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ABSTRACT Drowsiness/sleepiness is a serious issue that needs to be addressed for improvement in
the safety of road driving. Past statistical data on road accidents has shown enormous increases in car
crashes due to drowsy/sleepy feelings. This study comprehensively summarizes all aspects of the drowsy
state and its effects during car driving: its symptoms, causes, preventive actions, car accident statistics,
sleep stages, and the behavioral, physiological and neural activation changes occurring during wakefulness
and in the drowsy state. It considers drivers’ behavioral data and corresponding methodologies for its
analysis, the biomedical signals of the human body (including neuronal signals in the forms of electrical
and hemodynamic responses), and their use for drowsiness detection. All of the existing methodologies,
their uses and pros and cons, are comprehensively summarized. A detailed survey of the data published by
neuro-imaging methodology-, physiological signal- and behavioral methodology-based studies in addition
to studies using electro-mechanical installed sensors are statistically and theoretically summarized. Addi-
tionally, the neuronal activity occurring during the drowsy and awake states are analyzed, and the important
contributions of fNIRS, fMRI and EEG in this context are discussed in detail. Differing existing drowsiness-
detection systems installed in popular car brands also are reviewed. Finally, the remaining challenges and
future suggestions for drowsiness-detection systems are summarized as well.

INDEX TERMS Drowsiness, fatigue, functional near-infrared spectroscopy, functional magnetic resonance
imaging, electroencephalography.

I. INTRODUCTION
Car driving in a drowsy state or with attention distraction
is a serious problem that results in large numbers of cars
crashes each year [1], [2]. Such crashes lead to great loss
of life as well as countless injuries and disabilities [3].
The statistical data on car crashes available at the national
highway and traffic safety departments of many countries
shows the alarming figures of 1.4 million deaths and up
to 50 million minor or serious injuries [4]. The Highway
and Traffic Safety Administration (USA) has estimated that
around 100,000 car crashes are due to drowsiness, sleepy
feeling or fatigue [1], [3], [4]. Figure 1 plots the highway
car crash data for the last 25 years in the USA. Sleep is a
neuro-biological need of healthy humans [5]–[7]. In general,
sleepiness/drowsiness can be defined as slow and gradual loss
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of the human brain’s processing efficiency [8]–[10]. Thus,
during the drowsy stage, there is a load on the human brain
that renders difficulty in the performance of tasks that would
be easily done in the alert stage. The gradual loss in efficiency
results from malfunction of the cortical network for decision-
making [8], [11]. Such situation leads in cutting off complex
network performing their jobs based upon visual, hearing
and sensing etc. Therefore, an increase in the global level
of coherence of cortical electric activity which indicates the
drowsiness [12]–[14].

Drowsiness is associated with a gradual decrease in
response time, less vigilant behavior, deficiency in processing
of available information and errors in short-term memory.
The driver’s drowsy state or sleepy behavior results in loose
control of his car, which later might collide with either
other moving vehicles or certain stationary objects [3], [10].
Several researchers and car manufacturers are working hard
to develop methodologies that can be used to prevent such
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FIGURE 1. Total number of car accidents per year as observed by National
Highway Traffic Safety Administration (NHTSA), USA.

accidents [2]. There are two possible ways to avoid acci-
dents. The first is the use of preventive measures, by which
a driver is monitored, and an alarm is displayed to advise
him/her to stop the car during a dangerous mental stage.
The second is the abnormal situation in which a driver is
deemed to be asleep and car systems automatically control
the vehicle to avoid accidents until it can be safely stopped.
Cortical-activity-related signals are nothing but measures of
chemical ion change/signaling. These chemical ion changes
can be measured through positron emission tomography
(PET), or by blood oxygen level dependent (BOLD) func-
tion via functional magnetic resonance imaging (fMRI)
[15]–[17], the hemodynamic-related signal detected by func-
tional near-infrared spectroscopy (fNIRS) [18]–[20], and
indirect measurement of electrical activity by electroen-
cephalography (EEG) [13], [21]. These cortical-activity-
measuring techniques were initially used to compare main
signals during activity and resting states and, thereby, to char-
acterize externally applied stimuli [22], [23]. However, it is a
well-established fact that substantial electric and metabolic
activity exists in the brain even during the resting state of
wakefulness [12].

Over the years, researchers have developed methodolo-
gies to predict or indicate the drowsy state prior to a colli-
sion [8], [24], [25]. Generally, these methodologies can be
categorized into three main streams: vehicle-based sensors
that predict a drowsy or unusual state [26]–[29]; observa-
tion of driver-behavioral data [30], [31], and measurement
of drivers’ physiological signals [32]–[35]. Vehicle-based
sensing may be done by steering wheel data, steering wheel
angle, the applied pressure pattern on an acceleration pad-
dle, lane-position indication by an external visual sensor,
and/or a pressure sensor installed inside of the driver’s
seat [36]–[38], among other means. The behavioral aspects of
a driver may be determined by continuous recording through
a camera installed in the dashboard to observe eye-closure
time, eye-blinking frequency, movement and pose of the
head, yawning and eye openings, etc., [36], [39]. Simi-
larly, physiological data on a driver can be observed to
detect the drowsy state. These signals include heart rate,

TABLE 1. Car crashes site information in cases of driver’s
drowsiness/sleepiness.

the time delay between each heartbeat, ECG signals, res-
piration rate, pulse pattern, etc., [26], [40]. In addition to
these measurements, nowadays, cortical signals are also an
indicator of different brain conditions, especially the drowsy
state [12], [17], [19], [24], [40]–[44].

Accidents that result due to the drowsy state of drivers
have certain common features that traffic safety personnel
normally observe. These features include but are not limited
to (1) driving during late-night hours (2:00 AM to 6:00 AM)
or after mid-afternoon (3:00 PM to 5:00 PM); (2) driv-
ing on highways/expressways; (3) drifting of only one car;
(4): young drivers; (5) non-application of brakes; (6) one per-
son only is in the car; (7) lack of safety measures at accident
sites; (8) blood-alcohol level of the driver being over the limit
for safe driving; (9) vehicle drifting from the road or colliding
with another vehicle [29], [45]–[49]. Table 1 summarizes the
symptoms observed of car crashes resulting from a driver’s
drowsy state.

II. DROWSINESS AND ITS CLINICAL SYMPTOMS
A comfortable and good level of sleep is a crucial part of body
health. Sleep is defined as a specific time span reserved for
the rest of the human body and cortical functions to reduce
body and mental fatigue for healthy functionality [8]. It is
logical that during sleepiness/drowsiness, the consciousness
of the brain is partially suspended [8], [29]. It is very difficult
to measure the sleep time required for healthy functionality of
the brain and human body and more specifically the specific
time of each stage of sleep [12], [50]. The National Sleep
Foundation (NSF; USA) recommended that a new-born baby
needs 14-17 hours (h) of sleep, that infants require 12-15 h,
toddlers 11-14 h, preschoolers 10-13 h, primary-school-going
children 9-11 h, teenagers 8-10 h, young adults 7-9 h, adults
7-9 h, old people 7-8h∗. A pictorial view of sleep require-
ments is provided in Figure2.

Normally rapid eye-movement (REM) sleep, on average,
accounts for 20- 25% of total sleep time. Sleep depriva-
tion/drowsiness at any time of day is one of the symptoms
indicating an inadequate duration of sleep [8]. Such symp-
toms are dominant during the late hours of the day and
the early morning [29]. Alcohol and drugs worsen sleep
deprivation/drowsiness symptoms, and caffeine/tea has less
effect in overcoming sleep deprivation than is commonly
supposed. The drowsiness feeling that occurs during daytime
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TABLE 2. Symptoms, causes and reduction strategies for drowsy state.

FIGURE 2. Sleep requirements by age group for healthy functionality of
daily life.

is caused by several factors [26], [29]. The first and most
important factor is poor sleep quality. Insomnia is one cause
of poor sleep quality. It is characterized by a person’s unsuc-
cessful efforts to sleep that last for more than one-half hour.
Also includes periodic disturbances during sleep. Another
fundamental reason for poor sleep quality is an uncomfort-
able sleeping environment. It includes uncomfortable light,
acoustic disturbances, etc. In addition, inadequate breathing
flow, with an insufficient amount of oxygen, can be a cause of
restless sleep that results in a drossiness state during daytime.

Table 2 summarizes drowsiness symptoms and causes.
Pressure on the eyes, fatigue and headache, and restless-leg
syndrome are major indications of the drowsiness state.
Drowsiness can be overcome by 15- 20 minutes of sleep
(a nap), a cup of coffee, a shower, and other means.

III. SLEEP CLASSIFICATION AND STAGES
The sleep/drowsiness process can be divided into four stages
of sleep [12], [51]. These stages are termed as stage 1, stage
2, stage 3 and stage 4. The first three stages are part of
non-rapid eye movement (NREM), and the final stage is
named rapid eye movement (REM) in the literature [52].
Stage 1: During stage 1 the body feels fatigue and tends to
relax, and this may cause jerks and abrupt changes in body
position. The drowsiness level in stage 1 can easily be dis-
connected/disrupted by external stimulation of low intensity.
Mostly, stage 1 is related to the alfa range of an EEG signal.
The patterns and characteristics of the cortical signal during
stage 1 are similar to cortical activity related to someone who

is relaxing. The later stages of stage 1 produce further low-
frequency signals in the range of theta waves [53]. Stage 2:
In this stage, the slow movement of the eye balls starts to be
discontinuous; this is the first stage of NREM. It is not easy
to stay awake by low-intensity external stimulation. There are
two characterizing features during this stage, namely, sleep
spindles and k-complexes [54]. During stage 2, the body tends
to move into a deep/further-relaxation mode with dominating
theta wave activity including bursts of spikes in electrically
measured signals known as sleep spindles. Thus, sleep spin-
dles are high-frequency cortical-electrical signals that exist
in the form of low-frequency waves. Similarly, k-complex is
a very low-frequency pattern with relatively high amplitude
signals, and is often measured in stage 2. Stages 3 &4:
These stages are referred as deep sleep with relatively low-
frequency waves less than 4 Hz with relatively high ampli-
tudes [7], [8]. The frequency of waves in these stages are
those of delta waves [11]. A human is less effected by external
stimulation during this stage. REM Sleep: This stage of
sleep is referred to as rapid eye movement sleep (REM). The
cortical signals observed in this stage are very similar to those
measured during wakefulness [55]. This is commonly known
as dreaming sleep, and all muscles are paralyzed with the
exception of those that are related to the respiratory system,
cardiopulmonary system, etc. Sleep deprivation or drowsi-
ness symptoms prevailing for longer times are associatedwith
negative consequences for the human body and functionality.
Table 3 below shows the systems and frequencies of cortical
signals, biological processes and physiological signals during
each stage of sleep.

IV. EVALUATION OF DROWSINESS/FATIGUE
AND SLEEP LEVEL
It is very important to analyze and evaluate the level of
drowsiness. The literature shows that there exist several meth-
ods and strategies that can be utilized to measure drowsiness
levels. The details of these methods are given below.

A. EPWORTH SLEEPINESS SCALE
Dr.Murray Johns (Melbourne, Australia) developed amethod
of assessing average sleep and drowsiness levels [56]. This
method consists of a simple questionnaire having eight ques-
tions with numeric answers in the range of 0-3. A cumulative
score of eight answers is divided among five groups: normal
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TABLE 3. Sleep stages and corresponding biomedical information.

sleep (0- 5), higher normal sleep (6- 10), mild-excessive
sleep (11-12), moderate-excessive sleep (13- 15), and severe
excessive sleep (16- 24) [57]. This is the most utilized method
for analysis of drowsy/sleep stages, especially during day-
time [56].

B. MULTIPLE SLEEP LATENCY TEST
This test is based on the fact that persons who fall sleep
quickly are considered to be drowsier [58]. This test mea-
sures small intervals of sleep-oriented situations throughout a
day [59], [60]. On the basis of sleep stages, it is concluded that
a person is drowsy, if he falls asleep within five minutes [61].
The multiple sleep latency test (MSLT), which measures the
ability to fall asleep under soporific conditions, is the current
gold standard for quantifying daytime sleepiness [62].

C. STANFORD SLEEPINESS SCALE
The Stanford sleep detection system consist of seven state-
ments through which a person’s level of wakefulness is eval-
uated [63], [64]. A subject chooses a single number from
a list by evaluating personal symptoms mentioned in that
list [65], [66].

D. KAROLINSKA SLEEP TEST
This is a similar test to the Sandford sleepiness scale. A sub-
ject rates his/her current feeling by choosing a number
from a list of levels 1-9, depending upon the closest situ-
ation mentioned in each level [67]. The Karolinska Sleep
Test (KST) stages are divided into ‘‘very-alert’’, ‘‘very-
sleepy’’, ‘‘fighting-sleep’’, and ‘‘an effort to remain awake’’
based on nine-steps [68]. It has already been validated against
physiology and performance measures [69].

E. ELECTROCARDIOGRAM (ECG)
In this methodology, a human subject’s heart rate is evalu-
ated [70], [71]. There are two possible procedures. In the
first one, heart rate is measured. It is a well-established
fact that during sleep stages or drowsiness, the heart rate
starts to decrease [72]. It is important to mention, too, that

reduction of heart rate is also observed at nighttime while
driving during late hours. The second procedure entails detec-
tion of heart rate variability, i.e., the time interval between
pulses [73], [74]. The previous literature shows that the heart
rate variability of an awake person manifests high-frequency
signals, whereas sleep-deprived or drowsy persons show low-
frequency heart rate variability [75]–[77]. Respiration rhythm
is another important parameter that can be a potential dis-
criminatory feature for the drowsy/alert states. According to
the literature, the frequency of the breathing pattern decreases
during the drowsy state.

F. ELECTRO-OCULOGRAM (EOG)
This method estimates alertness level based on eye move-
ment [78]. Specifically, it measures the electrical signal repre-
senting the potential difference between the cornea and retina
of a subject’s eye [79], [80]. In this method, an electrode is
placed near the end of each eye and another is placed at top
of the eye. Later, signals are classified for eye movement.
In cases of a slower rate of eye movement than is normal,
the subject is declared to be in the drowsy state [81]. Several
studies in the past have utilized this methodology to access
the drowsy state with accuracy [78]–[82].

G. HEAD MOVEMENT
It is a well-established fact that during the sleepy/drowsy
state, the human body starts to feel relaxed due to fatigue
caused by work load [83]. Thus, the head movements of
normal and drowsy persons will have different characteris-
tics [84]. A drowsy person will show head nodding, means
to say, sudden changes of head position. This condition can
be measured using visual or motion sensors. This method has
been shown to be a potential choice for detection of drowsy
stages [83]–[87].

H. JAW MOVEMENT
It is common practice for a wakeful person to inhale air with
ordinary movement of the jaw [88],whereas a tired person
will open up the jaw much more widely [89]. This can easily
bemeasured through a simple camera that operates based on a
pattern recognition methodology. Several studies in past have
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experimented with human subjects and animals for detection
of sleep symptoms [88]–[92].

I. EYE BLINKING
Eye blinking is another discriminatory feature for detection
of alertness [93]. It can be observed in several ways. One of
them is to detect the opening of the eyelids. It is common
that during fatigue situations, the gap between eyelids tends
to decrease. Similarly, another way could be to measure eye-
blinking frequency. A drowsy-state person tends to manifest
a high eye-blinking frequency as compared with an awake
person [93]–[95].

V. NEUROLOGICAL EVIDENCE OF DROWSINESS
Technological development has enabled humans to measure
cortical signals indicative of different brain states [96]. These
findings can be helpful for avoidance of car crashes and
prediction of brain statesmuch earlier than the points at which
collisions happen [19], [29], [51]. fNIRS, EEG and fMRI,
being non-invasive methodologies, are useful for such inves-
tigations [37], [97]–[101]. Among them, EEG and fNIRS
are at competitive positions due to additional advantages of
portability, low cost, and acceptable temporal and spatial
resolutions [96], [102], [103]. In past, different sensors have
been utilized by car manufacturers to detect and indicate
drivers’ drowsiness state. Nonetheless there are still many car
crashes due to drowsy feelings. Therefore, several researchers
have initiated efforts to find and predict drowsy states using
neuro-activation data. EEG-based drowsiness/sleep-related
findings have been published most frequently in the past
50 years. Also, the symptoms of drowsiness and their corre-
sponding effects on the hemodynamic response have begun
to be more closely scrutinized. We have analyzed the pub-
lished data of drowsiness/sleep/fatigue studies and found very
interesting results. Figure 3 summarizes the details of pub-
lished articles related to drowsiness/sleepiness and fatigue
based on EEG, fNIRS and fMRI. All the statistics presented
in Figure 3 is collected through Web of Science by putting
different keywords. The keywords used for search are EEG+
drowsiness, EEG + sleep, EEG + fatigue, fMRI + drowsi-
ness, fMRI + sleep, fMRI + fatigue, fNIRS + drowsiness,
fNIRS + sleep and fNIRS + fatigue, A relative-percentage
analysis of the published results also is presented in Figure 4.
They show that most of the drowsiness-related studies pre-
senting neuronal-activation-based findings have been based
on EEG.

A. FUNCTIONAL NEAR-INFRARED SPECTROSCOPY
(FNIRS)-BASED FINDINGS
Ahn et al. (2016) [40] evaluated the neuro-physiological cor-
relates of drivers’ mental conditions. This study compared
well-rested individuals with sleep-deprived persons using
eight-channel fNIRS in addition to EEG and biological sig-
nals. The authors found that the dHbO of the well-rested
controls was higher than that of the sleep deprived. The dHbR
of both groups showed much closer patterns. The authors

FIGURE 3. Publication record for drowsiness, sleepiness and fatigue
according to neuro-imaging modalities.

FIGURE 4. Percentages of published articles addressing drowsiness (D),
sleepiness (S) and fatigue (F) according to EEG (E), fMRI (M) and fNIRS (N).

also calculated driving-condition level scores to discrim-
inate well-rested and sleep-deprived persons. Khan et al.
(2015) [19] implemented linear discriminate analysis (LDA)
to detect drowsiness by utilizing eight different features from
optical data with different windows of 0∼15 seconds. Their
results suggested that mean accuracies of 83.1% to 84.9%
could be achieved by using these features: mean HbO, sig-
nal peak, and sum of peaks. The authors have divided the
scanning area into three regions, concluded that, on aver-
age, dHbO has a relatively higher concentration during the
drowsy state. Li et al. (2018) [116] evaluated 13 individ-
uals ina seven-hour driving simulation test by observing
optical signals from the pre-frontal cortex. They found that
a specific area therein showed increased dHbO and dtHb
as the time of driving increased. Nugyun et al. [5], [97]
analyzed fNIRS and EEG signals in addition to biological
signals to discriminate drowsy and awake states. They uti-
lized classical LDA and found that dHbO and the beta power
in the frontal lobe were significantly different during the
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two states. They found that the mean values of the awake
and drowsy states for dHbO were 0.019 and −0.017, respec-
tively, and for dHbR, were −0.003 and 0.005, respectively.
Borragen et al. (2018) [117] analyzed mental fatigue using
trans-cranial current stimulation (tDCS) and observed cor-
tical oxygenation changes by fNIRS in the frontal cortex.
They concluded that tDCS, in comparison with the sham con-
dition, failed to counteract cortical-fatigue-related changes,
whereas tDCS combined with induction of cortical fatigue
shifted the inter-hemispheric oxygen level in the post-training
resting state. In an interesting study by Liu et al. (2014)
[110], a positive correlation between drowsy state and pre-
frontal activation was found by experimenting with a simu-
lated environment in which a speed-control driving task was
performed. The level of drowsiness was evaluated through
a five-item Likert-type questionnaire. An increase in pre-
frontal activation was observed via fNIRS during the drowsy
state. Cai et al. (2017) [118] investigated fatigue level using
fNIRS by parietal-occipital scanning. They found a spatial
correlation between the occipital cortex and binocular depth
perception. Chuang et al. (2018) [119] investigated four
different regions, namely the parieto-occipital, motor-right,
motor-left and frontal cortex, to discriminate the drowsy
state. They concluded that there was a significant increase
in dHbO power in those regions during the deviation periods.
In an interesting work by Karageorghis et al. (2018) [134],
the authors found that music behaves as a potential candidate
for prevention of internal fatigue-related hemodynamic sig-
nal measured through fNIRS. Mehta and Rhee (2017) [135]
analyzed social stress and its effects on pre-frontal cortex
HR signals by experimenting with 60 adults and children
based on motor tasks. The results suggested that aging results
in decreased force-steadiness with a significant increase in
bilateral pre-frontal cortex activity. In an earlier work, Mehta
et al. (2015) [136] concluded that stress fatigue has different
patterns for fat/obese people than for people of normal BMI.
It could therefore be concluded that obese persons must be
more careful while driving because they may have drowsy
feeling much quicker than non-obese people. A very impor-
tant study byMuthalib et al. (2013) [120] investigated mental
fatigue in relation tothe motor- and pre-frontal cortices by
stimulation via trans-cranial direct-current stimulation. The
pre-frontal cortex was scanned through fNIRS while for the
motor cortex, tDCS was applied. They found higher activity
in the pre-frontal cortex during task failure irrespective of the
tDCS-application conditions. Ochi et al. (2018) [121] pre-
sented results for pre-frontal activation in a hypoxic environ-
ment based on an analysis of15 healthy subjects performing
a color word strop task both before and after a 10-minute
moderate-intensity exercise. They concluded that hypoxic
exercise reduces left-dorso-lateral pre-frontal cortex activity.
Such conditions could be related to the enclosed environment
of a car during a long drive. Rhee andMehta (2018) [122] pre-
sented results showing that females have more motor fatigue
than males based on an analysis of obese and non-obese per-
sons. Richter et al. (2018) [123] analyzed pre-frontal cortex

hemodynamic signals under visual fatigue. Their findings
suggested that hemodynamic activity during visual fatigue
is influenced by time. Xu et al. (2017) [42] analyzed the
functional connectivity for a long driving simulation task
coupled with mental calculation tasks in order to investigate
fatigue. They concluded that the pre-frontal and motor cortex
are closely connected during mental fatigue. Harrivel et al.
(2013) [18] analyzed functional neuro-imaging data to dis-
criminate alertness and rest periods. The authors defined two
regions: one related to high levels of task engagement, called
the task-positive region, and the other related to low levels
of engagement, called the task-negative region. The authors
claimed that for the first time, it was possible to detect,
through fNIRS, a negative correlation between HR activity in
the key areas of the task-positive and task-negative regions.
These methods could be helpful for monitoring of atten-
tion/alert states using fNIRS. Bu et al. (2018) [137] effec-
tively showed that wavelet phase coherence (WPC) and the
wavelet amplitude of dHbO are discriminatory features for
analysis of poor-quality sleep. They analyzed 15 poor-quality
sleep (PQS) individuals in comparison with 14 healthy con-
trols, having scanned their pre-frontal, sensory motor and
occipital lobes using fNIRS. They found that theWPC values
of PQS were lower than those of the healthy individuals. This
finding suggests that individuals could be scanned before
long driving to avoid any drowsiness condition in cases of
poor sleep. Chaung et al. (2018) [119] tested16 individu-
als in an event-related lane-departure experiment of 1 hour
duration. The results indicated that dHbO increased while
the driver was fighting fatigue. Table 4 summarizes the work
done to detect drowsiness by utilizing fNIRS and the corre-
sponding contributions.

B. FUNCTIONAL MAGNETIC RESONANCE IMAGING
(FMRI)-BASED FINDINGS
The characterizing feature for any cortical imaging devices
are temporal and spatial resolutions [96]. Functional mag-
netic resonance imaging (fMRI) has better spatial resolu-
tion than EEG or fNIRS [104]. However, at the same time,
it entails a huge setup, making it unsuitable for any portable
job [105]. Additionally, regular analysis of a driver’s drowsi-
ness state by fMRI is very difficult. On the other hand,
the findings of fMRI can be beneficial to any brain-state anal-
ysis seeking to localize specific brain areas showing response
under sleepy/drowsy and alert/awake conditions [16]. Also,
fMRI data’s correlation with EEG and fNIRS data offers
a great potential for clearer and more concrete findings
for those two latter modalities [12], [106]. In this context,
Allen et al. (2018) [125] analyzed the connectivity patterns
of brain networks during eyes-open and eyes-closed states.
Several existing methodologies have been used to explore
functional connectivity and its usefulness for understand-
ing and characterizing brain states responsible for partic-
ular tasks [107]. Allen et al. (2018) [125] suggested that
it is very important to analyze drowsiness level in both
eyes-closed and eyes-open states, and indeed, the authors
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TABLE 4. Summary of fNIRS-based neurological findings related to drowsiness, fatigue and sleep stages.

showed that –the two states respond in common and also
manifest different connectivity patterns from those associated
with EEG-spectral signatures. In another study, Tagliaznc-
chi and Laufs [108] and Tagliazncchi et al. [109] analyzed
functional connectivity under the sleep and awake conditions.
Their findings indicated an increase in network modality
during the N3 sleep stage in comparison with the alert/awake
state. Haimovici analyzed brain network connectivity pat-
terns during wakefulness. They observed that the clustering
of dynamic functional connectivity upon short time windows
reflected fluctuation in wakefulness. This report validated
the previous findings of increased modularity during non-
REM sleep. Horavitz et al. [12] investigated different lev-
els of consciousness (i.e., alert state)under light-sleep and
drowsy conditions. They found a significant increase in
BOLD-signal fluctuations in the visual cortex in addition
to other cortical areas, though the visual cortex fluctuations
were the most significant. For the drowsy state, meanwhile,
they observed a correlation with the default mode network
(DMN). Their findings suggests that DMN and primary
sensory cortices activities do not require a level of conscious-
ness. Drummond et al. [55] observed increased pre-frontal
activation during the drowsy state by experimenting with

a divided-attention task utilizing fMRI. Ong et al., (2015)
[127] analyzed spontaneous eye-closure activity. Such activ-
ity is frequently adopted by individuals insleep-deprived
conditions. The authors observed concurrent and extensive
hypnagogic co-activation of the visual, auditory and somato-
sensory cortices and DMN as well. Since spontaneous fluc-
tuations of the eye are indicative of the drowsy state, visual
auditory andDMNcould be scanned through portable devices
for determination of sleep-deprived drivers and fatal acci-
dents could be avoided. Poudel et al. (2014) experimented
with 20 healthy humans in the well-rested condition (i.e.,
they were not sleep deprived). The participants were put
through a 50-minute driving task. All of the experiments
were recorded through a camera. The visual recordings
showed micro-sleep behaviors of around 70% of the sub-
jects. The fMRI recording during the experiments suggested
increases/decreases of activity patterns in different brain
regions. Thalamic posterior-cingulate and occipital cortex
activities were observed to be decreased, whereas frontal,
posterior and parietal activities were found to be increased,
during short intervals of sleep recorded through the camera.
Stern et al. (2011) [6] analyzed the source localization and
function of vertex sharp transient, which is a marker of the
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TABLE 5. fMRI-based previous studies for detection of drowsiness/ sleep stages.

NREM sleep stage in EEG data. The simultaneous recording
of EEG and fMRI showed that the primary sensory cortex is
responsible for sharp transient ejection. The drowsy feeling
could also be the result of motor fatigue. Duinen et al. (2007)
[129] comprehensively analyzed the relation of fatigue with
cortical activation. Their observation showed an increase in
motor and bilateral orbito-frontal activation with increasing
motor activity in cases of fatigue. However, the activation
clusters were small. The brain stem is involved in the control
of several important brain functions that operate the human
body. These functions include respiration rhythms, heartbeat,
and sleep cycles, among others. It is difficult to record func-
tional data of the brain stem through fMRI, since its location
is very close to major arteries adjacent to pulsatile cere-
brospinal fluid-filled spaces [41]. Thus, alternatively, indirect
measurement or some network activation can be analyzed
through fMRI during sleep or drowsy feelings. Sleepiness
behavior and cortical responses vary over the course of the
24 hours of each day, depending on sleep conditions, work
load, and, specifically, cardiac pulsations. Maire et al. (2018)
[130] experimented with healthy individuals by performing a
psychomotor vigilance task in fMRI under two conditions.
The first one is sleep deprivation based on40 hours of no
sleep, which groupwas deemed the high sleep pressure group.
The second group, deemed the low sleep pressure group, was
allowed 40 hours of a multiple nap-protocol. The sleepiness
level was evaluated on the Karolinska sleepiness scale. The
experimental data suggested that cardiac and sleep homeo-
static processes impact upon vigilant attention. Table 5 sum-
marizes the work done to detect drowsiness by utilizing
fMRI, along with the corresponding contributions.

C. ELECTROENCEPHALOGRAPH (EEG)-BASED FINDINGS
In 2002, Tejero and Chóliz [9] studied should the effects of
constant speed and periodically varying speed on the alertness
of drivers in a motorway driving experiment. They recorded

EEG activity from 11 subjects in a 40-45 kph driving experi-
ment. The results of their analysis showed that periodic speed
modifications can be a way to stay alert, whereas driving
at a constant speed, which tends to bore drivers to certain
degrees, may cause fatigue and drowsiness. Eoh et al. [11]
studied the drowsiness/fatigue in eight subjects in a simulated
driving experiment. Fifty minutes of 8-channel EEG data and
subject behavioral data obtained by camera was recorded and
analyzed. Three frequency bands, namely theta, alpha and
beta, were utilized in terms of their mean power, ratio indices
and burst activity to analyze the sleepy states of the subjects.
The results showed that the alpha, beta, index beta/alpha
and index (alpha+ theta/beta) were significantly different
as the drivers’ state was converted from alert to drowsy.
Pal et al., 2008 [51] proposed an unsupervised method to
detect changes in the alert state of drivers. They suggested that
in the alert state, PSD from the theta and alpha bands at chan-
nel Oz follows a multivariate normal distribution, which can
be used to drive alert model of each subject by using a small
amount of EEG data. Then, this model was used to analyze
the deviation in PSDs to determine whether the driver is in
the alert state or the drowsy state. In another study, Yeo et al.,
2009 [13], the authors used the SVM classifier to detect the
alert and drowsy states of drivers. Twenty young participants
were participated in a simulated driving task to acquire EEG
signals. Features were extracted by calculating the PSD of the
delta, theta, alpha and beta bands. For each frequency band,
four features, namely dominant frequency, average power of
dominant peak, center of gravity frequency, and frequency
variability, were calculated using PSD values. Finally, SVM
was used to classify the alert and drowsy states of drivers.
The results suggested that SVM can achieve a classification
accuracy of 99.3%, indicating that it can be successfully used
to classify alert and drowsy states. Simon et al., 2011 [52]
proposed an algorithm that uses a few seconds of EEG data
to detect alpha spindles (short narrowband bursts in the alpha
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band) by measuring peak frequency, amplitude, and duration.
They tested their algorithm on signals generated both synthet-
ically and acquired under real-life driving conditions. They
then compared the results of their algorithm with the con-
ventional alpha power criterion. Statistical analysis revealed
significant increases from the first to the last driving section
for the alpha spindle parameters. Another study, Liu et al.,
2013 [111] used a single-channel wireless EEG system to
detect the drowsy state of drivers by incorporation of music to
reduce the chances of becoming drowsy. Data acquired from
20 male and 20 female subjects were decomposed into four
different frequency bands to calculate PSD features for the
classifiers. An integrated classifier consisting of SVM, ANN
and kNN was used to achieve an average accuracy of 81.3%
in detection of the drowsy state. In a later study, Gurudath
et al., 2014 [112], the authors developed a drowsiness detec-
tion algorithm by combining discrete wavelet transform and
K-mean clustering. EEG data acquired from a driving sim-
ulator experiment was decomposed into different frequency
bands using discrete wavelet transform. The mean, median,
variance, standard deviation and mode were calculated for
each band and provided as features to the K-mean clustering
algorithm for classification. Roy et al. (2014) [21] proposed
an ICA and adaptive thresholding-based algorithm to detect
eye blinks using EEG data only, whereas most of the compa-
rable studies have used EOG signals to do so. They suggested
that this algorithm can be used to detect the mental fatigue of
drivers. They acquired data from 11 subjects for a working
memory task. The results of their analysis suggest that their
algorithm can achieve a true detection rate of 89%, while the
correlation of their results with the results from EOG signals
was 0.81. Li and Chung (2014) [14] hypothesized that there
is a linear relationship between EEG activity in the occipital
cortex (specifically the O2 location) and eye-closure degree.
They analyzed EEG data from 30 subjects, and their results
suggested that alpha power at O2 increases with increased
drowsiness, whereas beta power decreases with increased
drowsiness. Their proposed model achieved 87.5 and 70.0%
accuracy for the male and female subjects, respectively. In a
subsequent work, Li and Chung (2015) [53], developed a
Bluetooth-based low-power-consumption system to detect
early drowsiness of drivers. They combined EEG data with
head movement data to increase the SVM-based alert/drowsy
classification accuracies. Data from six subjects who had
participated in a simulated driving exercise yielded 96.24%
accuracy when EEG data is used with head movement,
as compared with 82.71% when only EEG data was used.
Gharagozlou et al., 2015, [131], analyzed the fatigue caused
to drivers using a virtual reality simulator. Twelve healthy
male car drivers participated in an overnight study. They
analyzed the initial and final 10 minutes of recordings
by calculating the PSD and FFT in the alpha frequency
band. The results showed that there was a significant dif-
ference in the absolute alpha power between the initial and
final stages; moreover, the increase in the alpha power in
the final section of driving indicated the onset of fatigue.

Hajinoroozi et al., 2016 [50], proposed a channel-wise con-
volution neural network with a restricted Boltzmann machine
algorithm for classification of drivers’ different states. EEG
data from 37 subjects acquired during a virtual-reality-
based driving simulator experiment were used in this study.
The results showed that the proposed algorithm achieved
76.72% cross-subject accuracy and outperformed other algo-
rithms such as SVM and DNN. Yang et al. 2018 [54], pro-
posed a two-layer algorithm by analyzing the behavioral
data and EEG signals acquired from 52 participants in a
simulated driving experiment. In the first layer, 14 fea-
tures were extracted from the behavioral data acquired from
the simulation software. Five categories of driving behavior
were obtained based on the driving data and the following
procedure: first, K-means was used to form two clusters
of base driving features, respectively the driving style and
stability. Then, SVM and SVM recursive feature elimination
were applied for feature selection and extraction. Finally,
the driving-behavior types were classified using K-means.
In layer two, EEG features extracted from different frequency
bands were classified using the kNN classifier. The results
suggested that their methodology can achieve an average
classification accuracy of 69.5%, and a maximum accuracy
of 83.5%. Chen et al., 2018 [132] proposed a novel brain-
networks-based approach to detect drowsiness. EEG sig-
nals from 15 male subjects were acquired in a simulated
driving task. They calculated phase lag index (PLI) values
for different frequency bands to assess the functional con-
nectivity between different pairs of channels and to con-
struct a minimum spanning tree by connecting electrodes
in descending values. The results of their statistical anal-
ysis showed that the PLI values in the delta band tend to
increase as the subject’s state transitions from altered to
drowsy. In their subsequent work [113], the alert and drowsy
states of drivers were analyzed by a proposed combined min-
imum spanning tree and synchronization likelihood-based
functional brain network approach. Features extracted from
these were transferred to four well-known classifiers, from
which the K-Nearest-Neighbors classifier achieved a max-
imum average accuracy of 98.6%. Recently, Wang et al.,
2018 [114] used dry EEG to evaluate two methodologies
based on PSD and sample entropy to detect drivers’ fatigue
in real-life driving. To do so, they acquired EEG signals
from 10 subjects in a simulated driving experiment. The
results of their analysis suggested that PSD scores increase
with increased mental fatigue, whereas sample entropy
scores decrease with increased mental fatigue. However, they
observed that PSD is more robust and more effective than
sample entropy to detect mental fatigue while driving. In
another study, Wang et al., 2018 [44], the authors developed a
single-channel-EEG-based method to detect driver fatigue
by combining four features, three base classifiers and three
ensemble algorithms. They tested EEG data acquired from
12 subjects in a simulated driving task for different combi-
nations of features, classifiers and ensemble algorithms. The
results of their analysis suggested that Channel T6, feature

167180 VOLUME 7, 2019



M. A. Kamran et al.: Drowsiness, Fatigue and Poor Sleep’s Causes and Detection: Comprehensive Study

fuzzy entropy, and classifier-gradient-boosted decision tree
with 500 boosting stages achieved the best results, boasting an
average accuracy of 91.1%. Zhang et al., 2018 [115] studied
driver drowsiness using EEG to find the optimal recording
locations. Twenty-two subjects were used for recording of
EEG signals from the Fp1, Fp2, T3 and T4 locations in a
simulated driving experiment. The PSDwas calculated for the
delta, theta, alpha and beta frequency bands. The results sug-
gested that delta band activity increases, whereas theta and
alpha activity decreases in the drowsy state as compared to the
alert state. They further suggested that changes at the T3 and
T4 locations were much larger than changes at Fp1 and Fp2.
Barua et al. 2019 [24] studied sleepiness during driving using
EEG and EOG. They recruited 30 drivers to drive in the
alert and sleepiness states within a simulated driving scenario.
Three conditions, namely alert, somewhat sleepy, and sleepy,
were analyzed. EEG features were extracted by calculating
PSD for the different frequency bands, whereas blink duration
was used as the feature from EOG. Four different classifiers
were used to classify the multistate and binary state (alert
vs. sleepy) conditions, from which SVM achieved maximum
accuracies of 79 and 93%, respectively. Table 6 summarizes
the work done to detect drowsiness by EEG and the corre-
sponding contributions.

VI. AUTOMOBILE-INSTALLED DROWSINESS DETECTION
SYSTEMS
The previously available data on road accidents indicated that
around 25% of road accidents on highways/expressways are
caused by drowsy feeling, fatigue symptoms, etc. This statis-
tic showed that drowsiness causes more accidents even than
drunk driving. Therefore, car manufacturers are working hard
and financially supporting research to develop an intelligent
system installed in automobiles that not only alerts drivers
under drowsy conditions but also responds automatically and
intelligently to avoid accidents and collisions. Toyota has
developed a specific system to respond in cases of driver inat-
tentiveness, namely, ‘‘Toyota Safety Sense’’. This system has
two main features. The first one is a pre-collision detection
system that guards against frontal collisions by indicating
visual and audio alarms to drivers, and, in cases where the
driver does not respond within a pre-defined time period,
the system declares him to be in a drowsy state and automati-
cally applies breaks to avoid collision. The second feature of
this system is correct lane alertness. In this hardware, a front-
installed camera continuously detects the lane markers, and
if the car deviates from those lanes, audio and visual beepers
are displayed in the dashboard to correct the steering wheel
position. In cases where the driver does not respond to these
indications, the system declares the driver to be in a drowsy
state and automatically adjusts the steering. Hyundai has
installed a ‘‘Driver Attention Warning’’ system. This system
is based on the signal received from the wheel’s position in
a particular lane and time of driving. By analyzing the angle
of torque applied to the steering wheel, the movement of the
car in the lane and the time of driving, the system determines

the pattern of driving and, if necessary, declares the driver
un-attentive by displaying a coffee cup signal and sounding
an audio alert.

Mercedes’ ‘‘Attention Assist System’’ determines the
driver’s condition through a specific sensor installed in
the steering wheel in addition to observing the acceleration
of the car, breaking patterns, the condition of the road and
driving time, etc. In contrast with other cars, which utilize
visual sensors to monitor facial expressions and specifically
the eye patterns representative of the driver’s current state,
Mercedes has installed its specific steering sensor. The over-
all system continuously observes the driver’s driving patterns
during a particular trip and generates a driver’s profile with
certain thresholds. If the system detects a significant variation
in comparison with the generated profile, the Attention Assist
System declares the driver in the fatigue stage and gener-
ates an alert or warning sign and beep. Ford has installed a
‘‘Driver Alert System’’ that is based upon lane assist data.
A pinhole camera installed behind the dash rearview mirror
continuously visualizes the moving patterns of the car and
decides whether the vehicle is staying inside a lane. In cases
where the driver is deviating from a specific lane, the system
generates a vibration in the steering wheel to alert the driver
and declare him to be in a drowsy state; and if the driver
does not respond within predefined time, the system adjusts
the steering wheel to avoid deviation. Bosch has developed
a ‘‘Driver’s Drowsiness detection system’’ that determines
the drowsy state of a driver by analyzing steering move-
ment, and, if necessary, alerts him to apply the brake paddle.
This is easily done by analyzing the car’s steering angle
and the velocity profile of that angle. Nissan has installed
a ‘‘Drowsiness-Detective Alert’’ system that determines the
drowsy state of a driver by analyzing the steering profile for
a few minutes of driving. This system makes a model of
the driver’s behavior based upon steering wheel movement
patterns (it is common practice for drivers to slightly adjust
and correct the steering wheel while driving under specific
road conditions). If the driver is in a drowsy state, he will
deviate from the model/observed data pattern and stop fol-
lowing those particular characteristics, and/or he will slow the
pace of the pattern. In such situations, the dashboard of the
car displays a coffee cup notification to alert the driver and to
avoid any fatal accident. BMW has installed a ‘‘Driver Assis-
tance System’’ that provides lane assistance, lane-departure
warnings and lane-change warnings based upon visual data
gathered through specific cameras installed at certain loca-
tions in the car. Table 7 summarizes the sensors installed
by car manufacturers to detect drowsiness state and their
working principles.

VII. RESEARCH CHALLENGES AND FUTURE
RECOMMENDATIONS
Drowsiness/sleepiness is a vital state of the human body
that is essentially required for healthy functionality. How-
ever, in some cases, among which, obviously, is car driving,
drowsiness/sleepiness leads to devastating results. A recently
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TABLE 6. Drowsiness/sleep-related findings in electrical signals of neuronal activity.

published article [133] have summarized some of methods
frequently used for drowsiness detection and possible appli-
cations with certain classifiers. In this article we have tar-
geted brain signals and their respective response changes
during drowsy feeling in addition to separately analyzing
each method and corresponding pros and cons. Researchers
have endeavored to alert drivers during the drowsy state
so that unwanted and devastating circumstances may
be avoided. At the same time, car manufacturers have been
exerting prodigious effort to develop drowsiness detection
systems and accident prevention mechanisms that not only
accurately detect the drowsy state of a driver but also
take automatic preventive action to avoid accidents. Still,
though, there is no such system available that offers high
accuracy. For example, lane-detection systems have some
limitations: lane deviation is possible in overtaking and to
avoid objects/obstacles. Similarly, installed steering sensors
depend upon the accuracy of classification/detection algo-
rithms, which cannot be 100%. In addition, false detection
and deliberate changes in steering profiles, due to some other
factors, are also possible. For example, eye blinking, eye-
opening time, head nodding, and jaw movement, etc., could

also be the results of some other clinical symptoms of certain
diseases. Additionally, sun- and eyeglasses could also be
restricting factors by which eye-based drowsiness detection
systems could fail. Skin temperature and heart rate might
result from the temperature inside the car cabin. In such
conditions, the cortical-measured signal indicating drowsy
state is a potential candidate. However, equipment like fMRI
is not suitable, since it requires a huge setup and is not
easy to apply for an experiment. On the other hand, it is of
great potential importance, as some very important insights
into brain functionality can be gleaned from this device’s
data. As for fNIRS,its portability and economy make it a
promising candidate for drowsiness detection. Its drawback
is the un-comfortable feeling of the NIRS optodes positioned
continuously over the pre-frontal cortex. EEG on the other
hand, with its high temporal resolution, is the most frequently
used biomedical system for drowsiness detection. Its specific
data features, k-complexes and sleep spindles are concrete
evidence of drowsy feelings. However, continuous installa-
tion of EEG electrodes on a driver’s head is a difficult task.

The present authors believe that a drowsiness detection
system could be designed by utilizing a multi-modality
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TABLE 7. Sensors installed by car manufacturers to detect drowsy
feelings.

approach. For example, a steering sensor plus a dashboard
camera could be employed for continuous monitoring of
eye-blinking patterns, head nodding, and yawning, etc.,
in addition to a driving seat pressure sensor. A system with
multi-sensor data could result in much closer and accurate
estimation of drowsy/sleep feelings. In addition to this, high-
way police can utilize an fNIRS/EEG system to monitor
driver at specific times. Additionally, as a simpler and easy
option, self-evaluations in the form of drowsiness detection
questionnaires could also be filled out by drivers at certain
check points.

VIII. CONCLUSION
This paper reviews drowsiness causes, systems, as well as
its preventive methodologies and neuronal activation states.
It is concluded that most of research work in brain signal
based drowsiness detection is done though EEG. Addition-
ally, no drowsiness detection and alert systems of cars are
hundred percent reliable. Therefore, multimodality approach
could be helpful and much accurate.
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