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ABSTRACT This paper discusses the impact of spatial reuse and carrier sense threshold (CST) optimization
on the performance of wireless local area networks using stochastic geometry analysis. The adjustment of
the CST is a promising approach to improve spatial reuse, and has been proposed for the IEEE 802.11ax
standard. Considering the situation where each access point (AP) individually adjusts its CST based on
the individual received power, this paper derives the probability of transmission success and the density of
successful transmissions (DST). The evaluation results of these metrics reveal that the optimal setting is to
increase the CST linearly (in terms of dB) with respect to the average received signal power. Because the
maximization of the DST causes unfairness from the viewpoint of success of transmission, the maximization
of the product of the transmission success probabilities is proposed to improve the performance of the entire
system and restrain unfairness. Using the trend of the optimal CST function, the impact of the density of
APs on the optimal CST function is determined. Moreover, individual CST adjustment is found to improve
spatial reuse compared with identical adjustment, i.e., setting the CST of all APs to an identical value.

INDEX TERMS Spatial reuse, carrier sense threshold, inversely proportional setting, IEEE 802.11ax,
stochastic geometry.

I. INTRODUCTION
Traffic on wireless local area networks (WLANs) has con-
siderably increased in recent years, and ever more access
points (APs) are thus being deployed. However, this does not
necessarily increase the aggregated throughput because of the
use of the carrier sense multiple access/collision avoidance
(CSMA/CA) algorithm. In this algorithm, only one of theAPs
that share a given channel can transmit at a time.

Adjustment of the carrier sense threshold (CST) is a
promising approach to enhance spatial reuse and improve
the throughput performance. This is because increasing the
CST reduces the number of APs competing with one another
and provides high transmission opportunity for each AP.
On the contrary, an unnecessarily large CST causes packet
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collisions owing to harmful interference and, hence, optimiz-
ing the CST value is challenging. As a setting of the CST,
dynamic sensitivity control, in which APs or stations (STAs)
adjust their CST based on the average received power from
their associated AP or STA, has been suggested [1], [2].
In dynamic sensitivity control, the CST is set to increase
with the received power from the communicating AP or STA.
Setting the CST according to the dynamic sensitivity control
is said to achieve high spatial reuse and improve the through-
put performance [1], [3]. However, adapting the CST alone
in dynamic sensitivity control causes an asymmetric carrier
sensing relationship and results in throughput starvation [4].
The detail is discussed below.

The inversely proportional setting (IPS) is a promising
approach for restraining an asymmetric carrier sensing rela-
tionship caused by adjusting the CST alone [4], [5]. The
asymmetric carrier sensing relationship causes throughput
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starvation because, for example, some APs always detect
the medium as busy because other APs that set high CSTs
continue to transmit. To solve this problem, the IPS, which
restrains the asymmetric carrier sensing relationship, was
proposed [4], [5]. In the IPS, all APs keep the product of CST
and transmission power constant. Actually, the previous stud-
ies [6], [7] experimentally confirmed that the IPS improves
the sum throughput where two communication pairs
exist.

The performance of the dynamic sensitivity control and
IPS is improved further by optimizing the CST, and many
studies have been conducted on CST optimization, some even
based on stochastic geometry [8]–[10]. In [8], the optimal
CST was numerically obtained, and in [9], a method to set the
CST based on the density of transmitters in WLANs was pro-
posed in cognitive wireless networks where secondary users
are transmitters in WLANs. The method proposed in [10]
optimizes the CST by deriving the throughput analytically,
assuming that one AP or all APs whose locations follow a
Poisson point process (PPP) adopt the identical CST value.
As mentioned above, the performance in terms of dynamic
sensitivity control has been analyzed. However, to the best
of our knowledge, no research to date has studied it adopting
the IPS when each AP adjusts its transmission power at the
same time as the CST. Although the previous study [10]
analyzed the IPS performance, APs are not assumed there
to set non-identical CSTs based on each received power.
Note that individual CST adjustment improves the network
performance compared to identical adjustment because of its
higher degree of freedom.

Considering the above-mentioned reason, this paper
assumes that the CST and transmission power are set accord-
ing to the IPS, and analyzes the system performance of IPS
where each AP individually adjusts its CST and transmission
power based on the power it receives. In detail, this paper
derives the transmission success probability and density of
successful transmissions (DST) based on stochastic geome-
try analysis presented in [11], and validates the derivations
through numerical results. The DST is a system performance
metric represented by the product of the density of APs,
medium access probability (MAP), and coverage probability
(CP), and expresses themean number of APswhose transmis-
sion is successful based on signal-to-interference-plus-noise
power ratio.

This paper also determines the optimal CST based on
the derived transmission success probability and DST.
To improve spatial reuse, it is necessary for each AP’s trans-
mission to succeed as evenly as possible while increasing
the DST by setting the CST. The issue is formulated as
optimization problems and the optimal CST is obtained by
solving them. By adopting a step function, the trend of the
optimal CST as a function of the average received power is
determined.

The contributions of this paper are as follows:
• Compared to stochastic geometry analysis of the MAP,
CP, and DST presented in [11], this paper enables

TABLE 1. Notation.

analysis assuming individual CST adjustment according
to the average received signal power.

• This paper shows the optimal CST as a function of aver-
age received signal power that maximizes the product
of transmission success probabilities to enhance fairness
among STAs. It is revealed that the optimal CST is
increased linearly (in terms of dB) with respect to the
received signal power.

The rest of this paper is organized as follows. Section II
describes the system model, and Section III derives the MAP,
CP, and DST, and presents the numerical results. The trend
of the optimal CST for the received power is obtained in
Section IV. Section V determines the optimal CST for the
density of APs. The conclusions of this paper are provided in
Section VI.

II. SYSTEM MODEL
The notation used here is summarized in Table 1. Downlink
transmission from AP to STA as shown in Fig. 1 is assumed
in this paper. This paper focuses on the set of APs that share
a given channel and attempt to transmit at a given time.
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FIGURE 1. System model. Blue triangles represent APs and dots represent
STAs. Red dots represent STAs with which the APs try to communicate.
APs in the grey area cannot transmit due to carrier sense. Each AP sets the
CST based on the communication distance (i.e., average received power).

Each STA is assumed to be associated with the AP with the
highest average received signal power, and an AP transmits
signals only to one of associated STAs. The locations of the
APs are assumed to be distributed according to a PPP 8 =
{xk} with spatial density λ. The communication distance r is
assumed to be independent and identically distributed (i.i.d.),
and the probability density function (pdf) of the communica-
tion distance is given as follows [12]:

fr (r) = 2πλr exp(−πλr2). (1)

The coordinate of the STA communicating with the associ-
ated AP k is denoted by yk at a given time.

The channel is assumed to suffer from both path-loss
attenuation and Rayleigh fading. The received power at an
AP or STA at z from AP k is expressed as follows:

pkAhzxk‖z− xk‖
−α, (2)

where pk denotes the transmission power of AP k .
Parameters A, α, and ‖·‖ represent the propagation loss at a
distance of 1m, the path loss exponent, and Euclidean dis-
tance, respectively. Random variable hzxk denotes the fading
coefficient between AP or STA at z and AP k . The fading
coefficient is assumed to be independently, identically, and
exponentially distributed with unit mean. Hence, the pdf of
the fading coefficient h is given by

fh(h) = exp(−h). (3)

Each AP is assumed to adjust its CST according to its path
loss ‖yk − xk‖−α = r−αk estimated from the average received
power,

PA‖yk − xk‖−α = PAr−αk , (4)

TABLE 2. Whether AP k with (xk , rk ,mk ) can transmit when there are
other APs (x, r ,m) ∈ 8̃ \ (xk , rk ,mk ).

where rk represents the communication distance between
AP k and associated STA andP represents the initial transmis-
sion power of all APs. Note that adjusting the CST according
to each average received signal power has been a strategy
in previous studies [1], [2] as an approach to throughput
improvement.1 Relation (4) implies that the CST adjustment
according to the average received power is equivalent to
that according to the communication distance. In this paper,
adjusted CST is expressed as a function of communication
distance rk , i.e., θ (rk ).

The transmission power of AP k is assumed to be deter-
mined by the IPS, where the product of the CST and trans-
mission power is constant, as follows:

p(rk ) =
PΘ
θ(rk )

, ∀k, (5)

where Θ denotes the initial CST of all APs.
In IEEE 802.11 [13], each AP determines whether it can

transmit according to the power received from other APs and
backoff counter. Let the random backoff counter of AP k be
denoted by mk . As in [11], mk is assumed to be a random
variable uniformly distributed on [0, 1], i.e., the pdf of the
counter mk is given by

fmk (mk ) = 1(0 ≤ mk ≤ 1), ∀k, (6)

where 1(·) is an indicator function that returns one if it is true
and zero otherwise. Let 8̃ := {(x, r,m)} denote a marked
PPP consisting of APs that attempt to transmit. As in [11]
and summarized in Table 2, AP k is assumed to transmit
when backoff counter mk is smaller than or equal to the
counter of other AP, or the received power from other AP is
smaller than the CST, θ (rk ). According to Table 2, whether
AP k can transmit is indicated by themedium access indicator
ek expressed as (7), as shown at the bottom of the next page.
The medium access indicator is a random variable that is
one when the AP is allowed to transmit by the CSMA/CA
protocol and zero otherwise.

III. FORMULATION AND NUMERICAL RESULTS OF MAP,
CP, AND DST
This section derives the DST. The DST expresses the mean
number of successful transmissions per unit area [11], [14].

1In detail, previous studies [1], [2] assumed that the CST is adjusted based
on the average power received from the furthest associated STA. In contrast,
this paper assumes that the CST is adjusted based on the average power
received from their communicating STAs at a given time.
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The DST is expressed as follows:

DST = λP(e0 = 1 ∧ SINR0 > T )

= λP(e0 = 1)P(SINR0 > T | e0 = 1)
(a)
= λE[e0]P(SINR0 > T | e0 = 1), (8)

where E[e0], SINR0, T , and P(SINR0 > T | e0 = 1)
denote the MAP, signal-to-interference-plus-noise power
ratio (SINR), SINR threshold for correct signal reception,
and the CP of a typical AP, respectively. In this analysis, this
paper focuses on a typical AP and considers the probability
of instantaneously successful transmission of this typical AP
at a given time, and the density of the transmission success
APs is given by the product of this probability and density
of APs. The MAP represents the probability that an AP is
allowed to transmit by the CSMA/CA protocol. Transforma-
tion (a) is due to the fact that e0 takes zero or one. On the
contrary, the CP represents the probability that the SINR at
the STA communicating with its associated AP is larger than
the threshold T . The SINR at STA 0 is given by

SINR0 =
p(r0)Ah

y0
x0r
−α
0

σ 2 + I0
, (9)

where I0, σ 2, and r0 denote the sum of interference from
transmitting APs except AP 0, the noise power, and the
communication distance of a typical AP, respectively.

Because the DST is expressed as the product of AP density,
MAP, and CP, we first derive the MAP (10) and CP (14), as
shown at the bottom of this page in Sections III-A and III-B,
respectively. From these derivations, we formulate the DST
(17) in Section III-C.

A. MEDIUM ACCESS PROBABILITY (MAP)
Proposition 1: The MAP is given as:

E[e0] =
∫
∞

0

1− exp(−n(r0))
n(r0)

fr (r0) dr0, (10)

where

n(r0) = 2πλ
∫
∞

0

∫
∞

0
u exp

(
−
θ (r) θ (r0)
PΘAu−α

)
fr (r) dr du. (11)

Proof: The proof is given in Appendix A.
In particular, when α = 4, the integration with respect to u

in (11) can be calculated, and n(r0) is expressed as follows:

n(r0) = θ(r0)−1/2N , (12)

N :=
λπ3/2(PΘA)1/2

2

∫
∞

0
θ (r)−1/2fr (r) dr . (13)

The integration with respect to r0 and r in (10) and (13)
can be calculated by determining the CST function θ (·).
In particular, the closed-form expression is acquired when the
constant or step function is adopted as the CST function.

B. COVERAGE PROBABILITY (CP)
Proposition 2: The CP is given by (14), where LI0 (Ta(r0)

rα0 /PA | r0, e0 = 1) represents the Laplace transform of I0,
given in Lemma 1.

Proof: The proof is given in Appendix B.
Lemma 1: The transform of the pdf of the sum of the inter-

ference from transmitting APs I0, LI0 (Ta(r0)rα0 /PA | r0, e0 =
1), is given in (15), as shown at the bottom of this page.

Proof: The proof is given in Appendix C.
As in the MAP, when α = 4, the integration with respect to u
in (15) can be calculated, and LI0 (a(r0)Trα0 /PA | r0, e0 = 1)
can be calculated as (16), as shown at the bottom of this page.

C. DENSITY OF SUCCESSFUL TRANSMISSIONS (DST)
Proposition 3: The DST is given as:

DST = λ
∫
∞

0

1− exp(− n(r0))
n(r0)

exp

(
−T θ (r0) rα0 σ

2

PΘA

)

×LI0
(
T θ (r0) rα0
PΘA

∣∣∣∣ r0, e0 = 1
)
fr (r0) dr0. (17)

ek =
∏

(x,r,m)∈8̃\{(xk ,rk ,mk )}

1
(
mk ≤ m ∨ p(r)Ahxkx ‖xk − x‖

−α < θ(rk )
)

=

∏
(x,r,m)∈8̃\{(xk ,rk ,mk )}

1
(
mk ≤ m ∨ (mk > m ∧ p(r)Ahxkx ‖xk − x‖

−α < θ(rk ))
)

=

∏
(x,r,m)∈8̃\{(xk ,rk ,mk )}

[
1(mk ≤ m)+ 1(mk > m)1

(
p(r)Ahxkx ‖xk − x‖

−α < θ(rk )
)]
, (7)

P(SINR0 > T | e0 = 1) =
∫
∞

0

1− exp(− n(r0))
n(r0)E[e0]

exp

(
−T θ (r0) rα0 σ

2

PΘA

)
LI0
(
T θ (r0) rα0
PΘA

∣∣∣∣ r0, e0 = 1
)
fr (r0) dr0, (14)

LI0
(
T θ(r0) rα0
PΘA

∣∣∣∣ r0, e0 = 1
)
≈ exp

(
−2πλ

∫
∞

r0

∫
∞

0

1− exp(− n(r))
n(r)

θ (r0)Trα0 u
−α

θ(r)+ θ (r0)Trα0 u
−α

fr (r) u dr du
)
, (15)

LI0

(
T θ (r0) r40
PΘA

∣∣∣∣ r0, e0 = 1

)
≈ exp

(
−
πλ θ(r0)1/2 T 1/2r20

NΘ1/2

∫
∞

0

(
1− e−N/θ (r)

1/2Θ1/2
)
arctan

(
θ (r0)T
θ(r)

)1/2
fr (r) dr

)
. (16)
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TABLE 3. Parameters used in this paper.

TABLE 4. Parameters in Section III.

FIGURE 2. CST function θ (1)(r ).

Note that LI0 (T θ (r0) rα0 /PΘA | r0, e0 = 1) and n(r0) are
given in (15) and (11), respectively.

Proof: The DST is the product of the AP density,
MAP (10), and CP (14), derived in Sections III-A and III-B,
respectively.

D. NUMERICAL RESULTS
In this section, the numerical evaluation of the derived MAP,
CP, and DST is performed. We compare the numerical results
with those of a Monte Carlo simulation. This section uses
the CST function proposed in [2] as θ (·). In Section IV,
the trend of the optimal CST function for the received power
is obtained based on the stochastic geometry. In this paper,
parameter values in Table 3 are adopted in all sections. This
section also uses the parameter values in Table 4.
In detail, the CST function is set as shown in Fig. 2 seen in

dynamic sensitivity control [2] with the CST limited between
Θ andΘ+a, where a denotes the maximum increment in the
CST. The CST as a function of the communication distance
θ (1)(r) is expressed as follows:

θ (1)(r) =


Θ + a, r <

(PA)1/4

10(c+a)/40
;

PAr−4

10(c−Θ)/10 ,
(PA)1/4

10(c+a)/40
≤r <

(PA)1/4

10c/40
;

Θ,
(PA)1/4

10c/40
≤ r,

(18)

where c denotes a parameter. Assuming that the CST is
set according to dynamic sensitivity control [2], the CST is

FIGURE 3. DST.

expressed as follows:

θ (2)(r) =
PAr−4

M
, (19)

where M denotes the margin of dynamic sensitivity control.
The CST function θ (1)(r) (18) is obtained by setting M to
c − Θ and limiting the CST θ (2)(r) in (19) between Θ and
Θ + a. In other words, the margin M is c − Θ . The units of
a and c are dB and dBm, respectively.

We present the analytical results together with those of
the Monte Carlo simulation with 10,000 trials. Fig. 3 shows
the results of the derived DST and the simulation when the
density of APs is set to λ = 0.0001, 0.001, 0.01 /m2. From
this figure, it is clear that the DST depends on AP density
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FIGURE 4. CP.

FIGURE 5. MAP.

and c. When the AP density is small, as shown in Fig. 3(a),
a large c provides a large value of the DST because the
DST relies mainly on the CP, which is increased by the large
transmission power as shown in Fig. 4. This is because the
MAP is almost always one in any c as shown in Fig. 5. On the
contrary, when the AP density is large as shown in Fig. 3(c),
a large DST is obtained with a small c because the MAP
sharply decreases with an increase in c as shown in Fig. 5.

Almost all results have the largest DST around c = 60 dBm
because the CP increases rapidly instead of the MAP accord-
ing to c for any given AP density. Hence, there are some
value of c where the CP is large although the MAP is not

FIGURE 6. Continuous CST function θ (4)(r ).

small. These parameters provide the largest DST. The value
of the DST heavily relies on c as AP density increases. Thus,
the optimal setting of the CST is more important for high
AP density.

The CST can be optimized according to the derived DST
because the results of simulation and analysis have the same
trend, although the former are slightly larger than the latter.
Although there is a gap in the absolute value of the DST
between the analytical and simulation results, there is no
problem from the viewpoint of parameter setting because the
parameter taking the maximum or minimum DST is almost
identical. This gap is due to the approximation used in the
derivation of the DST. In particular, the assumption that each
communication distance is i.i.d. assumed in Section II and the
approximated locations of interfering APs with a PPP in the
derivation (37) are major factors of the gap. The assumption
that the communication distance is i.i.d. produces a gap in the
MAP as shown in Fig. 5. On the contrary, the gap in the CP
in Fig. 4 is due to the approximated locations of interfering
APs with a PPP.

IV. OPTIMAL SETTING OF CST IN STEP FUNCTION
This section confirms that the optimal CST increased almost
linearly with respect to the average received signal power as
shown in Fig. 6 based on stochastic geometry. We attempt to
acquire a trend of the optimal CST function using the step
function as the CST function, as shown in Fig. 7. The step
CST function is given by

θ (3)(r) = bi, li ≤ r < li+1, i = 1, 2, . . . ,m. (20)

Two optimization problems are formulated, and the optimal
CST function is acquired by solving the optimization prob-
lem. One maximizes the DST, and can be carried out sim-
ply. However, this DST maximization produces unfairness.
The other one, instead of DST maximization, is intended to
maximize the product of the transmission success probabili-
ties over all APs. In Section IV-A, the transmission success
probability when the step function is adopted is first derived.
In Section IV-B, we formulate two optimization problems.
In Section IV-C, we find the optimal function of the CST
acquired by solving the optimization problems using the
eight-step function.
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FIGURE 7. CST function θ (3)(r ) adopted in Section IV.

A. TRANSMISSION SUCCESS PROBABILITY IN STEP
FUNCTION
To formulate the optimization problem, this section derives
the transmission success probability of each AP. By introduc-
ing the step function shown in Fig. 7 as the CST function,
the transmission success probability of each AP is derived as
follows:

di =
1− exp (−n(li))

si n(li)

∫ li+1

li
exp

(
−
Tbiσ 2rα0
PΘA

)

LI0
(
Tbirα0
PΘA

∣∣∣∣ r0, e0 = 1
)
fr (r0) dr0, (21)

where si denotes the probability that the communication dis-
tance is between li and li+1, i.e.,

si = P(li ≤ r < li+1)

= exp(−πλli2)− exp(−πλli+12). (22)

Proof: The proof is given in Appendix D.

B. FORMULATION OF OPTIMIZATION PROBLEMS
Using the derived DST (17), optimization problems are for-
mulated to optimize the CST. Using the step function as CST
function, this paper finds the trend of the CST maximizing
the DST. Parameters maximizing the DST are acquired by
solving the following optimization problem:

maximize
(b,l)

DST
(l)
= λs1d1 + λs2d2 + · · · + λsmdm (23)

subject to Θ ≤ bi ≤ Θ + a, i = 1, . . . ,m

l1 = 0 < l2 < · · · < lm < lm+1 = ∞.

Transformation (l) is due to the fact that the DST is regarded
as the sum of the transmission success probabilities.

The parameter setting maximizing the DST causes unfair
channel access in terms of transmission success. This is
because DST maximization causes APs with long commu-
nication distances to face difficulties while the transmission
of APs that have short communication distances becomes
easier. In other words, the optimization problem (23) provides
θ (3)(r) with the largest DST while all di are large except dm,
so that, the APs that adjust bm as their CSTs rarely succeed in
transmission. In the results, for APswith long communication

TABLE 5. Parameters in Section IV.

distances, adjusting the CST according to the DST results in
a reduction in their own transmission success probability.

To correct the unfairness of transmission opportunities
resulting from maximizing the DST, this paper proposes an
alternative optimization problem that maximizes the product
of transmission success probabilities. The maximization of
the product of the transmission success probabilities instead
of the sum of probabilities, i.e., DST, has been discussed
in [15]. The product maximization is formulated as follows:

maximize
(b,l)

m∏
i=1

dλsii (24)

subject to Θ ≤ bi ≤ Θ + a, i = 1, . . . ,m

l1 = 0 < l2 < · · · < lm < lm+1 = ∞.

Note that the objective function of (24) is equivalent to∑m
i=1 λsi log di, i.e., (24) is doing proportionally fair setting.

This optimization problem corrects the unfairness because
the objective function becomes very small when one of the
transmission success probabilities is very small, so that the
solution of this optimization problem provides a large DST
while avoiding the situationwhere some transmission success
probabilities are very small.

C. OPTIMIZED CST WITH STEP FUNCTION
This paper attempts to acquire the trend of the optimal CST
by solving the optimization problems. This section uses the
parameters in Tables 3 and 5, here we set a to be a multiple
of 3 dB. Fixing parameter li, the optimization problems are
numerically solved. Parameter li is set assuming that all si for
i = 1, 2, . . . ,m have the same value. Note that li is given by

li =

√
log(m/(m+ 1− i))

πλ
, i = 1, 2, . . . ,m+ 1. (25)

The results of eight-step function, i.e., m = 8, are shown.
Fig. 8 shows the optimal CST function according to the aver-
age received signal power obtained by solving the optimiza-
tion problems. In the DST maximization, the CSTs of APs
that have long or short communication distances is set large
compared with those with medium communication distances.
On the contrary, in the product maximization, the optimal
CST is reduced with increasing communication distance.

The results of the eight-step function show that the optimal
setting is to increase the CST linearly with respect to the
average received signal power. Fig. 9 shows each transmis-
sion success probability for the index of CST function i.
In the DST maximization, APs that have long communica-
tion distances rarely succeed in transmission, although the
transmission success probability of APs that have short com-
munication distances is considerably large. This is because

161922 VOLUME 7, 2019



M. Iwata et al.: Stochastic Geometry Analysis of Individual CST Adaptation in IEEE 802.11ax WLANs

FIGURE 8. Optimal CST θ (3)(r ) according to average received signal power
in eight-step function.

FIGURE 9. Transmission success probability di in eight-step function.

APs that have long communication distances set small trans-
mission powers and refrain from interfering with other APs.
Hence, the unfairness of transmission opportunities comes
about in DST maximization. On the contrary, the product
maximization provides a large transmission success probabil-
ity on the whole compared with the default setting. Therefore,
to optimize the CST, product maximization (24) is superior to
DST maximization (23).

V. OPTIMAL SETTING OF CST FUNCTION FOR
AP DENSITY
This paper optimizes the CST function by using the contin-
uous function shown in Fig. 6. Section IV has indicated that
the optimal CST increases almost linearly with respect to the
average received signal power. The CST function is given by

θ (4)(r) =



Θ + a, r <
(PA)1/4

10c2/40
;

(PAr−4)
a

c2−c1

10
Θ
10−

c1a
10(c2−c1)

,
(PA)1/4

10c2/40
≤r<

(PA)1/4

10c1/40
;

Θ,
(PA)1/4

10c1/40
≤ r,

(26)

where c1 and c2 are parameters. The form of the function was
introduced in [2]. Parameters c1 and c2 maximizing the prod-
uct of transmission probabilities of all APs are obtained by

TABLE 6. Parameters in Section V.

FIGURE 10. Optimal CST function θ (4)(r ) for the AP density.

FIGURE 11. Transmission success probability according to
communication distance. The green, orange, and red lines show the
results when all APs set the CST to −82,−72,−62 dB, respectively.

solving the optimization problem. The problem is expressed
as follows:

maximize
(c1,c2)

λ

∫
∞

0
log(d(r)) fr (r) dr (27)

subject to c1 ≤ c2,

where d(r) denotes the transmission success probability of
the AP with communication distance r .

Proof: The objective function of (27) and the transmis-
sion success probability d(r) are given in Appendix E.

The optimization problem is numerically solved. In solving
it, it is assumed that c1 and c2 can take an even number
between 20 and 120. The other parameters are set as shown
in Tables 3 and 6.

Fig. 10 shows the optimal CST obtained by solving
the optimization problem (27). The optimal CST function
depends on AP density. The optimal parameters c1 and c2
increase with an increase in AP density.
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Fig. 11 shows the transmission success probability accord-
ing to the communication distance when λ = 0.005. Fig. 11
indicates that the proposed setting improves the transmission
success probability of almost all APs compared with the
default setting, i.e., all CSTs are −82 dBm. Compared with
the results when all APs set the same CST, the proposed
setting prevents a sharp decrease in the transmission success
probability. In other words, from the viewpoint of fairness,
the proposed setting is better than the uniform setting.

VI. CONCLUSION
This paper analyzed system performance when APs indi-
vidually adjust the CST according to the average received
signal power. The MAP, CP, and DST were derived by using
the stochastic geometry framework. The numerical results
showed that the DST derived by performing some approxi-
mations had the same trend with the simulation results. Thus,
we can say that the derived DST is useful to find the optimal
CST. To determine the optimal CST, two optimization prob-
lems were formulated. By comparing them, it was found that
maximizing the product of the transmission success proba-
bilities was more suitable to determine the CST. By using a
step function, this paper found that the optimal setting was
to increase the CST linearly (in terms of dB) with respect
to the average received signal power. Therefore, by using
the continuous CST function, the optimal CST for the given
AP density was determined.

APPENDIX A
Proof of Proposition 1. We first define L(x0, x, r, h

x0
x ,m) as

in [11] as follows:

L(x0, x, r, hx0x ,m)

:= 1((p(r)Ahx0x ‖x0 − x‖
−α
≥ θ(r0)) ∧ (m < m0))

= 1(PΘAhx0x ‖x0 − x‖
−α
≥ θ(r) θ(r0))1(m < m0). (28)

Function L(x0, x, r, h
x0
x ,m) represents the probability that AP

0 defers its transmission because it detects a transmission
from the AP whose mark is (x, r,m). We also define X (x0)
as follows:

X (x0) = max
(x,r,m)∈8̃

L(x0, x, r, hx0x ,m). (29)

L(x0, x, r, h
x0
x ,m) takes zero or one; so X (x0) also takes

zero or one. From Slivnyak’s theorem, because e0 = 1 −
X (x0), the MAP conditioned on m0 and r0 is expressed as
follows:

E[e0 |m0, r0]

= 1− E[X (x0) |m0, r0]

= 1− P(X (x0) = 1 |m0, r0)

= P(X (x0) = 0 |m0, r0)

= P(X (x0) ≤ 0 |m0, r0)
(b)
= exp

(
−

∫
R2

∫
∞

0

∫
∞

0

∫
∞

0
1(L(x0, x, r, h,m) > 0)

×Fr (dr)Fh(dh)Fm(dm)3(dx)
)

(c)
= exp

(
−

∫
R2

∫
∞

0

∫
∞

0

∫
∞

0
1(L(o, x, r, h,m) = 1)

×Fr (dr)Fh(dh)Fm(dm)3(dx)
)

= exp
(
−

∫
∞

0
1(m < m0)Fm(dm)

∫
R2

∫
∞

0

∫
∞

0

1(PΘAh‖x‖−α ≥ θ (r) θ (r0))Fr (dr)Fh(dh)3(dx)
)
.

(30)

In (b), because 8̃ is an independently marked PPPwith marks
r and m, and also h can be regarded as an additional mark
in 8̃, Proposition 2.13 of [16] is adopted. In (c), x0 is set as
the origin o because x0 can be taken arbitrarily. Function Fx
shows the distribution function of mark x and 3 shows the
intensity function.

The marks in 8̃ do not depend on the coordinates of the
AP x and, hence, the mark distributions also do not depend
on x. Moreover, because the locations of the APs follow a
PPP, the following equation holds for the intensity function:

3(dx) = λ dx. (31)

Thus, the conditional MAP is represented as follows:

E[e0 |m0, r0]

= exp
(
−λ

∫ 1

0
1(m < m0) dm

∫
R2

∫
∞

0

∫
∞

0

1(PΘAh‖x‖−α ≥ θ (r) θ (r0)) fr (r) fh(h) dr dh dx
)

(d)
= exp

(
−2πλm0

∫
∞

0

∫
∞

0
u exp

(
−
θ (r) θ (r0)
PΘAu−α

)
fr (r) dr du

)
= exp (−m0 n(r0)) . (32)

Transformation (d) follows [17]. Becausem0 and r0 are inde-
pendent, the MAP is derived as follows:

E[e0] =
∫ 1

0

∫
∞

0
E[e0 |m0, r0] fr (r0) dr0 dm0

=

∫
∞

0
fr (r0)

∫ 1

0
exp(−m0 n(r0)) dm0 dr0. (33)

By integrating with respect to m, the MAP (10) is acquired.

APPENDIX B
Proof of Proposition 2. The CP is rewritten as

P(SINR0 > T | e0 = 1)

=

∫
∞

0
P (SINR0 > T | r0, e0 = 1) fr (r0 | e0 = 1) dr0

=

∫
∞

0
P

(
hy0x0 >

(σ 2
+ I0)T θ (r0)rα0
PΘA

∣∣∣∣ r0, e0 = 1

)
× fr (r0 | e0 = 1) dr0

(e)
=

∫
∞

0
exp

(
−
T θ(r0)σ 2rα0

PΘA

)
×LI0

(
T θ(r0)rα0
PΘA

∣∣∣∣ r0, e0 = 1
)
fr (r0 | e0 = 1) dr0. (34)
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Transformation (e) occurs because the fading coefficient
hy0x0 is assumed to be exponentially distributed with unit
mean [17]. The posterior pdf fr (r0 | e0 = 1) is expressed from
Bayes’ theorem as follows:

fr (r0 | e0 = 1) =
P(e0 = 1 | r0) fr (r0)

P(e0 = 1)

=
E[e0 | r0] fr (r0)

E[e0]
(f)
=

1− exp(−n(r0))
n(r0)E[e0]

fr (r0). (35)

Transformation (f) occurs by integrating (32) with respect
to m. This formula indicates that the communication distance
for transmitting AP has a distribution different from the
original because the CST varies according to communication
distance.

APPENDIX C
Proof of Lemma 1. Let 8̃′ denote a marked point process,
which consists of transmitting APs, i.e., 8̃′ = { (xk , rk ,mk ) ∈
8̃ : ek = 1 }. The pdf of the communication distance of the
transmitting APs rk where (xk , rk ,mk ) ∈ 8̃′ is given similarly
to that in (35) as follows:

frk (rk | ek = 1) =
1− exp(−n(rk ))
n(rk )E[ek ]

fr (rk ). (36)

Therefore, all communication distances are mutually inde-
pendent and have the same pdf fr (r | e = 1). The distributions
of the fading coefficients are identical in 8̃ and 8̃′.
The interference power at STA 0, I0, is the sum of inter-

ference from APs consisting of 8̃′ except AP 0. For the
derivation, 8̃′ is approximated to a PPP 8̃′′ with den-
sity λ′ = λE[e0]. E[e0] indicates the MAP denoted
in Section III-A. Such an approximation has also been used
in previous studies [8], [11]. From the assumptions, LI0 is
rearranged as follows:

LI0 (s | r0, e0 = 1)

= E8̃′
[
exp (−sI0)

]
≈ E8̃′′

[
exp (−sI0)

]
(37)

(g)
= E8′′

 ∏
x∈8′′\{x0}

Eh,r
[
exp

(
−
sPΘAh‖y0 − x‖−α

θ (r)

)]
(h)
= exp

(
−λE[e0]

∫
R2\B(y0,r0)(

1− Eh,r
[
exp

(
−
sPΘAh‖y0 − x‖−α

θ (r)

)])
dx
)
, (38)

where B(y0, r0) denotes a two-dimensional ball of radius r0
centered at y0 and8′′ denotes the unmarked PPP in relation to
the marked PPP 8̃′′. Transformation (g) follows from the fact
that the fading coefficients are i.i.d. This also applies to r of
(x, r,m) ∈ 8̃′. In (h), the probability generating functional
for the PPP [18] is used because 8′′ is a PPP. Moreover,
the integration domain is R2

\ B(y0, r0) because there are
no APs in the range of radius r0 centered at the coordinates

of STA 0 y0 [17]. The second line of (38) is rearranged as
follows:∫
R2\B(y0,r0)

(
1− Eh,r

[
exp

(
−
sPΘAh‖y0 − x‖−α

θ (r)

)])
dx

(i)
=

∫
R2\B(y0,r0)

(
1− Er

[
1

1+ sPΘA‖y0 − x‖−α/θ (r)

])
dx

=

∫
R2\B(0,r0)

∫
∞

0

sPΘ‖x‖−α

θ (r)+ sPΘ‖x‖−α
fr (r | e = 1) dr dx

= 2π
∫
∞

r0

∫
∞

0

sPΘAu−α

θ(r)+ sPΘAu−α
fr (r | e = 1) u dr du.

(39)

Transformation (i) is due to the assumption that the fading
coefficient h follows an exponential distribution.

APPENDIX D
Transmission Success Probability in Step Function. When
the step function as shown as Fig. 7 is used as the CST
function, the MAP of APs whose communication distances
are between li and li+1 is given as

E[e0 | li ≤ r0 < li+1]

=

∫ 1
0

∫ li+1
li E[e0 |m0, r0] fr (r0) dr0 dm0∫ li+1

li fr (r0) dr0

=
1
si

∫ li+1

li
fr (r0)

∫ 1

0
exp(−m0n(r0)) dm0 dr0

(j)
=

1
si

∫ li+1

li
fr (r0) dr0

∫ 1

0
exp(−m0 n(li)) dm0

=
1− exp(−n(li))

n(li)
. (40)

Transformation (j) is due to the fact that the CST is constant
for li ≤ r0 < li+1. The CP of APs whose communication
distances are between li and li+1 is rewritten as

P(SINR0 > T | e0 = 1 ∧ li ≤ r0 < li+1)

=
P(SINR0 > T ∧ e0 = 1 ∧ li ≤ r0 < li+1) /P(e0 = 1)

P(e0 = 1 ∧ li ≤ r0 < li+1) /P(e0 = 1)

=
P(SINR0 > T ∧ li ≤ r0 < li+1 | e0 = 1)

P(li ≤ r0 < li+1 | e0 = 1)

=

∫ li+1
li P (SINR0 > T | r0, e0 = 1) fr (r0 | e0 = 1) dr0∫ li+1

li fr (r0 | e0 = 1) dr0

(k)
=

∫ li+1
li P (SINR0 > T | r0, e0 = 1) fr (r0) dr0∫ li+1

li fr (r0) dr0

=
1
si

∫ li+1

li
exp

(
−
Tbiσ 2rα0
PΘA

)

LI0
(
Tbirα0
PΘA

∣∣∣∣ r0, e0 = 1
)
fr (r0) dr0. (41)
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Transformation (k) is due to (35) and the fact that n(r0)
is constant for li ≤ r0 < li+1. The transmission success
probability is formulated by the product of (40) and (41).

APPENDIX E
Derivation of Objective Function of Optimization Prob-
lem and Transmission Success Probability in Continuous CST
Function. The objective function of (27) is formulated based
on the objective function of (24). We first take the logarithm
of the objective function of (24).

log
m∏
i=1

dλsii = λ
∑m

i=1 si log(di). (42)

When m approaches infinity, si is expressed as follows:

lim
m→∞

si

= lim
m→∞

(
exp(−πλli2)− exp(−πλli+12)

)
= lim

m→∞

(
exp(−πλli2)− exp(−πλ(li +1r)2)

)
= lim

m→∞
exp(−πλli2)

(
1− exp(−πλ(2li1r +1r2))

)
.

(43)

By using the feature that1r approaches zero asm approaches
infinity and the Maclaurin expansion, si is rewritten as fol-
lows:

lim
m→∞

si = exp(−πλr2) (1− (1− 2πλr 1r))

= 2πλr 1r exp(−πλr2)

= fr (r)1r . (44)

Thus, the objective function of (27) is given as follows:

λ

m∑
i=1

si log(di) = λ lim
m→∞

m∑
i=1

log(di) fr (r)1r

= λ

∫
∞

0
log(d(r)) fr (r) dr, (45)

where d(r) denotes the transmission success probability of
the APwhose communication distance is r . The function d(r)
is expressed as follows:

d(r) = E[e | r]P(SINR > T | r, e = 1)

(m)
=

1− exp(−n(r))
n(r)

exp
(
−
T θ (r) σ 2 rα

PΘA

)
×LI0

(
T θ (r) rα

PΘA

∣∣∣∣ r, e = 1
)
. (46)

Transformation (m) refers to (33) and (34).
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