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ABSTRACT For indirect contrast enhancement, researchers have proposed various transformation functions
based on histogram equalization and gamma correction. However, these transformation functions tend to
result in over-enhancement artifacts such as noise amplification, mean brightness change, and detail loss.
To overcome the limitations of conventional transformation functions, this paper introduces a novel sigmoid
function based on the contrast sensitivity of human brightness perception. In the proposed method, the
contrast sensitivity of the human retina is modeled as an exponential function of the log-intensity, and a
transformation function is derived using the sensitivity model as the exponent of Steven’s power law.We also
present a parameter optimization method that maintains the mean brightness of the input image and stretches
the image histogram while minimizing information loss. Experimental results demonstrate that the proposed
method has low computational complexity and outperforms the state-of-the-art methods in terms of contrast
enhancement performance, mean brightness preservation, and detail preservation.

INDEX TERMS Contrast enhancement, sensitivity model-based sigmoid function, Steven’s power law.

I. INTRODUCTION
Digital images often have low contrast owing to inadequate
image capture devices or undesirable lighting conditions.
Since low contrast imagesmay have awashed-out appearance
or do not reveal all the scene details [1], researchers have
proposed various enhancement methods to improve the visual
quality of these images [2], [3].

Contrast enhancement techniques are broadly classified
into two groups: direct and indirect methods [4]. In direct
methods [5]–[8], image contrast is measured based on the
human visual system (HVS), such as the Weber–Fechner
law or Retinex theory [9], and is improved by applying
various nonlinear functions [5], [6] or solving optimization
problems [7], [8]. Direct methods have some advantages of
image detail enhancement as well as dynamic range com-
pression, however, they require high computational com-
plexity and introduce ‘‘halo’’ artifacts particularly around
strong edges [10], [11]. Although recent direct methods have
been proposed [38], [48], [49], [60]–[63] to alleviate these
problems, it is still challenging to provide both high image
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contrast and real-time processing without causing noticeable
distortion. For these reasons, indirect methods utilizing a
global transformation function are more widely employed in
practical applications than direct methods.

One of the most representative indirect methods, histogram
equalization (HE) produces visual artifacts such as noise
amplification, contouring, or significant brightness change
when there are high peak values in the image histogram [1].
To alleviate these problems, many HE-based methods modify
the image histogram to attenuate the high peak values and
then derive the transformation function from the modified
histogram. In [1], the image histogram was combined with
a uniform distribution by solving a bi-criteria optimization
problem. Kim and Chung [12] utilized a normalized power-
law function to smoothen high peak values in the image his-
togram. Since HE shifts the mean brightness of the enhanced
image to the middle gray level, researchers have separated
the image histogram into multiple sub-histograms and per-
formed HE on each sub-histogram individually [12]–[16].
For detail preservation, recent indirect methods utilize a
two-dimensional (2D) histogram [19]–[21], [51], [52] or
fuzzy contextual information [45], [53] to build the image
histogram which gives more weight to the pixels in texture
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regions. Compared with other indirect methods, these meth-
ods achieve better enhancement performance and less infor-
mation loss.

More recently, deep learning-based methods, especially
Convolutional Neural Networks (CNNs), have been exten-
sively researched for image enhancement. In our best knowl-
edge, however, most deep learning-based methods have
been developed for medical images [54], [55], low-light
images [56], [57], or hazed images [58], [59] rather than
natural image enhancement.

In this paper, we first introduce a novel sigmoid func-
tion based on the contrast sensitivity of human brightness
perception. Motivated by the observation that the contrast
sensitivity of the human retina decreases exponentially as the
log-luminance increases, we model the contrast sensitivity as
an exponential function of the log-intensity level. Using the
contrast sensitivity model, the sigmoid function is derived
by modifying the exponent of Steven’s power law. We also
present a parameter optimization method that maintains the
mean brightness of the input image and stretches the image
histogram while minimizing information loss. This process
requires low computational complexity and exhibits high
enhancement performance while preserving the mean bright-
ness and details of the input image. Experimental results
indicate that the proposed method outperforms the state-of-
the-art methods with regard to mean brightness preservation,
detail preservation, and contrast enhancement performance.
Objective image quality evaluation also confirms that the
proposed method provides excellent visual quality.

The remainder of this paper is organized as follows:
Section II describes human brightness perception and its
applications for contrast enhancement. Section III explains
the proposedmethod in detail. Section IV discusses the exper-
imental results to demonstrate the performance and character-
istics of the proposedmethod, and lastly, Section V concludes
the paper.

II. BACKGROUND
A. HUMAN BRIGHTNESS PERCEPTION
The photoreceptors in the human retina, which are called
rods and cones, operate as the sensors for the HVS. Rods are
very sensitive to light and provide achromatic vision named
scotopic vision at low luminance levels (10−6 to 10cd/m2).
At luminance levels higher than 10−2cd/m2, rods begin to
saturate and cones provide chromatic vision named photopic
vision. At luminance levels between 10−2 and 10 cd/m2, both
rods and cones are active and the human retina operates in
a transition mode called mesopic vision. Since neurons can
only transfer a signal with a dynamic range of approximately
1 :103, the human retina compresses the dynamic range of
the real-scene luminance by adapting to a certain luminance
level called the adaptation level and then perceiving images
in a rather small dynamic range around the adaptation level.
To describe the retinal response of human brightness percep-
tion, various response models based on neuroscience experi-
ments have been proposed.

One of the representative response models—the
Naka-Rushton equation—describes the relationship between
the retinal response R and the luminance level L, which is
given by

R(L) =
Ln

Ln + σ n
, (1)

where n is a parameter determining the steepness of the
retinal response function and σ is the adaptation level. Eq. (1)
indicates that the HVS transforms the luminance level into
the retinal response by employing a sigmoid curve centered
on the adaptation level. Recent tone mapping techniques
generally employ the sigmoid curve as a camera response
function which converts real-world radiance into pixel inten-
sity [33]–[37]. Using the human brightness perception-based
sigmoid curve, these methods achieve high contrast perfor-
mance while avoiding visual artifacts.

B. HUMAN PERCEPTION-BASED INDIRECT METHODS
Many indirect methods derive their transformation functions
using the just noticeable difference (JND), which is the min-
imum luminance difference that the human retina can per-
ceive. According to the Weber-Fechner law, the JND, dL/dS,
is proportional to the background luminance L, as follows:

dL
dS
= kL, (2)

where k is a perceptual constant called the Weber fraction.
From Eq. (2), the perceived brightness S can be expressed as

S =
1
k
loge L + S0, (3)

where S0 is the integral constant. Motivated by Eq. (3), var-
ious indirect methods use a logarithmic function [38] or a
GC [23]–[26] as the transformation function. However, these
functions do not match the retinal response function at low
luminance levels because the Weber-Fechner law only holds
for luminance levels greater than 102cd/m2 [39]. For this rea-
son, they often introduce over-enhancement in dark regions.
To alleviate this problem by assigning a larger dynamic
range to highly-populated luminance levels, Huang et al. [23]
proposed an adaptive gamma correction (AGC) method that
determines the gamma parameter by using the image his-
togram. In this method, the transformation function R (L) is
given as

R (L) =
(

L
Lmax

)1−CDF(L)

, (4)

where Lmax is the maximum pixel intensity and CDF(L) is
the cumulative distribution function of the input histogram.
The AGC method exhibits better performance than other
indirect methods, particularly for dimmed images. However,
this method increases the mean brightness of the image and
yields over-enhancement in dark regions and detail loss in
bright regions. To resolve these limitations, recently proposed
methods construct a sigmoid curve by modifying the GC
curve [25], [26]; however, these methods have difficulty in
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determining the optimal parameter to achieve satisfactory
enhancement performance and mean brightness preservation
at the same time.

Meanwhile, Hassan and Akamatsu [46] proposed a sig-
moid function-based transformation function R (L) which is
defined as

R (L) = L ×
(
1+ C ×

1
1+ exp (−L)

)
, (5)

where C is a scale parameter for determining the
degree of enhancement. Motivated by this approach,
Lal and Chandra [47] extended the work in [46] by modifying
Eq. (5) as follows:

R (L) = L + K1 ×
L

1− exp (K1 × (K2 + L))
, (6)

where K1 and K2 are tuning parameters. Although these
methods demonstrated the feasibility of the sigmoid curve in
contrast enhancement, they still suffer from a weak perfor-
mance as well as significant image distortion.

III. PROPOSED METHOD
A. SENSITIVITY MODEL-BASED SIGMOID FUNCTION
Stevens’ power law [32] is a well-known stimulus-response
model that covers a wider range of sensations compared with
the Weber-Fechner law. In Steven’s power law, the perceived
brightness R (L) is given by

R (L) = Lk , (7)

where the exponent k depends on the type of stimulation.
In the differential form, Eq. (7) can be rewritten as

1
R
dR = k

1
L
dL. (8)

As shown in Eq. (8), k works as a sensitivity parameter deter-
mining how fast the sensation grows as the stimulus intensity
increases. For various types of sensations, k is assumed as a
constant, resulting in the conventional GC curve. However,
because the contrast sensitivity of the human retina is adap-
tively determined by the background luminance, we model
k according to human brightness perception. As illustrated
in Fig. 1, Wyszecki and Stiles [31] showed experimentally
that the contrast sensitivity of human brightness percep-
tion, i.e., the Weber fraction, decreases exponentially as the
log-luminance increases. The fitting curve in Fig. 1 indicates
that theWeber fraction can be approximated as an exponential
function of the log-luminance. Based on these observations,
we model k as the following exponential function:

k(L) = αβ− loge(L), (9)

where α and β are parameters determining the maximum
value and steepness of k(L), respectively. By substituting
Eq. (9) into Eq. (7) and multiplying by 255, the transforma-
tion function R (L) is given as

R (L) = 255× L̃αβ
− loge(L̃)

. (10)

FIGURE 1. Weber fraction for different luminance levels. The left
(blue line) and right (red line) parts correspond to scotopic and mesopic
vision, respectively. The fitting curve (dark line) shows that the Weber
fraction can be approximated using an exponential function of the
log-luminance.

In Eq. (10), L is the original pixel intensity in the range
of [0, 255] and L̃ is the pixel intensity normalized to [0, 1]
which is obtained by

L̃ =
L − Lmin

Lmax − Lmin
, (11)

where Lmin and Lmax are the minimum and maximum inten-
sity levels of the input image, respectively. Note that we set
R
(
L̃
)
for L̃ = 0 as zero to avoid the singularity problem. The

transformation function in Eq. (10) covers the full dynamic
range [R (Lmin) = 0, R (Lmax) = 255] of a digital image.

B. AUTOMATIC PARAMETER ESTIMATION
The proposed transformation function in Eq. (10) has two
parameters, i.e. α and β. In this subsection, we analyze the
influence of these parameters on the resultant images and
introduce a novel automatic parameter estimation method.
First, we compared the output images obtained by varying
α from 0.3 to 1.1 with increments of 0.2 while keeping β
as 2.0. As shown in Fig. 2, when α increases, the output
image becomes darker. This observation indicates that the
mean brightness of the output image can be adjusted by
controlling α; α needs some constraints to avoid image dis-
tortions and flickering artifacts caused by mean-brightness
change [29], [30]. To this end, we constrained the transfor-
mation function to maintain the mean intensity level Lmean of
the original image as follows:

R (Lmean) = 255× L̃mean
αβ
− loge(L̃mean)

=Lmean, (12)

where L̃mean is the mean intensity level of the normalized
input image. By solving Eq. (12) with respect to α, optimal α
for mean-brightness preservation can be obtained as follows:

α =
loge (Lmean/255)

loge (L̃mean)
× β loge (L̃mean). (13)
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FIGURE 2. Impacts of the parameter α on the output images: (a) input
images, (b)-(f) output images at α = 0.3, 0.5, 0.7, 0.9, and 1.1, respectively.
For all images, β was fixed as 2.0.

As illustrated in Fig. 3(g), the transformation function with
α obtained via Eq. (13) maintains the mean intensity level of
the input image regardless of β value.

We also conducted extensive experiments to analyze the
effects of β on the output images by varying β from 1.0 to 3.0
with increments of 0.5. For these experiments, we set α using
Eq. (13). As indicated in Fig. 3, β controls the enhancement
degree by determining the steepness of the transformation
function. When β is too small, the enhancement performance
of the proposed method is unsatisfactory. On the other hand,
if β is too large, the transformation function has a steep
slope resulting in significant detail loss in dark and bright
regions. Therefore, to estimate optimal β that improves the
image contrast while preserving the image detail, we define
the following cost function for parameter optimization:

E (β, λ) = Ed (β)− λEe (β) , (14)

where Ed (β) is the data fidelity term, Ee (β) is the enhance-
ment term, and λ is the regularization parameter controlling
the trade-off between the data fidelity term and enhancement
term.

To prevent information loss due to the truncation of the
output pixel values, Ed is defined as the discrete entropy (DE)
loss:

Ed (β) = −
∑N

k=1
p
(
hi,k

)
log2 p

(
hi,k

)
+

∑N

k=1
p
(
ho,k

)
log2 p

(
ho,k

)
, (15)

FIGURE 3. Effects of the parameter β on the output images: (a) input
image, (b)-(f) output images at β = 1.0 (conventional gamma curve),
1.5, 2.0, 2.5, and 3.0 respectively, and (g) corresponding transformation
functions with the mean brightness of the input image (red circle). For all
images, α was estimated by using Eq. (13) for mean brightness
preservation.

where p (·) is the probability mass function, hi is the k-th bin
of the original histogram, and ho is the output histogram
obtained by using Eq. (10) with given β.

For the enhancement term, we employ PixDist method [40]
which measures the gray-level difference of all pixels in the
image:

Ee (β) =
1

N (N − 1)

∑N

i=1

∑N

j=i
ho (i) ho(j)(j− i). (16)

This term results in a high score when the image histogram
is uniformly distributed without being concentrated in par-
ticular gray-levels. To find optimal β minimizing the cost
function E(β) in Eq. (14), we employ the golden section
search algorithm [50] which evaluates E (β) at triples of
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points whose values form the golden ratio and successively
narrows the search interval. In this algorithm, we use the
initial interval as [1.2, 2.4] and the iteration process contin-
ues until the bracketing interval [βl, βu] is tolerably small(
βu − βl < 10−4

)
or a maximal number of iterations is

reached (Kmax = 500).

IV. EXPERIMENTAL RESULTS
550 test images were taken from three datasets
in [41]–[43] for a comparison of the proposed method (sen-
sitivity model-based sigmoid curve, SMSC) with weighted
adaptive histogram equalization (WAHE) [1], contextual and
variational contrast (CVC) [20], layered difference represen-
tation (LDR) [11], adaptive gamma correction (AGC) [23],
fuzzy-contextual contrast enhancement (FCCE) [45], two
sigmoid function-based methods [46], [47], and some recent
direct methods [38], [48], [49]. The conventional methods are
implemented by employing the default parameters provided
by the authors. The average processing time is tested on each
dataset using a desktop machine with Intel i5-3550 3.30 GHz
CPU and 8GB RAM.

To determine the optimal value for the parameter λ,
we first tested the proposed method on the Berkeley image
dataset [43] by changing λ from 0 to 0.05 with 0.001 steps
as demonstrated in Fig. 4. For large λ, the proposed method
provided considerable improvement in image contrast as
shown in PixDist scores, but resulted in significant detail
loss as indicated in DE scores. To achieve high enhancement
performance while preventing detail loss, λ was empirically
set as 0.015 for objective and subjective assessments. To pre-
vent color distortion, the image was first converted to the
HSV color space, and only the luminance channel V was
processed, while the H and S channels remained unchanged.

A. OBJECTIVE ASSESSMENT
For an objective assessment, we employed the measure of
contrast enhancement (EME) [3], absolute mean brightness
error (AMBE) [30], gradient magnitude similarity devia-
tion (GMSD) [44], and discrete entropy (DE) measures.
Table 1 shows the average test image performance with the
average processing time for each of the datasets. The best
and second-best results in each category are in bold and
underlined, respectively Owing to space limitations in the
table, we omitted the standard deviation of the data.

First, EME measures the average contrast of an image
based on Weber contrast. For EME, the enhanced image X
was divided into N sub-blocks Xi,j of size w×h, and the ratio
of maximum to minimum gray-level of each sub-block was
calculated. Then, the average ratio is calculated as the final
score. The EME is computed as:

EME(X )=
1

W×H

∑W

i=1

∑H

j=1
20 ln

max(Xi,j)

min
(
Xi,j
)
+δ

, (17)

where max(Xi,j) and min(Xi,j) are the maximum and
minimum pixel intensities in sub-block Xi,j, respectively.

FIGURE 4. Effects of the parameter λ of the proposed method on the
enhanced images obtained by using Berkeley image dataset [43]: (a)-(b)
output images at λ = 0 and 0.05, respectively, (c) average discrete entropy
(DE) scores, and (d) average PixDist [40] scores.

In Eq. (17), δ was set as 0.0001 to avoid division by zero and
w× h was set as 8 × 8.

Second, AMBE measures the absolute difference of mean
pixel intensities between the input and enhanced images as
follows:

AMBE(X ,Y ) =
1

W × H

∑W

i=1

∑H

j=1
|Y (i, j)− X (i, j)| ,

(18)
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TABLE 1. Objective assessment of enhancement methods using the four measures: Measure of Contrast Enhancement (EME) [3], Absolute Mean
Brightness Error (AMBE) [30], Gradient Magnitude Similarity Deviation (GMSD) [44], and discrete entropy as well as average processing times. The best
and second-best results in each category are in bold and underlined, respectively.

where Y is the input image. A lower AMBE score
indicates that the corresponding enhancement method
effectively preserved the mean-brightness of the input
image.

Third, GMSD computes the pixel-wise gradient- magni-
tude similarity between the input and enhanced images and
then measures the standard deviation of the overall gradi-
ent magnitude similarity as the final score. A lower GMSD

score indicates less image distortion between the input and
enhanced images.

Lastly, DE measures the amount of information in an
image. A high DE score indicates that the image con-
tains more information. Owing to the information processing
inequality, the output image produced by using a global trans-
formation function cannot have a higher DE than the input
image [11].
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FIGURE 5. Enhanced images of the ‘‘Giraffe’’ image from the Berkeley image dataset [43]: (a) input image, (b) NPEA [38],
(c) LSCN [48], (d) RSIE [49], (e) WAHE [1], (f) CVC [20], (g) LDR [11], (h) AGC [23], (i) FCCE [45], (j) CESF [46], (k) EACE [47],
and (l) proposed method.

According to the EME results, LSCN and the proposed
method exhibited the best performance in each category.
However, LSCN resulted in significant image distortion as
shown in GMSD scores and required much higher compu-
tational complexity than the proposed method. On the other
hand, the proposed method prevented both mean-brightness
change and image distortion as indicated in AMBE and

GMSD scores. In addition, RSIE achieved comparable per-
formance to the proposed method, but this method had about
50 times higher computational complexity than the proposed
method.

Among the conventional indirect methods, LDR, FCCE,
and EACE produced high contrast images with regard to
EME scores. However, LDR showed a weak performance
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FIGURE 6. Enhanced images of the ‘‘Eagles’’ image from the USC-SIPI database [42]: (a) input image, (b) NPEA [38], (c) LSCN [48], (d) RSIE [49],
(e) WAHE [1], (f) CVC [20], (g) LDR [11], (h) AGC [23], (i) FCCE [45], (j) CESF [46], (k) EACE [47], and (l) proposed method.

in mean-brightness preservation, especially for USC-SIPI
database and Berkeley image dataset, as indicated in AMBE
scores. For EACE and FCCE, the output images suffered
from severe image distortion as shown in GMSD scores.
In contrast, as indicated in EME scores, the proposed method
achieved 16.7% better enhancement performance compared
with the EACE algorithm which provided the second-best
enhancement performance. In addition, the proposed method
achieved 54.5% less mean-brightness change and 76.2%
less image distortion than EACE as indicated in AMBE
and GMSD scores, respectively. As indicated in DE scores,
the proposed method demonstrated the second-best detail

preservation among indirect methods. Although FCCE pro-
vided the highest DE scores, FCCE contains the local
processing where the output pixel intensity is adaptively
obtained by combining the input pixel intensity and the
transformation function result. On the other hand, the pro-
posed method yielded excellent DE scores without any local
processing.

It is noteworthy that the proposed method achieved higher
enhancement performance, lower mean-brightness change,
and less image distortion with lower computational complex-
ity at the same time compared with CVC, LDR, and FCCE
which construct their transformation functions by using the
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FIGURE 7. Enhanced images of the ‘‘Tank’’ image from the USC-SIPI database [42]: (a) input image, (b) NPEA [38], (c) LSCN [48], (d) RSIE [49],
(e) WAHE [1], (f) CVC [20], (g) LDR [11], (h) AGC [23], (i) FCCE [45], (j) CESF [46], (k) EACE [47], and (l) proposed method.

mutual relationship between each pixel and its neighboring
pixels.

B. SUBJECTIVE ASSESSMENT
Although an image has higher quantitative measures than
other images, its subjective visual quality may not always
superior accordingly [11], [45]. For this reason, this section
presents examples of enhanced images for a subjective
assessment of their visual qualities and conducts a compar-
ative analysis of the properties of the proposed method and
the conventional methods.

Fig. 5 demonstrates the enhanced images of the ‘‘Giraffe’’
image in Berkeley image dataset, which looks dull since pixel
intensities are mainly distributed in the range of [90, 160].
In this figure, WAHE and EACE showed poor performance
and NPEA, AGC, and CESF produced brightened images
with low contrast. Whereas, CVC and FCCE caused visual

artifacts due to over-enhancement in the background region.
Although LSCN, RSIE, and LDR yielded good enhance-
ment performance, the output images suffered from noise
amplification in a sky region. On the other hand, the pro-
posed method efficiently improved the image contrast while
preventing considerable mean-brightness change or noise
amplification.

Fig. 6 illustrates the enhanced images of the ‘‘Eagles’’
image in USC-SIPI database, which mainly consists of a sky
region with similar pixel intensities in the range of [100,
140]. As shown in Fig. 6, RSIE, WAHE, CVC, LDR, FCCE,
and EACE resulted in contouring artifacts in the sky region
and NPEA produced the output image with poor contrast.
In the cases of LSCN, AGC, and CESF, they gave excessively
brightened images. On the other hand, the proposed method
provided distinctive silhouettes of the eagles while preserving
the mean-brightness of the input image.

VOLUME 7, 2019 161581



S. Park et al.: Contrast Enhancement Using Sensitivity Model-Based Sigmoid Function

In the case of the ‘‘Tank’’ image in Fig. 7, the input
image suffers from low contrast since pixel intensities are
mostly distributed in the range of [100, 160]. In LSCN,
RSIE, LDR, AGC, and CESF, the mean-brightness values
of the enhanced images were much higher than that of the
input image. Even though CVC and FCCE achieved high
enhancement performance, they produced visual artifacts
caused by over-enhancement in the ground region. On the
other hand, the proposed method improved image contrast
without changing the mean-brightness and revealed hidden
details of the tank.

V. CONCLUSION
We presented a novel contrast enhancement method using
a sigmoid function based on the contrast sensitivity of the
human retinal-photoreceptor. We modeled the contrast sen-
sitivity as an exponential function of the log-intensity and
derived a sigmoid function using the contrast sensitivity
model. The optimal parameters for the proposed contrast
enhancement method were estimated by employing a cost
function that maximized the image contrast while preventing
information loss. The proposed method not only had low
computational complexity but also exhibited superior perfor-
mance to state-of-the-art methods with regard to the contrast
enhancement degree and mean-brightness/detail preserva-
tion. The proposed transformation function, which has the
advantages of simplicity and effectiveness, may be applicable
to other types of image processing such as tone mapping
and low-light image enhancement. In future work, we will
attempt to improve the detail-preservation performance of the
proposed method by using local structural information such
as a Retinex theory, 2-D histogram, or gradient distribution.
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