparing their visual-representation trees, we review
existing tree matching algorithms. There have been some
well-established general-purpose tree matching algorithms.
Zhang and Shasha [8] consider the problem of calculating
the similarity of two trees by the edit distance. They propose
a simple dynamic programming algorithm which achieves
better time and space complexity. The idea is to consider the
distance between two ordered forests and carefully eliminate
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certain subtree-to-subtree distance calculations. Another line
of research studies the tree inclusion problem: Given two
ordered labelled trees S and T , how can S be obtained from
T by deleting nodes? Kilpeläinen and Mannila [9] develop
the idea of left embeddings as the basic algorithm and fur-
ther improve it by maintaining a table which stores interme-
diate computation results. Bille and Gørtz [10] present an
algorithm that improves the best known time complexities
with only linear space. The main idea is to construct a data
structure on a tree supporting a small number of procedures
on subsets of nodes of the tree. All such general-purpose
algorithms do not consider the visual effects associated with
a visual-representation tree and thus cannot provide similar-
ity scores that are consistent with programmers’ perception.
In Section IV, we experimentally demonstrate the superiority
of our solution over a general-purpose algorithm.

To our best knowledge, the only tree matching algo-
rithm customized for user interface code is the rule-based
method [1], [2]. However, as explained before, this algorithm
is ad-hoc and does not work well in practice.

C. SEQUENCE MATCHING
An important piece of our solution is pairwise comparison
of tree paths. A tree path is essentially a sequence. A variety
of classic sequence (or string) matching metrics have been
proposed, including the Euler distance, Manhattan distance,
Markov distance, and Chebyshev distance. We refer the inter-
ested readers to Chapter 2 in [22] for more details of these
metrics. The similarity of sequences can also be calculated
using the Pearson correlation coefficient or cotangent similar-
ity. Later, Levenshtein [23] proposes the Levenshtein distance
method for strings. It measures the difference of two strings
by calculating the minimum number of single-character edits
(i.e., insertions, deletions or substitutions) required to transfer
a string to another string.

Another line of studies makes use of features extracted
from sequences to compare their similarity. Hirschberg [24]
proposes to use the longest common subsequence (LCS) of
two sequences to compute the similarity. In a more recent
study, Tsai [25] researches a variant of the LCS problem
called the constrained longest common subsequence prob-
lem. Given strings S1, S2 and P, the constrained longest
common subsequence problem for S1 and S2 with respect
to P is to find the longest common subsequence lcs of S1
and S2 such that P is a subsequence of lcs. Wang [26]
argues that the LCS measure ignores information contained
in the second, third, . . ., longest subsequences and suggests
to use the number of all common subsequences (ACSs) as
a measure of sequence similarity. Yang et al. [27] studies
the multiple longest common subsequence (MLCS) problem
which aims to find the longest common subsequences of 3
or more sequences. They formulate the MLCS problem into
a graph search problem and present two space-efficient any-
time MLCS algorithms.

Lin et al. [28] propose to represent trees as multidimen-
sional sequences and measure their similarity on the basis of

their sequence representations. Different sequence similarity
measures, including all common subsequences, the longest
common subsequence and dynamic time warping, are com-
bined to evaluate tree similarity. While sharing a similar
idea of representing a tree by multiple sequences, our solu-
tion differs from this approach in a fundamental way. This
approach is developed to purely compute the structure sim-
ilarity of trees. In contrast, our method distinguishes itself
by novel techniques to quantify the similarity in terms of
visual representation. None of the aforementioned sequence
structure similarity measures are used in our solution. We do
not see any feasible way to extend the approach in [28] to
handle visual information. We consider this approach as a
competitor in our experimental evaluation. As suggested by
the experimental results, considering visual information is
key to user interface code retrieval.

Similarly, all existing sequence matching algorithms focus
onmerely structural matching and ignore the visual represen-
tation implied by such structures. In this paper, we present a
new sequence matching algorithm that fully leverages visual
representation information, which is more effective for user
interface code, as shown in our experiments.

III. OUR USER INTERFACE CODE RETRIEVAL SOLUTION
In the section, we present our novel visual-representation-
aware user interface code retrieval solution. As explained
before, the crux boils down to an effective tree matching
algorithm tailored to user interface code. In what follows,
we describe our solution in detail.

A. CREATE SEQUENCE REPRESENTATION
The first step of our solution is to convert an input sketch and
candidate code into visual-representation trees that encode
sufficient visual information for subsequent comparisons.
While this is not our paper’s focus, we discuss it below for
the reason of completeness.

To convert an input sketch into a visual-representation
tree, we adapt the pix2code model [29] to automatically
extract its code structure. To train our model, it first requires
a large number of labeled sketches and the corresponding
user interface code. In our case, we crawl GitHub to obtain
user interface code and generate their user interfaces as
sketches. We manually label the types and positions of UI
elements in each sketch. We can then train a CNN model
(i.e., VGGNet) to learn the types and positions of UI ele-
ments from a given sketch. The output of the CNN model
only indicates the leaf nodes of the visual-representation
tree. We need to train another seq2seq network to recover
the internal nodes of the visual-representation tree. We first
construct a node sequence from the output of the CNN
model based on their positions. For this sketch’s code,
we construct a visual-representation tree and generate its
node sequence using depth-first search. These two sequences
will be fed into the seq2seq network as input and output,
respectively. By using these two models, we can generate the
visual-representation tree from a sketch. We note that while
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this approach is able to generate a high-quality tree for our
purpose, it is, unfortunately, not sufficient to produce either
fully functional code or production-level code. For example,
it can neither leverage various UI design patterns nor pass the
various types of testings required for production [3].

Converting candidate code into a visual-representation
tree is relatively easy. We adapt existing Python libraries
to parse candidate code and build the corresponding
visual-representation tree.

The nodes of a visual-representation tree fall into two
categories: A leaf node represents a widget (e.g., a button,
a seek bar or a text view) in the interface. A non-leaf node
does not correspond to a particular widget and is not directly
visible to users. It can be viewed as a container which contains
widgets or other containers. It normally controls the layout
orientation of its children.

To capture adequate visual information in a visual-
representation tree, we extract some visual-related attributes
and record them in the nodes. For a non-leaf node, we record
the layout orientation of its children, which is either vertical
or horizontal, and the number of its children. We consider the
layout orientation because it plays an important role in the
visual effects. For a leaf node, we record its type and size. For
example, an Android application’s user interface can contain
the following UI element types: Button, ImageButton, Float-
ingActionButton, AutoCompleteTextView, EditText, Check-
Box, RadioButton, ToggleButton, Switch, Spinner, SeekBar,
DatePicker, TimePicker, TextView, ImageView, VideoView,
ProgressBar, and RatingBar, among others. We consider the
size of widgets because perceptually users are most sensitive
to the size of two objects. When the difference of sizes is
large, it will affect users’ judgment of similarity.

After obtaining a visual-representation tree, we decompose
it into an ordered list of root-to-leaf paths, based on which
the similarity of trees is calculated. The benefits are twofold:
(1) Comparing the similarity at the sequence level provides
the flexibility of identifying similar sub-regions. For user
interface code, reusing the code of similar sub-regions is
actually the most common use case. (2) Handling an ordered
list of sequences is normally more computationally manage-
able. As proven by existing works, directly measuring tree
similarity is not trivial due to the inherent complexity of trees.
The decomposition can be done by a depth-first traversal
of the tree. Preserving the order of the paths is critical because
the order determines the relative positions of different widgets
in the user interface.

B. CALCULATE THE SIMILARITY OF TWO SEQUENCES
Once we represent an input sketch or candidate code as an
ordered list of root-to-leaf paths with sufficient visual infor-
mation, we devise a novel solution to compare the similarity
of two such lists. The building block is a method that cal-
culates the similarity of two paths (or sequences), which we
describe in this section. Sequence-level comparisons enable
our solution to support inexact matches, which is a desirable
property for code reuse.

Let the two ordered lists be P = [p1, p2, · · · , p|P|] and
Q = [q1, q2, · · · , q|Q|], where pi (qj) is a sequence in P (Q),
and |P| (|Q|) is the number of sequences in P (Q). Let |pi|
and |qj| be the numbers of nodes in pi and qj, respectively.
We denote the lth node in pi by pli and the subsequence
formed by the first l nodes by p[1,l]i . We divide the similarity
of two sequences, pi and qj, denoted by sim(pi, qj), into two
parts. The first part is designed to capture the similarity of
sequence layouts, which is denoted by siml(pi, qj); the second
part is designed to measure the widget similarity in terms of
visual effects, which is denoted by simw(pi, qj). The second
part, in turn, is measured by the similarity of their leaf nodes’
attributes because in a user interface the widgets represented
by leaf nodes affect a user’s visual perception most.

Now we are ready to present our novel method for com-
paring the similarity of two sequences for the purpose of user
interface code retrieval. Our method is inspired by the Leven-
shtein distance [23], which is widely used for measuring the
difference between two strings. However, our method differs
from the Levenshtein distance in significant ways. In fact,
in the experimental section, we show that a direct application
of the Levenshtein distance results in subpar performance.

We give the pseudocode of our algorithm in Algorithm 1.
For ease of presentation, we omit the subscripts of pi and qj.
It takes as input two sequences p and q with their
visual-related attributes and returns their similarity sim(p, q)
that is in the range of [0, 1]. In Lines 1–2, we reverse p and q to
simplify the later operations. In Lines 3–22, we calculate the
layout similarity. The idea is to compute the layout distance
(LD) between two sequences in a dynamic programming
fashion, based on which the layout similarity is computed.
We first initiate a |p| × |q| matrix 8 which is filled with 0s.
We make use of the following formula to iteratively update
the value of each cell 8(i, j).

8(i, j) =


max(i, j)− 1, if min(i, j) = 1

min


8(i− 1, j)+ 1
8(i, j− 1)+ 1
8(i− 1, j− 1)+ cost

, otherwise
(1)

The first row and first column of 8 are updated in
Lines 4–11. After that, we update the remaining cells based
on the concept of cost, which measures the additional cost
required to change p[1,i] to q[1,j]. The cost of insertion and
deletion operations are assigned 1 because they will result
in a structural change of the original trees and thus receive
more penalties. The cost of substitution operations is more
subtle. Its calculation requires considering the visual effects
of pi and qj as well as those of pi−1 and qj−1. We later explain
how to calculate cost in Eq. 1 in an iteration in Algorithm 2.
Once we obtain cost by invoking the calCost function in
Line 14, we update the value of8(i, j) in Line 15. The layout
distance LD(p, q), which is the value of 8(|p|, |q|), is used to
calculate the layout similarity siml(p, q) (Line 21).

The widget similarity is calculated in Lines 22 and 23.
Recall that a leaf node has two visual-related attributes: the
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Algorithm 1 The Two Sequences Matching Algorithm
Input: Two sequences p and q
Output: sim(p, q)
1: p← reverse p;
2: q← reverse q;
3: Initialize a |p| × |q| matrix 8 filled with 0s;
4: for 1 ≤ i ≤ |p| do
5: 8(i, 1) = i− 1;
6: i++;
7: end for
8: for 1 ≤ j ≤ |q| do
9: 8(1, j) = j− 1;
10: j++;
11: end for
12: for 2 ≤ i ≤ |p| do
13: for 2 ≤ j ≤ |q| do
14: cost = calCost(pi, pi−1, qj, qj−1);
15: 8(i, j) = min(8(i− 1, j)+ 1,

8(i, j− 1)+ 1,
8(i− 1, j− 1)+ cost);

16: j++;
17: end for
18: i++;
19: end for
20: LD(p, q) = 8(|p|, |q|);

21: siml(p, q) = 1−
LD(p, q)

max(|p|, |q|)
;

22: simsize(p, q) = 1−

∣∣∣∣∣ size(p1)size(p|p|)
−

size(q1)

size(q|q|)

∣∣∣∣∣;
23: simw(p, q) = 1

2 simsize(p, q)+
1
2 simtype(p, q);

24: sim(p, q) = ωlsiml(p, q)+ ωwsimw(p, q);
25: return sim(p, q);

size and the type. Line 22 calculates the similarity between
the leaf nodes of p and q in terms of their sizes. size(·) gives
the size of a node.We consider the size because there has been
empirical evidence to show that perceived size affects a user’s
performance in different tasks [30]. The similarity in terms of
type is 1 if the two types are identical and 0 otherwise. The
widget similarity is a weighted sum as calculated in Line 23.
Finally, we calculate the similarity between p and q, sim(p, q),
in Line 24, where ωl +ωw = 1. We experimentally study the
impact of different values of ωl and ωw in Section IV.
Now we explain the calCost function, which is given

in Algorithm 2. num(·) gives a node’s number of chil-
dren and ort(·) returns a node’s children’s layout orien-
tation. Recall that, for an internal node, there are two
visual-related attributes, the layout orientation of its chil-
dren and the number of its children. Intuitively, the cost
is measured by the difference between these two attributes
using three different scores {0, 0.5, 1}, where 0 indicates that
both attributes ‘‘match’’, 0.5 indicates that one of the two
attributes ‘‘matches’’ and 1 indicates none of them ‘‘match’’.
Concretely, we start by handling two special cases. If the

Algorithm 2 The Calcost Function

Input: Four nodes pi, pi−1, qj, qj−1

Output: cost
1: if num(pi) = 1 or num(qj) = 1 then
2: return 0;
3: end if
4: if ort(pi) 6= ort(qj) then
5: return 1;
6: end if
7: if (ort(pi)=ort(pi−1))⊕ (ort(qj)=ort(qj−1)) then
8: cost = 0.5;
9: else if ort(pi) 6=ort(pi−1) and ort(qj) 6=ort(qj−1) then

10: if num(pi) = num(qj) then
11: cost = 0;
12: else
13: cost = 0.5;
14: end if
15: else
16: cost = 0;
17: end if
18: return cost;

FIGURE 3. An example of two visual-representation trees in which
different layout orientation values in the roots do not alter the visual
representation. In general, when an internal node has only one child,
the ‘‘V’’ label and ‘‘H’’ label are interchangeable.

number of children of pi or qj is 1, we return a cost of 0 (Lines
1–3). This is because if a node has only one child, different
layout orientation values lead to the same visual effect. This
is illustrated by Figure 3, where different orientation values
in the roots do not affect the visual representation. Otherwise,
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if the layout orientations of pi and qj are different, we return
a cost of 1 because they result in substantially different visual
representations. Lines 7–17 calculate the cost based on the
visual effects of pi and qj on their children pi−1 and qj−1.
Depending on the orientations of pi (qj) and pi−1 (qj−1),
we assign different values to cost . In Line 7, ⊕ means XOR.

C. CALCULATE THE SIMILARITY OF TWO ORDERED
LISTS OF SEQUENCES
In the previous section, we have presented the algorithm
to calculate the similarity between two sequences. With the
pairwise similarities, we design an algorithm to calculate the
similarity between two ordered lists of sequences P and Q.
The similarity of two user interfaces is calculated as a
weighted sum of sub-region similarities. If two user interfaces
have similar sub-regions, their similarity tends to be large.
Intuitively, calculating the similarity of two ordered lists in
terms of their visual representations requires to establish
1-to-1 correspondences among the sequences while consid-
ering their positions in the user interfaces. Without a careful
design, a naïve method might easily have a runtime com-
plexity O(min(|Q|!, |P|!)), where |Q| and |P| are the numbers
of sequences in the two lists. In this paper, we present an
algorithm that is of complexity O(|Q| · |P|). The general idea
is to first calculate all pairwise similarities, then adjust their
similarities based on their indexes (or order) in P and Q,
and finally generate the similarity from the updated pairwise
similarities. We give the pseudocode in Algorithm 3.

Without loss of generality, we assume that the number of
sequences in P is larger than or equal to that in Q. We first
initialize a |P| × |Q| matrix 8. For a sequence pair pi and
qj, we first calculate their similarity using Algorithm 1 (Line
4), and then adjust their similarity based on their orders in P
and Q. The relative orders roughly determine their positions
in the user interfaces. In Line 5, we introduce the factor ζ to
quantify their similarity in terms of their orders.

More similar orders lead to a larger similarity. The updated
similarity between pi and qj, ζ ·sim(pi, qj), is stored in8(i, j).
After obtaining the updated similarities of all sequence

pairs, we identify the most similar sequence in P for each
sequence in Q. To avoid many-to-one matching, we process
the sequences in Q in order, retrieve the largest 8(i, j) whose

i has not been matched, and add
1

|Q|
· 8(i, j) to sim(P,Q)

(Lines 13–18). Finally, we adjust sim(P,Q) by |Q|
|P| . This is to

reflect the fact that a larger difference between the number of
widgets in P and the number in Q makes the user interfaces
less similar.

D. DISCUSSION
Our user interface code retrieval solution is based on static
code. In reality, rendering actual user interfaces with all
dynamics of candidate code might help users make a better
decision because the users are given the chance to observe
how the real interfaces look like. Nevertheless, we deem that

Algorithm 3 The Multi-Sequences Matching Algorithm
Input: Two ordered lists of sequences P and Q with |P| ≥
|Q|

Output: sim(P,Q)
1: Initialize a |P| × |Q| matrix 8 filled with 0s;
2: for 1 ≤ i ≤ |P| do
3: for 1 ≤ j ≤ |Q| do
4: Calculate sim(pi, qj) using Algorithm 1;

5: ζ = 1−

∣∣∣∣∣ i|P| − j

|Q|

∣∣∣∣∣;
6: 8(i, j) = ζ · sim(pi, qj);
7: j++;
8: end for
9: i++;
10: end for
11: sim(P,Q) = 0;
12: Si = ∅;
13: for 1 ≤ j ≤ |Q| do
14: Get the largest 8(i, j) whose i /∈ Si;
15: Add i to Si;

16: sim(P,Q)+ =
1

|Q|
·8(i, j);

17: j++;
18: end for
19: sim(P,Q) = |Q|

|P| · sim(P,Q);
20: return sim(P,Q);

our approach still provides a reasonably good solution to
user interface code retrieval for at least two reasons. First,
static code of mobile applications is able to provide a large
amount of information regarding actual dynamic interactions
in the applications. For example, in static code there are event
code snippets (e.g., click events of buttons) used to gener-
ate interactions. Second, while rendering real user interfaces
generally helps users make a better decision for code reuse,
sometimes the actual visual effects of user interfaces could be
misleading. For example, consider an ad slot which displays
different types of ads (e.g., videos, GIFs, or static images).
Users might be misled by different creatives provided by
advertisers to reckon that these are different UI elements.

Our solution is orthogonal to traditional keyword-based
code retrieval methods. They can complement each other.
For example, one can use a keyword-based method as a
pre-filtering step to narrow down candidates and then apply
our solution to identify the most relevant code. This will
improve users’ productivity.

It is worth noting that applying our solution requires
to first generate visual-representation tree structures and
maintain up-to-date tree structures. Essentially, this is the
same as creating keyword indexes (e.g., inverted indexes)
for keyword-based code retrieval methods. While the
visual-representation tree structure is more complex than
keywords, fortunately such structures can be generated in a
highly efficient manner. It takes roughly 1 minute to generate
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the tree structures of 100,000 user interface files. Since this
process can be easily parallelized, we deem that our method
is practical for real-world applications.

IV. EXPERIMENTAL EVALUATION
In this section, we conduct an experimental study to demon-
strate that our visual-representation-aware tree matching
algorithm outperforms the state-of-the-art algorithms. Since
there is no well-established dataset for evaluating the per-
formance of user interface code retrieval, we first carefully
design an experiment to generate the similarity scores of dif-
ferent user interfaces based on real users’ judgement. Based
on this ground truth, we then show the superiority of our
algorithm.

A. EXPERIMENTS FOR GENERATING GROUND TRUTH
Unlike the field of image retrieval, there does not exist any
standard dataset which can be used to evaluate the per-
formance of code retrieval, especially user interface code
retrieval. To validate the effectiveness of our proposed
method, we design an experiment to generate the similarity
scores of 6,750 pairs of user interfaces based on users’manual
evaluation and consider this dataset as the ground truth to
subsequently evaluate different methods.

1) PARTICIPANTS
As the experiment requires a relatively long time to finish,
all candidates were informed the estimated total time of the
experiment and selected only if they can finish the experiment
within 2 weeks. The final participants were paid to conduct
the experiment. A total of fifteen Chinese graduate students
(including 6 females and 9males) with an average age around
28 were selected to participate in the experiment. All partic-
ipants have computer science related background. They all
have a deep understanding of software interface design and
are experienced in Android software development. As such,
they are able to provide professional judgement on the sim-
ilarities of different user interfaces from the perspective of
code reuse.

2) MATERIALS
To generate a representative ground truth dataset, we consider
different categories of applications. From the app categories
defined in Google Play and Apple App Store, we choose
five mainstream categories, including social network, com-
munication, education, multimedia, and news andmagazines.
We deliberately avoid the game category as game interfaces
normally have disparate styles and therefore it is difficult to
generate similar interfaces for participants to compare. For
each of these five categories, we retrieve eight applications
from GitHub and select 90 distinct user interfaces from them.
These interfaces are of different types, including homepages,
landing pages, and listing. As a result, a total of 40 applica-
tions and 450 user interfaces are selected. We screen the user
interface pairs to obtain a more balanced similarity distribu-
tion, otherwise we might not be able to get sufficient similar

pairs to validate our algorithm. The reason is that naturally
the number of dissimilar pairs is much larger than that of
similar pairs. Randomly sampling from all possible pairs will
result in a highly skewed distribution, which cannot reliably
validate our algorithm’s performance on similar interfaces.
After the preprocessing, a total of 6,750 user interface pairs
are selected as the test set.

To avoid the influence of colors on participants’ judge-
ment, we decolorize all user interfaces. We also remind the
participants that the purpose of this experiment is to evaluate
the similarity in terms of code reuse, not merely the image
similarity. For this reason, we also provide the source code of
each interface to the participants.

3) PROCEDURE
In this experiment, we adopted the within-subjects study
design, that is, each participant was required to evaluate all
6,750 interface pairs. We installed the experiment in the par-
ticipants’ laptops so as to provide them more flexibility. The
interface pairs were organized into 30 groups based on their
types, and each group was further divided into 15 rounds,
each having 15 pairs evaluated. The participants need to finish
rating a group at a time within 1 hour, and can work on differ-
ent groups at different time based on their availability. This
measure helps to prevent them from, for example, fatigue,
which guarantees the reliability of the ratings they entered.
All participants were required to conduct the experiment
in a designated room so that the actual time they spent on
the experiment could be verified, which helps to ensure the
quality of their ratings.

The test platform illustrated in Figure 4 mimics the real
code retrieval scenario, where a user inputs a sketch on the
left and is rendered 15 candidate interfaces and their source
code on the right. The participants can click an interface to see
its source code. For each candidate interface, a participant is
required to rate its reusability (or similarity) using a 1-5 point
scale, where 5 means ‘‘extremely reusable’’ and 1 means
‘‘not at all reusable’’. To avoid judging the interfaces solely
based on image similarities, the scales are given in terms of
reusability instead of similarity.

4) ANALYSIS
We first show that all participants give highly consistent rat-
ings. For each group of interface pairs, we measure the intra-
class correlation coefficient (ICC) [31], which is a descriptive
statistic used to measure how strongly users’ ratings in the
same group resemble those of others. The ICCs of ratings in
different groups range from 0.725 to 0.889 (all p-values <
0.0001), and the overall ICC is 0.822 (p-value < 0.0001).
This result indicates that all participants agree well on their
judgement of reusability.

After the experiment, we obtain 15 ratings for each of
the 6,750 pairs. Since the participants’ ratings are highly
consistent, we take the average of the 15 ratings as the final
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FIGURE 4. The test interface used in our experiment.

FIGURE 5. The distribution of final ratings of test interface pairs.

rating of a pair. That is, the final rating of pair i is

x i =

∑
j xij
15

,

where xij is the jth participant’s rating of pair i. We plot the
final rating distribution of all interface pairs in Figure 5. The
ratings are discretized into four intervals: [1, 2), [2, 3), [3, 4),
and [4, 5]. It can be observed that this test set contains
sufficient similar interface pairs to validate our algorithm.

B. EXPERIMENTAL RESULTS
With the ground truth test set, we now evaluate the perfor-
mance of our proposed solution.

1) EXPERIMENTAL SETTING
In practice, there are two types of widely-used sketches:
pencil-on-paper sketches and pixel-based sketches [32].
Pixel-based sketches are basically digital bitmap images typ-
ically created by using Photoshop. Sometimes, pixel-based

sketches could also come from a screenshot of an application.
In general, the quality of pencil-on-paper sketches is difficult
to control, making experimental results less representative.
For this reason, we mainly consider pixel-based sketches in
our experiments. Moreover, we treat the user interfaces of
candidate code as approximations of pixel-based sketches.
This is because: (1) pixel-based sketches are very close to
actual user interfaces; (2) to generate statistically significant
results, one needs a large number of sketches (e.g., thou-
sands). This requires excessive efforts. Since generating a
visual-representation tree from a sketch is not considered a
technical contribution, we deem that this approximation is
reasonable and that it can still effectively validate the per-
formance of our solution. We note that for an input sketch,
we generate its visual-representation tree using our variant
of pix2code described in Section III-A, instead of parsing its
code, which is able to create high-quality trees.

2) COMPETING METHODS
We compare our method with three state-of-the-art methods.
The first is the rule-based method [1], [2] (referred to as
Rule), which, to our best knowledge, is the only tree match-
ing method for user interface code retrieval. Since the code
of Rule is not publically available, we rewrite the algorithm
in C# based on the description in [2]. Our implementation is
available at [33]. The second is the classic tree edit distance
algorithm [8]1 (referred to as TED), which is the most widely
used general-purpose tree matching algorithm. The inputs
to TED are the visual-representation trees of the sketch and
candidate code. Since the original output of TED is the edit
distance of two trees, we generate the similarity score as
follows. Given two trees T1 and T2, the similarity score is

1The code is available at: https://github.com/timtadh/zhang-shasha
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FIGURE 6. Performance of our method and Lev under varying ωw values.

TABLE 1. The MSEs and PCCs of different methods.

1− de
max(|T1|,|T2|)

, where de is the edit distance between T1 and
T2, and |·| gives the number of nodes in a tree. The third is the
algorithm in [28]2 (referred to asMDS), which represents trees
as multidimensional sequences and measures their similarity
by extracting various sequence structure features. Similarly,
the inputs to MDS are the visual-representation trees of the
sketch and candidate code.

In our experiments, wemake use of twometrics to measure
the performance of different methods. The first metric is the
mean squared error (MSE). The MSE mainly evaluates the
deviation between the similarity ratings given by different
methods and the ground truth. The smaller the MSE, the bet-
ter the performance. The second metric is the Pearson cor-
relation coefficient (PCC). The PCC measures the degree of
correlation between the similarity ratings given by a method
and the ground truth. A PCC value of 1 is total positive linear
correlation, 0 is no linear correlation, and −1 is total neg-
ative linear correlation. A larger PCC value indicates better
performance.

3) PERFORMANCE COMPARISON WITH COMPETITORS
We present our major results in Table 1. Recall that our
method has two weights ωl and ωw (with ωl+ωw = 1) which
control the relative importance of the layout similarity and
widget similarity, respectively. Here we set ωw = 0.7. In the
next section, we study the impact of different weight values
on the performance of our method.

As can be observed in Table 1, our method substantially
outperforms the other three competitors in terms of both
MSE and PCC. Our method reduces the smallest MSE of
the competitors by 51.8% and improves the largest PCC of

2The code is available at: https://github.com/man1/Python-LCS

the competitors by 27.6%. Rule does not perform well in
practice probably because the similarity is simply defined
in terms of the visual containment relationship. As long as
widgets of the same type are contained in the code tree,
it positively contributes to the similarity score. However,
this containment relationship based similarity rule is largely
against users’ visual perception. As a result, Rule tends
to give overinflated ratings. A more systematic treatment is
needed to properly leverage the visual information, as we did
in our method. This explains why Rule has a much worse
MSE.
TED and MDS cannot achieve desirable performance

mainly because they largely ignore the visual information
associated with a sketch or candidate code, which is essential
for a programmer to judge the reusability of candidate code.
It is intriguing to observe that, while being a much more
complicated algorithm for measuring tree structure similar-
ities, MDS does not bring much performance improvement.
Its MSE is even worse than that of TED. We deem that this is
an affirmative sign that leveraging only structure information
cannot provide a satisfactory solution to user interface code
retrieval. This fact justifies our contribution of proposing a
visual-representation-aware approach.

4) IMPACT OF LD AND DIFFERENT WEIGHT VALUES
In Algorithm 1, when calculating the layout similarity of two
sequences, we introduced the notion of layout distance (LD)
which better measures the layout difference of user interfaces
due to visual effects. In this section, we demonstrate the
benefit of employing this distance measure by comparing
it with the traditional Levenshtein distance. We construct
a variant of our method in which we replace LD with the
Levenshtein distance. We call this variant Lev. In addition,
we are interested in understanding the impact of different
weight values on the performance of our method and that of
Lev. We plot the experimental results in Figure 6. The x-axis
gives the weight values of widget similarity ωw, ranging from
0.1 to 0.9; the y-axis in Figure 6(a) gives the MSEs of the two
methods and the y-axis in Figure 6(b) gives the PCCs of the
two methods.
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FIGURE 7. The MSEs of our method in different rating intervals.

We have three major observations. First, introducing LD
indeed brings substantial performance improvement. Under
differentωw values, our method’s performance is consistently
much better than that of Lev. This suggests the importance
of taking into consideration visual information and justifies
the need of LD. Second, the weights play an important role
in the resulting performance of our method and that of Lev.
As ωw increases, the performance of our method improves
until ωv = 0.7. After that, the performance of our method
starts to decline. This suggests that both layout similarity
and widget similarity are important to the overall similarity
and that widget similarity is relatively more beneficial. This
is consistent with our previous analysis that widgets affect
a user’s visual perception most. It is interesting to observe
that Lev achieves the best performance with a larger ωw
value (i.e., a value between 0.8 and 0.9). We deem that this
is because Lev cannot obtain much visual information from
the layout similarity and thus needs to rely more on the
widget similarity. Therefore, the best performance of Lev is
achieved with a larger weight on the widget similarity. These
results prove that considering the visual effects indeed helps
identify more reusable code. Finally, our method can achieve
desirable performance in a relatively wide range of ωw values
(i.e., from 0.6 to 0.8). It follows that our method can be easily
used in practice without much performance tuning on ωw.

5) MSEs IN DIFFERENT RATING INTERVALS
In our last set of experiments, we study the MSEs of our
method in different rating intervals. We note that, by the
definition of PCC, studying the PCCs in each interval is less
meaningful. We group the pairs into different intervals based
on their ground truth ratings and report the MSEs of our
method for each interval in Figure 7. This is to make sure that
our method exhibits stable performance for interface pairs
with different similarity levels. We can learn that our method
is able to achieve small MSEs in all intervals. The MSEs in
intervals [2, 3) and [3, 4) are slightly higher, but still smaller
than 3%. This is natural because the boundary between these
intervals is indeed more blurred, and it is thus more difficult
to give an accurate rating. It is also interesting to observe that

the MSE in interval [4, 5] is much smaller. This is probably
because these pairs are indeed highly similar, allowing our
method to generate very accurate ratings.

V. CONCLUSION AND FUTURE WORK
In this paper, we studied the problem of user interface
code retrieval, which is the foundation of user interface
code reuse. Despite its importance in user interface devel-
opment, it was rarely researched in the literature. We ana-
lyzed the unique characteristics of user interface code and
consequently proposed a novel visual-representation-aware
solution. We proposed to represent an input sketch and can-
didate code as visual-representation trees to overcome the
bottleneck of keyword-based search. We put forward two
algorithms that effectively calculate the similarity between
two visual-representation trees by fully leveraging various
visual information. To validate our solution, we designed an
experiment to generate a ground truth test set. Based on this
test set, we showed that our solution outperforms three state-
of-the-art methods.

There are a few interesting directions for future work. First,
while we deem that our solution can provide reasonably good
performance, it is worth exploring a more dynamic solution
where users are rendered actual user interfaces generated
from candidate code to better judge whether it is suitable
for code reuse. Second, we plan to study how to extend our
solution to more scenarios, for example, HTML code.
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