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ABSTRACT This paper describes an interdisciplinary approach to geometry modeling of geospatial
boundaries. The objective is to extract surfaces from irregular spatial patterns using differential geometry
and obtain coherent directional predictions along the boundary of extracted surfaces to enable more targeted
sampling and exploration. Specific difficulties of the data include sparsity, incompleteness, causality and
resolution disparity. Surface slopes are estimated using only sparse samples from cross-sections within a
geological domain with no other information at intermediate depths. From boundary detection to subsurface
reconstruction, processes are automated in between. The key problems to be solved are boundary extraction,
region correspondence and propagation of the boundaries via contour morphing. Established techniques
from computational physics, computer vision and signal processing are used with appropriate modifications
to address challenges in each area. To facilitate boundary extraction, an edge map synthesis procedure is
presented. This works with connected component analysis, anisotropic diffusion and active contours to
convert unordered points into regularized boundaries. For region correspondence, component relationships
are handled via graphical decomposition. FFT-based spatial alignment strategies are used in region merging
and splitting scenarios. Shape changes between aligned regions are described by contour metamorphosis.
Specifically, local spatial deformation is modeled by PDE and computed using level-set methods. Directional
predictions are obtained using particle trajectories by following the evolving boundary. However, when a
branching point is encountered, particles may lose track of the wavefront. To overcome this, a curvelet
backtracking algorithm has been proposed to recover information for boundary segments without particle
coverage to minimize shape distortion.

INDEX TERMS Active contours, backtracking, contour morphing, directional prediction, particle trajecto-
ries, spatial correspondence, subsurface boundaries, wavefront propagation.

I. INTRODUCTION
This paper considers the feasibility of modeling geospatial
boundaries using differential geometry given sparse obser-
vations. The objective is to extract surfaces from spatial
patterns and obtain coherent directional predictions along the
boundary of the extracted surfaces. Modeling underground
geological formations is challenging in general because the
measurements are sparse and indirect. Due to operational
constraints and the significant costs associated with data
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gathering,1 the available observations may not paint a com-
plete picture in terms of spatial coverage. These measure-
ments, although point-based, differ from those encountered
in computer vision or image processing in some signficant
ways. The input consists of sparse spatial patterns in the form
of irregularly spaced labeled drilled holes. Not only are the
measurement locations sparse in the x-y plane, the sampling

1This includes operator cost, energy expenditure for drilling, replacement
cost of mechanical parts, efficiency cost of coordinating dependent processes
such as blasting and excavation, and the cost of performing chemical assays
to determine the composition, material type or geological domain associated
with each sample.
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FIGURE 1. Processing pipeline – a high level abstraction of the Boundary Geometry Modeling (BGM) framework.

is less dense along the z-axis. Geo-assay data is typically
collected sequentially on a bench-by-bench basis from the
top down (each bench has a height of∼10m) with significant
time lapse in-between. In contrast, pixels are captured almost
instantaneously using an image sensor array. The combi-
nation of these two factors means volumetric segmentation
approaches that utilize 3D partial derivatives, and those that
conduct minimal path search with respect to z, are not appli-
cable as there are no voxels or fine-grain data available at
intermediate depths between successive benches.

From a system perspective, the output provides a volu-
metric reconstruction of subterranean surfaces that conveys
directional information. The motivation for predicting the
slope of extracted boundaries is to provide guidance for
more targeted drilling and exploration. The accuracy of this
directional information needs only be commensurate with the
resolution of the raw input (roughly ∼5m) for it to be useful
in a mining context. However, the directional estimates need
to be coherent. An example of what not to do is using the
outward normals of a contour as a means for extrapolation
which inevitably cross-over when non-convex boundaries are
involved. Hence, partial differential equations (PDE) are used
to describe boundary movement in a more principled manner.

The input data used in this work contrasts with dense
data sources such as point cloud produced by terrain laser
scanners (LIDAR) [1], [2] and high-resolution slices gen-
erated by computed tomography [3] and presents its own
challenges. Data incompleteness, sparsity, causality and res-
olution disparity are some of the issues to contend with and
probable reasons for why differential geometry has not been
more widely used in subterranean geology modeling. Most
established PDE techniques for modeling surfaces operate on
uniform grid data whereas our input samples are irregularly
spaced. To overcome this, a bridging step based on boundary
detection and edge map synthesis is described. This enables
level-set methods to be applied to contours extracted from
sparse non-uniform data points.

As an overview, Fig. 1 shows the processes for achieving
the ultimate goal. Once a set of contours emerge following
boundary extraction, the work flow next enters the spatial cor-
respondence (reasoning) phase whose purpose is to associate
‘source’ regions with ‘target’ regions at successive intervals
and estimate component displacements. This problem shares
many similarities with object tracking in computer vision, but
is made difficult by significant variations rather than gradual
changes in contour shape. Often, the vertical resolution is low,

whilst some regions may not be sampled adequately, or at
all, due to operational constraints. A region association and
translation estimation approach is proposed to deal with the
complexity of region merging and splitting from a resource
allocation perspective.

Each set of associated source–target contours define a
region in a motion-compensated frame for which contour
morphing (spatial warping) [3] is applied. The objective
is to model the shape of the boundary in between two
cross-sections as a propagating interface. The underlying
premise is that local surface deformation can be described as
an evolutionary process governed by some PDE. Although
the exact form used in this work might not match reality in
terms of ore genesis, it is a reasonable alternative to uncon-
strained warping approaches and does provide a continuous
deformable model. Using level-set methods [4], topological
changes can be handled seamlessly during the morphing
process. To facilitate slope prediction, the evolving interface
(contour boundaries) are tracked using particle trajectories.
This works well along portions of the boundaries where dif-
ferences in curvature between the source and target contours
are small. It breaks down when branching occurs, i.e., when a
curvelet emanates from a single point. To address this, a novel
backtracking algorithm has been proposed to recover lost
information during particle advection andminimize boundary
distortion attributed to tracking failure.

A. RELATED WORKS
This paper is distinguished from prior work through its
attempt in fully automating a chain of processes required
to reconstruct subterranean surfaces using sparse labeled
data. These processes include boundary extraction, spatial
correspondence and contour evolution, as outlined in Fig. 1.
Although the contours for various geological domains
(henceforth referred as geozones) can be specified interac-
tively, our model basically requires only a set of unordered
points, sampled non-uniformly across an orebody in multiple
cross-sections as input.

In [5], Sprague and de Kemp presented a partially auto-
mated tool which uses Bézier and NURBS (non-uniform
rational B-spline) curves to model non-planar 3D surfaces.
Fitting under the guidance of a control frame, it makes use
of 2D interpreted plan views provided by mine geologists,
created using local slices of projected drill hole data at
semi-regular spaced depths. The authors emphasized that in
moving from 2D polygonal lines to 3D surface construction,
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the continuation of common features requires delicate spatial
synchronization across neighboring plan-sections, and man-
ual correspondence performed by the geologist was critical
to the integrity of the modeled structure and preventing self-
intersections. The term map trace was defined as a ‘‘geolog-
ical interpretation delineating the intersection of a geologic
boundary as it breaks through the surface. . . or as it intersects
a given elevation plane’’. This definition closely resembles
our notion of active contour extracted boundaries which rep-
resent segmented regions in a geozone. Their techniques were
refined by imposing positional and orientation constraints
using structural ribbons (expert knowledge), thus it may be
categorized as a semi-supervised technique.

In [6], Mitášová and Hofierka applied differential geome-
try, more specifically, regularized spline with tension to topo-
graphic analysis of a watershed. This utilized convex/concave
sections with smooth curvature for interpolation. However,
the focus was to model the top surface (as opposed to sub-
surfaces) using dense elevation data obtained via remote
sensing (as opposed to sparse data).

In [7], Kaufmann and Martin built 3D subsurface models
using a variety of sources (drill holes, cross-sections and
geological maps) with different motivations. Their goal was
to further understand subsoil characteristics such as hydro-
geologic or geothermic properties of the geological bodies.
Their surfaces were modeled using DSI (discrete smooth
interpolation) which computes the location of nodes by bal-
ancing roughness and misfit constraints (see Mallet [8] and
Frank [2]). This is representative of a class of information-rich
GIS fusion approaches which utilize topographic, geological
and structural data [9]. In contrast, our approach makes the
most of the limited data in an information-poor environ-
ment where only blasthole locations and geozone labels are
available.

In [10], Caumon et al. presented general guidelines for
creating a 3D structural model made of faults and horizons
using sparse field data. Their focus was natural resource
evaluation and hazard assessment; triangulated surfaces with
variable resolution was also discussed. The authors offered
many insights, one notable comment is that ‘‘3D subsurface
modeling is generally not an end, but a means of improving
data interpretation through visualization. . . to generate sup-
port for numerical simulations of complex phenomena (i.e.,
earthquakes, fluid transport) in which structures [11] play
an important role.’’ This is also true of subsurface models
serving as decision support tools in mining and geological
exploration.

In [12], Dirstein et al. demonstrated that automated sur-
face extraction and segmentation of peaks and troughs from
seismic survey can provide insight into structural and sedi-
mentary morphology. In particular, differential geometry was
used to select objects of concave and convex curvature, these
features can help identify subtle cues for fluid flow events
that are perhaps over-looked by conventional interpretation
methods. For an in-depth survey of past efforts and current
interests in 3D geological mapping, readers are referred to

[13]–[15] and [16]. Relevant techniques from computational
physics and computer vision are presented in Appendixes A
and B. As a quick overview, the major themes and related
works are highlighted in Table 1.

TABLE 1. Computational physics and computer vision techniques used in
this work (refer to Appendixes A–B in the Supplemental Material).

In both Dirstein’s and our work, curvature preserving spa-
tial representations are used to good effect albeit the objec-
tives and modalities are different. One aspect of Dirstein’s
work is waveform analysis, where genetic fitness (similar-
ity) relative to a genotype (waveform signature) can reveal
relative stability of neighboring segments above and below a
particular surface and confer understanding about its structure
and stratigraphy. In our work, we obtain an essentially con-
tinuous representation for the slope of geozone subsurfaces
from sparse boundary patterns through contour extraction
and metamorphosis; this provides useful directions for sub-
sequent drilling and exploration. Our motivation stems from
an interest in integrating techniques from pattern analysis,
computational physics, computer vision and signal process-
ing, bringing these to bear on a subsurface reconstruction
problem, solving it in unconventional ways.

B. APPLICATION SCENARIO
The target application is the modeling of subsurface bound-
aries in an open-pit mine of sedimentary iron ore deposits.2

Here, the sparse spatial patterns derive from blasthole sam-
ples where each is labeled with a geozone. The geozone
labels provide a classification of geological domains based
on mineralization and stratigraphic units [29]. From a mining
perspective, these are used to segregate high-grade minerals
from low grade or unprofitable materials. With some effort,
the geozones can be turned into coherent spatial clusters.
However, as unorganized points, or even with a discretized
block-based representation, there is no easy way of obtaining
a coherent motion field, one that describes the direction a
boundary moves in consistently without artifacts or discon-
tinuities. This is one major reason for using a curve-based,
deformable surface model.

At the outset, it is important to distinguish this work
from 3D segmentation approaches [30], [31] that use energy

2The most common minerals are hematite Fe3+2 O3 and goethite
Fe3+O(OH). These deposits are believed to have formed as chemical precipi-
tates on the floor of shallow marine basins in a highly oxidizing environment
during the Proterozoic eon, circa 1.9–2.4 billion years ago.
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functional for minimum path optimization given contours
at specific depths which is a common scenario in com-
puter tomography. These approaches often require 3D partial
derivatives to be computed, our data simply do not have the
requisite (vertical) resolution to facilitate that. Furthermore,
as our data are literally mined through manual processes,
they only become available progressively at periodic inter-
vals. In our application, slope trends need to be estimated in
a causal manner using cross-section samples from as little
as two successive benches (at two particular depths). Our
problem also differs from grade estimation or material clas-
sification for which a variety of probabilistic inference and
machine learning approaches are known [12], [29], [32]–[37].
The focus here is explicit spatial representationwhich encom-
passes boundary extraction, region correspondence and cap-
turing changes to subsurfaces using differential geometry.

The proposed system takes input in one of two forms.
The contours which describe geospatial regions are either
given or derived. Fig. 2(a) depicts a common mining scenario
where stratigraphic information are obtained by examining
core specimen extracted from the drilled holes. Alternatively,
geozone transitions (marker bands) are established from geo-
chemical assays or geophysical measurements taken while
drilling. The main characteristics of this data is high reso-
lution in z and sparse sampling in the x-y plane. Geologists
typically interpolate the boundary at locations (dotted lines)
between the drilled holes based on an understanding of the
geological setting. The time and effort required to ‘‘join up’’
these vertical slices to form a preliminary 3D surface model

FIGURE 2. Application scenarios. (a) In mining, holes are drilled
perpendicular to the strike of the orebody. Geozone transitions (black
squares) are commonly established by identifying marker bands using
measure-while-drilling or assay data and/or visual inspection of rock
specimen. Boundary is interpolated at locations (dotted lines) between
the drilled holes. The estimated boundary is subsequently extrapolated
and joined in the orthogonal direction, i.e., between successive vertical
cross-sections to generate an approximate 3D orebody surface model.
(b) Blastholes are more densely and non-uniformly sampled in the x-y
plane. In this case, the boundaries shown in the horizontal cross-sections
are not actually given. Instead, they are obtained using the proposed
boundary extraction techniques. Modeling how the volume evolves
through the cross-sections (as hinted by the dash lines) and estimating
the slopes are the primary objectives of this work.

can be substantial. Fig 2(b) depicts a second scenario where
horizontal cross-sections are taken. This scenario differs from
the previous through denser sampling in the x-y plane and
having relatively low z-resolution; blastholes are plentiful
albeit non-uniformly sampled. In this case, the contours are
not given — only the coordinates and geozone designations
(classification labels) of the blastholes are known. This sec-
ond scenario poses additional challenges with respect to
boundary extraction which will be further considered in this
paper. These pictures highlight the main objective of this
work which is to model how a volumetric region evolves
through the cross-sections using contours and estimate the
direction in which the boundary moves in.

The proposed boundary geometry modeling framework
(henceforth, abbreviated as BGM) consists of four sub-
systems. The processing pipeline is shown in Fig. 1. The role
of each subsystem is briefly described below.
• Boundary extraction finds connected regions (compo-
nents) from labeled blastholes. It locates boundary sam-
ples on each component and converts them into a closed
contour.

• Spatial correspondence automates the process of region
association and component alignment. Having identi-
fied one or more components on each cross-section,
the next goal is to match-up and motion-compensate
contours, i.e., find the optimal translation which brings
corresponding regions into alignment. By convention,
contours found in the top and bottom of any two suc-
cessive slices are referred as ‘source’ and ‘target’ com-
ponents respectively.

• Contour metamorphosis uses particle trajectories to
facilitate slope estimation. The goal is to model residual
differences after source–target components are aligned
in a common frame. Contour boundaries are embedded
in a 2D level-set function, by tracking the movement of
the zero-interface, one establishes pathways for morph-
ing the source region(s) into the target region(s) as the
level-set evolves under the dynamics of a PDE.

• Contour prediction reconstructs a 3D volume through
interpolation or extrapolation of normalized trajectories.

C. CONTRIBUTIONS
The main contributions are as follows.
• For boundary extraction, an edge map synthesis pro-
cedure is described which converts sparse non-uniform
data points to an image representation. Gradient vector
field and active contours are used to extract shapes
(regularized contours) from unordered edge pixels.

• For spatial correspondence, region association and
component alignment problems are solved using FFT
cross-correlation under spatial constraints. Obstacle
avoidance is approached from a resource allocation view
point, multiple-source multiple-target component rela-
tionships are explored using intersection graphs.

• For contour metamorphosis, slope estimation is
achieved using particle trajectories. A curvelet
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TABLE 2. Techniques employed in boundary geometry modeling.

backtracking algorithm has been devised to overcome
tracking failure caused by branching; a phenomenon that
leads to boundary distortion. This occurs when there is a
significant mismatch in shape (local curvature) between
the corresponding boundary segments.

Table 2 provides an overview of the techniques employed
in each area. In the ensuing sections, the reasons for choosing
these techniques will be elaborated as specific challenges are
described. We discuss how standard approaches are modified
to address particular needs. The solutions sought for different
parts of the problem draw inspiration from different fields.

II. BOUNDARY EXTRACTION
The first objective is to extract the boundary of contiguous
spatial regions (connected components) given sparse data.
For input, we have the spatial coordinates of blastholes for
various horizontal cross-sections, and these blastholes have
been classified as belonging to different geozones from prior
analysis based on material properties or chemical composi-
tion. An example of this is shown in Fig. 2(b) where the blue,
gray dots and orange squares represent blastholes sampled
from three different geozones. An important point about these
samples is that they are irregularly spaced and unordered.
Consequently, efficient algorithms for labeling connected
components [38], [39] that perform sequential scans on a
uniform grid cannot be used here. A related problem is that
attempts at forming an edge map by connecting peripheral
samples often produce false edges and loops which make
clean boundary extraction difficult. These issues will be
addressed in due course. In preparation for what follows,
the boundary extraction process is summarized by a series
of steps.

• Connected component analysis: For each cross-
section, identify separate clusters within each geozone.

• Blasthole boundary detection: Find samples located
on the boundary of each cluster / connected component.

• Edgemap synthesis: Project the region (edges connect-
ing the boundary samples) onto an image grid.

• Gradient vector field computation: This is used to
drive the active contour (PDE solution) toward the
boundary.

• Active contours evolution: Extract the boundary as a
closed contour described by N control points.

A. CONNECTED COMPONENT ANALYSIS
The modification involves using a kD-tree for nearest neigh-
bor search and adopts a region growing approach. All samples
from the same geozone and same cross-section are numbered
from 1 to n, initially each belonging to the cluster of ‘self’.
Neighboring samples within a radius of r are merged with
the current sample and labeled with the minimum cluster
index amongst the group. Cluster membership information is
propagated iteratively until no further changes occur and S
connected components remain.

B. BLASTHOLE BOUNDARY DETECTION
For each connected component, boundary samples are iden-
tified by thresholding the local entropy which is significantly
non-zero at geozone transition points. Suppose a sample n
has Nn neighbors within a radius of r and the fraction of
samples belonging to geozones g1 and g2 are pn,1 and pn,2.
The local entropy is computed as hn = −

∑
i pn,i log2(pn,i +

ε). Sample n is marked as a boundary sample if hn ≥
max{Tentropy, h

(median)
n } where Tentropy = 0.5 and h(median)

n
[the median entropy in n’s neighborhood] is used to suppress
‘‘non-maximum’’ responses.

C. AUTOMATED GAP CLOSURE
One limitation of this detector is the entropy tends to zero
when the geozone labels no longer vary. This creates a prob-
lem as boundaries remain essentially open at the frontiers
of surveyed regions which are not bordered by a different
geozone. To remedy this situation, we perform orientation
analysis to close these gaps. The objective is to recognize
samples on the outskirts of a geozone as edges. The direction
of the Korient closest neighbors from n are computed and
sorted in ascending order. If a gap larger than Torient radian is
found, sample n is deemed to be on an open edge that needs
to be closed. Considering the blastholes are often sampled
on a hexagonal lattice, we set Torient = 2

3π and Korient =

(4 × 2π/Torient) = 12. Some intermediate results are shown
in Fig. 3.

One observation from Fig. 3(b) is that there is often a
large gap between [what humans perceive as] adjacent sam-
ples along the [as yet undetermined] component boundaries.
Indeed, the variable gap size renders useless boundary tracing
algorithms like ‘marching squares’ that rely on fixed separat-
ing distances. A more robust approach to boundary extrac-
tion is to formulate it as an energy functional minimization
problem that provides a tradeoff between smoothness and
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FIGURE 3. Connected component analysis and blasthole boundary
detection. (a) Input provides blasthole coordinates and geozone labels,
one horizontal cross-section is shown. (b) Two clusters (connected
components) have been identified in geozone g1; black dots represent
boundary samples detected by thresholding local entropy, red dots
represent gap closure informed by orientation analysis.

fidelity. For this, projection of the boundary onto an image
grid constitutes the first step.

D. EDGE MAP SYNTHESIS
Themain objective is to bridge the gap between adjacent sam-
ples located on the boundary. Each sample connects with its
K nearest neighbors by forming an edge between them. This
edge structure comprising of line segments is then densely
sampled and transferred over to the image plane. Specifically,
edge energy is accumulated by pixels within some margin
of each line segment.3 This procedure is further described
in Algorithm 2.4 For illustration, a synthesized edge map is
shown in Fig. 4(a). Although it contains some false edges,
the active-contour segmentation approach (to be described
next) can tolerate small imperfection.

E. ACTIVE CONTOUR EVOLUTION IN GRADIENT
VECTOR FIELD
The final goal is to obtain a contour (polygon of regularized
boundary points) given the synthesized edge structure. This

3Morphological closing is subsequently applied to give the edges adequate
thickness.

4Mapping real-world coordinates to the image domain (and vice-versa)
involves scale changes. Uniform quantization is used implicitly throughout.

is achieved by performing region segmentation using Active
Contour Evolution (ACE) in a Gradient Vector Field (GVF).
The GVF is obtained from the synthesized edge structure
following the procedure given in Appendix A. It may be
visualized as a field of arrows (an external force) that pushes
any given point in space toward the boundary (see Fig. 4(b)).
Accordingly, an active contour which has been initialized as
the component bounding box will evolve over time under the
action of the GVF and be drawn inward until it converges
at the region’s boundary. This is illustrated in Fig. 4(c) and
the short video (see multimedia content). The computational
aspects of GVF active contour evolution are described in
Appendix A. This highlights the first connection with com-
putational physics.

III. SPATIAL CORRESPONDENCE
The boundary extraction subsystem produces a collection of
contours. For instance, a set of real component boundaries
extracted from multiple cross-sections can be seen in Fig. 5.
When given two successive cross-sections, we will hence-
forth refer to the upper and lower cross-sections (likewise for
the components contained within them) as ‘source’ and ‘tar-
get’ respectively. This section presents general strategies for
establishing relationships between source and target contours
(viz., region association) and estimating the optimal trans-
lation (performing component alignment) with and without
spatial constraints. The devised strategies take into account
unique characteristics such as incompleteness, causality and
resolution disparity in the data as foreshadowed in the intro-
duction.

In this paper, spatial correspondence is treated as a
two-stage process. The spatial mapping is the result of com-
bining component translation and contour metamorphosis
(local surface deformation). The present goal is to account
for the rigid movement of associated components — prin-
cipally the translation observed in successive cross-sections.
Subsequently, non-rigid movement will be considered in
Section IV.

A. REGION ASSOCIATION
Given two cross-sections with ns source components and nt
target components, the goal is compute the association matrix
A ∈ Rns×nt which describes the relationships between s and t .
In the preliminary assessment, a ‘1’ in A(s, t) implies there is
potential interaction between source s and target region t .

1) FORMULATION
A Gaussian pdf ps(x | d) ∝ exp

(
−a(‖x− cs‖/b)2

)
is

used to model the likelihood of source-target association.
In this setup, spatial proximity is measured by the difference
of x: an arbitrary location in the image and a fixed cs: the
centroid position of source component s. Design choices
revolve around the hyper-parameters a and b which must
capture relevant aspects to produce sensible results. The right
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FIGURE 4. (a) Synthesized edge map for a connected component after step 5 in Algorithm 2, boundary blastholes are overlaid. (b) Gradient vector
field computed from the edge map. (c) Active contour evolves in the GVF, gravitating toward the region boundary at steady state. The default
parameters are Kstruct = 5, Kjoints = 4, nx × ny ≈ 2402, p = 8.

formulation very much depends on the problem, the sampling
characteristics and reliability of the data.5

Apparent motion and object area represent two factors
most relevant to our model. Apparent motion is inferred
from the statistics µdmin and σdmin which are computed from
observed distances between the sources and targets, ds,t as
follows.

dmin =

[
min
t
ds,t
]
s
∈ Rns×1, (1)

µdmin = E[dmin], σdmin =

√
E[d2min]− µ

2
dmin

(2)

Variability in the observations is given by the standard error
sdmin = σdmin/

√
ns. The association probability takes the form

ps(x |dmin) ∝ exp
(
−
(‖x− cs‖/µdmin)

2

2ν2

)
, (3)

ν =
4

1+ exp(−sdmin/s0)
(4)

The term sdmin/s0 relates to the uncertainty of the observa-
tions and is normalized by a reference value s0. The ‘noise’
parameter ν ∈ [2, 4] regulates the shape of the Gaussian.
When variability is low (sdmin/s0 → 0) the association
function contracts and becomes more concentrated around cs.
Conversely, it dilates when there is a lack of consensus on

5Examples of probabilistic reasoning and state estimation techniques are
plentiful in the literature. Those that incorporate geometry information for
visual tracking [40]–[46] generally rely on having rich and accurate infor-
mation delivered at a high frame rate. e.g., solving spatial correspondence
problems using optical flow or persistent templates. In our application,
shape invariance is not something that can be reliably exploited. Topo-
logical changes, under-sampling (large spacing between successive cross-
sections) and sampling uncertainty (mixture of material and poor resolution)
often contribute to sudden and unexpected changes. In geology and mining
exploration, operational constraints also limit the amount of observations
that can be gathered, this creates a situation where fast changing dynamics
may surpass the learning rate for a complex model. Given the few samples
available, we resort to using the most basic measures like the magnitude, but
not the directionality, of motion.

E[dmin]; this allows more distant targets to become poten-
tially associated with the source.

2) SCALE EFFECTS
Since the dmin observations are noisy, component size should
be compared with the apparent translation µdmin . When
µdmin exceeds the object span ϕs, the policy µdmin ←

min{ϕs, µdmin} should be adopted. This limits the scope of
association for smaller components by shrinking ps(x |dmin).6

To prevent ps(x | dmin) from becoming too narrow — which
would eliminate any source-target association potential when
taken to the extreme — it would be prudent to also place a
lower limit (µlower) on µdmin .

The final form of the association likelihood is given by

ps(x |dmin) ∝ exp
(
−
(‖x− cs‖/λs)2

2ν2

)
, x, cs ∈ R2 (5)

λs = max{min{µdmin , ϕs}, µlower} (6)

ν =
4

1+ exp(−sdmin/µlower)
(7)

where µlower is related to the anticipated lateral movement.
It basically dictates the minimum radius of association.

3) DECISION FUNCTION
The decision of whether to associate source s with target t is
governed by a discriminant function

A(s, t)=

{
1 if percentile({ps(x |dmin) |x∈Rt },K ) ≥ 0.5
0 otherwise

(8)

K = 50×
(
1+

(
1−min

{
as
at
, 1
}))

∈ [50, 100] (9)

6The object span is approximated from the area as ϕs ≈
√
as/π .
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FIGURE 5. Component boundaries extracted using active contours for six
horizontal cross-sections (spaced 10m apart) in one geozone. Black dots
denote blasthole samples located at / near geozone transitions. These
serve as input to the next subsystem in the boundary geometry modeler
called ‘spatial correspondence’. The goal is to associate regions and
estimate component alignment between corresponding source and target
contours subject to spatial constraints.

• The set notation {ps(x | dmin) | x ∈ Rt } in (8)
refers only to points inside the support interval of target
component t .

• The percentile K in (9) depends on the source-to-target
area ratio (as/at ). The rationale is as follows:
– If as < at , the source can (at best) fit itself wholly

within the target with room to spare. Thus, a fair value
for assessing spatial proximity (the association poten-
tial) is the median likelihood, offset by the fraction of
at which s cannot overlap.

– In the limit as (as/at ) → 0, K seeks out the
maximum likelihood when s is treated as a point
object.

FIGURE 6. Source–target component relationships (viz., pattern of
potential overlap) are represented by intersection graphs given the
association matrix. Source and target components are denoted by black
and white nodes respectively. Different region association scenarios such
as multiple-source single-target are depicted in (a)–(d). For complex
scenarios (see inset), suitable component alignment strategies will be
applied to each subtree anchored at an s-node which includes all
connected t-nodes and their children s-nodes.

B. COMPONENT ALIGNMENT STRATEGIES
Having obtained the association matrix A(s, t), source–target
relations can be represented by a graph. This gives rise to
several possibilities: a 1-to-1 mapping, many-to-one, one-to-
many, andmany-to-many correspondence between the source
and target components. These scenarios are shown in Fig. 6.
For complex scenarios (e.g., multiple sources associated with
multiple targets), the intersection graph is decomposed into
subtrees (see Fig. 6 inset). This section is concerned with
devising suitable strategies for each scenario, i.e., finding
source translation estimates which maximize target align-
ment or component coverage. Graphically, each scenario is
described by a subtree rooted at an s-node and its expansion
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includes all connected t-nodes and their children (any s-nodes
connected to the t-nodes).

1) DISPLACEMENT ESTIMATION: CROSS-CORRELATION
VIA FFT
A 1-to-1 mapping, or single-source single-target alignment,
is the simplest situation encountered in region association.
Conceptually, the best alignment is achieved by template
matching; this is otherwise known as 2D cross-correlation.
Using vectorized notation, e.g., i = (i0, i1), the problem may
be posed as

optimal translation = argmax
m

rVU [m] (10)

where the matched filter response with lagm is given by

rVU [m]=
∑
i

v[i] u[i+m]=
∑
i0, i1

v[i0, i1] u[i0+m0, i1+m1]

(11)

These operations can be implemented efficiently as

rVU [m] = F−1(V [k] U∗[k]) (12)

using the Fast Fourier Transform (separable FFT) [47]. In this
equation,7 rVU represents the 2D cross-correlation between u
and v, where u ≡ U is the source mask (a binary indicator
function for the region occupied by the source component in
the image plane) and v ≡ V is a signed distance function
[48] (SDF) for the target component. The SDF (computed
in Algorithm 3) gives a 2D map of the signed distance of
any location from the contour boundary (zero-interface) and
adheres to the convention where pixels inside and outside the
target region have positive and negative values, respectively.

On the RHS, F−1 represents the inverse FFT. U∗[k] and
V [k] denote the complex conjugate of the FFT coefficients
for u and FFT coefficients for v. Finding the optimal shift
(displacement m) is equivalent to locating the peak in rVU .
This lays the basic foundation for component alignment (see
Algorithm 4).

2) MULTIPLE-SOURCE SINGLE-TARGET SCENARIO
The proposed solution (10) requires certain modifications in
a multiple-source single-target (many-to-one) scenario. Con-
sider the situation depicted in Fig. 7(a). As it stands, if source
s2 acts selfishly and tries to maximize its correlation with
the target with no regard for other source components, s1, s3
and s4 will be locked out of the region merging arrangement.
To prevent this, the sources will participate in target sharing.
This is posed as a resource allocation problem where the
objective is to divide the target into sectors (or ports of vary-
ing sizes) and assign the ports in such a way as to minimize
their angular difference with the affiliated source component
(see Fig. 7(a)). The solution is presented in Algorithms 5–6.

7Caveats: Certain technical conditions need to be satisfied for this to work.
Stated simply, the inputs need to have first quadrant spatial support and be
sufficiently padded around the margins to ensure no shifted component ever
steps outside the image border. Detailed guidance is given in [47] §4.6.4.

FIGURE 7. Port allocation concept for multiple-source single-target
scenario.

The port boundaries and target sector-to-source mapping so
obtained allow very specific spatial constraints to be imposed.
For instance, in Fig. 7(b), by imposing a penalty on target
sectors reserved for other source components (see striped
region), s2 will refrain from stepping into other’s territory
whilst maximizing its overlap with the target. This behavior
can be realized by setting v[i] (initially, the target signed
distance function) to large negative values at locations i ≡
(i0, i1) which are marked out-of-bounds.

3) SINGLE-SOURCE MULTIPLE-TARGET SCENARIO
An issue with the current approach is that it is somewhat
biased toward single-target alignment. There is no incentive
for a source component to overlap with multiple targets since
stepping outside the boundary of a target incurs a negative
penalty in (11). This usually deters any ‘cross-over’ unless the
source component is large enough to encompass both targets
and the targets are reasonably close together that reward out-
weighs penalty. As motivation, Fig. 8(b) illustrates a situation
where the source is encouraged to straddle two targets; this
in turn maximizes component coverage and offers a more
plausible explanation in a region splitting scenario.Within the
current framework, this can be achieved by placing rewards
at strategic locations in the value function v to promote cross-
over. This is further described in Algorithm 7.

4) MULTIPLE-SOURCE MULTIPLE-TARGET SCENARIO
The cooperative and reward strategies described in
§III-B2–III-B3 provide a unified way for dealing with com-
plex relationships under the displacement estimation frame-
work of §III-B1. As an illustration, these techniques are
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FIGURE 8. Target coverage in single-source multiple-target scenario.

applied to amultiple-sourcemultiple-target scenario in Fig. 9.
The initial position of the source and target components are
shown in Fig. 9(a). This has the same graphical structure
as the type C configuration in Fig. 6. Hence, it can be
decomposed into 4 subtrees or expansion steps as shown
in Fig. 9(b). A compact way of writing these steps is 1©:
s1 → {t0 ← s0, t2 ← (s2, s3)}, 2©: s0 → t0 ← s1, 3©:
s2 → t2 ← (s1, s3), 4©: s3 → {t2 ← (s1, s2), t3} where the
source component under consideration (to be moved) is typed
in bold.

Within a subtree, each link describes a tentative association
between an s-node and a t-node in Fig. 9(b). This simply
means there is a potential for the source to intersect with the
target. The objective is to eliminate edges where a connection
does not exist — perhaps due to obstacles (the presence of
other source components) which have prevented an overlap
between s and t —and find the translation for source compo-
nents that do overlap with targets (i.e., maximize correlation
subject to spatial constraints).

For brevity, the subtree expansion steps are omitted here.
Interested readers may refer to the worked example given
in the Supplemental Material for a full description of the
expansion steps. Through the lens of spatial reasoning (Algo-
rithm 3–9 and Figure 4–9), Section III has outlined the
main connections with signal processing, computer vision,
resource allocation and graphical decomposition in this work.

FIGURE 9. Spatial correspondence in multiple-source multi-target
scenario. Refer to the Supplemental Material for a worked example with
details of the expansion steps.

In summary, the spatial correspondence subsystem pro-
duces an association matrix A and translation estimates T
which describe the relationship between source and target
components in two successive cross-sections. Specifically,
the source contours {Cs} associated with a given target Ct
define an instance for the next subsystem, contour metamor-
phosis, to work on.

IV. CONTOUR METAMORPHOSIS
The objective is to capture local spatial variation using dif-
ferential geometry, to explain how source regions evolve into
target regions using PDE. This problem may be visualized as
a transformation from (a) to (b) in Fig. 10.

Given displacement estimates {ms = (m(x)
s ,m

(y)
s )}s and

translation operator T (x, y) = (x+m(x)
s , y+m

(y)
s ), the starting

point is a principal target contour Ct ≡ (xt , yt ), its associated
(shift-compensated) source contours {C ′s≡T (xs, ys)} and any
affiliated target contours {Ct ′} connected to the source nodes.
Fig. 10(a) shows a simple case where there is only one source
and one target contour involved. It is this residual difference,
the non-rigid changes in shape in the aligned common frame,
that is being modeled.

In the PDE model, contours are represented by level-sets
φt which embed region boundaries as the zero-interface, viz.,
�t = {n ∈ R2

| |φt [n]| ≤ 0.5}. Initially, φt=0 is set to
γs, the signed distance function of Cs. The basic objective
is to model the evolutionary process from φt=0 = γs to
φt=∞= γt . As the level-set φ(t) evolves,8 the region bound-
arymorphs from (a) to (b). Themorphing process is described
in Appendix B wherein (20) represents the key equation
for level-set update. Visually, this computation describes a
propagating wavefront as depicted in Fig. 10(c).

A. ISO-CONTOURS AND WAVE SPEED ADJUSTMENT
It is important to note that these level-set zero interfaces
�t are functions of time. Ultimately, we need to obtain
iso-contours at different elevations z. However, no single �t
(other than �0) currently corresponds to a fixed elevation.

As a corollary, not all points on the advancing wavefront
will reach the target contour at the same time since the wave

8A level-set may be defined as a collection of iso-contours or a family of
embedded point sets each represented by Sk = {n | φ(n) ≥ k }.
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FIGURE 10. Overview of contour metamorphosis. Basic objective is to model how the source region morphs into the target region using differential
geometry, viz., explain how (a) is transformed into (b) using the narrative of (c) and (d) to ultimately produce a surface model similar to (e).
Notation-wise, superscripts (p) and (i ) denote the physical domain and image processing (modeling) domain respectively. Physical coordinates, e.g.
C (p)

s = (x(p)
s , y(p)

s ), are measured true-to-scale and expressed in UTM coordinates in [m]. (a) A source contour (blue line: C (p)
s ) is aligned with the

target contour (light gray) in a common frame, it has an equivalent level-set representation γs where contour boundary is embedded as the
zero-interface. (b) Associated target contour (red line: C (p)

t ) and its level-set (signed distance) function γt . The arrow annotated with ‘‘?’’ is elaborated
in (c) which explains the evolution process as a propagating wavefront, viz., the movement of the zero-interface as (a) morphs into (b). In terms of
tracking, (d) provides an alternative description using particle trajectories which emphasizes on directionality.

propagates at different speeds depending on location.9 There-
fore, particle trajectories (see Fig. 10(d)) are used to track the
direction in which the zero-interface moves to facilitate slope
estimation at a specific height. The relevant procedure called
‘‘particle advection’’ is described inAppendix Bwherein (26)
represents the key equation for particle update.

The particle speed (spacing) along each trajectory will
eventually be adjusted to ensure each advances at a uniform
rate and reaches the target boundary at the same time. This
allows the zero interfaces to be converted into iso-contours of
constant elevation. These ideas capture the essence of contour
metamorphosis; Fig. 10(e) also serves as a prelude of the end
goal.

B. CHALLENGES
In principle, Appendix B provides all the necessary tools for
capturing information on local spatial deformation. In prac-
tice, when the shape of the source and target regions are
dissimilar, the scheme may fail. Specifically, particle trajec-
tories may fail to track the wavefront in areas where com-
plex topological changes occur especially when they coincide
with large differences in local curvature. This can be seen
in Fig. 11(a) where some target boundary segments have

9The propagation speed depends on the geometric distance between the
interface and target contour in accordance with (19).

zero particle coverage. Fig. 11(b) highlights regions which
end up being unmodeled despite being reached by the wave-
front. This usually occurs due to undersampling when the
cross-section spacing is large. The goal in this section is
to determine its root cause and contribute a solution to this
problem.

In each time step, wavefront segments which the particle
trajectories had failed to track are archived. This produces
a collection of time-stamped pixels (called curvelets) which
identify areas of innovation, viz., locations where the wave-
front and head of the particle trajectories have diverged. The
window of interest in Fig. 11(c) is magnified in (d) to reveal
its structure. It can be seen the waves emanate from two
separate sources and merge in the middle, this describes a
region splitting situation which can be reasonably expected
based on the topology shown in (a). For other unmodeled
regions shown in (c), the situation is less complex and the
behavior can be attributed to significant differences in local
curvature. The common theme is that the missing particle
trajectories appear to emerge from a single branching point.

The color strands in Fig. 11(e) show the trajectory flow
for new particles sitting on the curvelets. The arrows indicate
the direction the backtracking algorithm proceeds in. The
aim is to establish pathways from the target back toward
the branching point. In Fig. 11(f), new pathways deduced
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FIGURE 11. Illustration of branching point phenomenon. (a) Particle trajectories (obtained using Appendix B) reveal target segments with zero
particle coverage (see empty red lines). (b) Time of arrival map indicates the target segments concerned were clearly reached by the wavefront,
gray area indicates region with no trajectory coverage. (c) Innovative areas where the wavefront diverges from the evolving particle trajectories
are identified by black lines in each time step. (d) Magnified view of the window in (c) demonstrating the concept of curvelets, a collection of
pixels (only a subset is shown), which describe the temporal movement of the wavefront, specifically, the portions which the particles have lost
track of. These emanate from a single branching point. (e) Curvelet back-tracking between successive time steps as a means of re-establishing the
missing trajectories. Final result: (f) Merging the recovered curvelet trajectories with existing particle trajectories.

from the curvelets are slotted into the unmodeled regions.
Evidently, this recovers directional information between the
source and target contours in areas where information had
previously been lost.

C. CURVELET BACKTRACKING
The backtracking algorithm is formally described in Algo-
rithm 10. The starting point is a collection of time-stamped
pixels, these represent wavefront segments the particle tra-
jectories had failed to track using the particle update equation
(26) during contour metamorphosis. Backtracking comprises
six primitive steps; these are described below and illustrated
in Fig. 12.

(a) Curvelet endpoint identification Locate the start and
endpoints of prospective curvelets within P t — the set
of unordered pixels on the wavefront which have drifted
away from the particle trajectories at time t .

(b) Curvelet segmentation (clustering and ordering)
Extract individual curvelets ζ tc by tracing the connecting
pixels between relevant endpoints.

(c) Curvelet regularization Fit pixels with a smoothing
spline to remove jitter. Resample segment as Nc point
regularized curvelet κ tc.

(d) Curvelet track initialization / extension The displace-
ment of curvelet points between successive time steps
[τ tc (n), τ

t−1
c (n), . . .] describe possible pathways for the

missing trajectories in unmodeled regions.
(e) Curvelet association Given regularized points κ t+1c (m)

for curvelet c at time t + 1, find a matching curvelet k
at time t .10 A case of interest is depicted in Fig. 12(e)
where the segmented pixels ζ tk (n) from two curvelets
k = A,B are merged from t to t + 1. This is handled by
considering interval mappings kt+1c,p for multiple curvelet
parts (p = 1, 2).

(f) Curvelet correspondence Once matching pixels ζ tk are
found, the curvelet at time t is smoothed and resampled
evenly with Nc points. This curvelet κ tk is then collec-

10Nearest neighbor search is employed to find a surjective mapping from
t to t + 1. Each point κ t+1c (m) has at least one match at t , but not every
pixel on ζ tk is matched with a point at t + 1. For this reason, as illustrated in
Fig. 12(e), this is used only for curvelet association and not for point-wise
correspondence. This is because inconsistent (jittery) movement has a detri-
mental effect on trajectory estimation. To eliminate the cumulative effects
of drifting which would otherwise skew the tracks over time, the associated
point set is constrained to lie on a regularized curvelet as shown in Fig. 12(f).
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FIGURE 12. Curvelet backtracking concepts (cf. Algorithm 10).

tively mapped onto κ t+1c , the current curvelet.11 For a
given point n, the sequence [κ t+1c (n), κ tc(n), κ

t−1
c (n), . . .]

subsequently defines a track which traverses the unmod-
eled region.

These steps capture the essence of the backtracking algo-
rithm which produces particle tracks, see color strands
in Fig. 11(e) and (f), for the unmodeled regions. The remain-
ing tasks involve branching point identificationwhich enables
existing particle trajectories [the trunk portion extending from
the source contour to the branching point] to be fused with
the newly discovered tracks [from the branching point to the
target contour] to complete the missing pieces. The details
are described in Algorithms 11 and 12 and the notations are
clarified in Fig. 13.

V. RESULTS
The proposed boundary extraction technique was applied to
blasthole patterns from a Pilbara iron ore mine in Western

11This provides an interesting contrast to the wavefront tracking approach
proposed by Tomek et al. [49] which represents two sets of time-stamped
pixels with a complete oriented bipartite graph, poses the task of finding the
best tracking arrows as a network flow problem, formulates and solves it as an
integer program using branch and bound. Similarly, Singh et al. treated this
as an optimization problem and employed dynamic programming in [50].

FIGURE 13. Curvelet branching considerations (cf. Algorithm 11–12).

Australia. Fig. 14(a) illustrates one such pattern for a miner-
alized geozone before any modeling was done.

A. VISUALIZATION
Spatial correspondence and metamorphosis were applied to
the segmented regions; culminating in the contours seen
in Fig. 14 (b and e). These contours are triangulated to pro-
duce the surfaces shown in Fig. 14 (c and f). These results
demonstrate that differential geometry can model subter-
ranean boundaries, handling topological changes (e.g., region
merging) satisfactorily. The proposed techniques essentially
transform irregularly-spaced points of low resolution into
continuously deformable surfaces that represent boundaries.
Fig. 15 reveals the structure of the two geozones. The two
vantage points show that g1 lies above g2, such bedded planes
(layered geological formations) are common for iron ore
deposits at the mine site.

B. PREDICTIVE VALUE
To assess the utility of slope information conveyed by the
model, precision and recall rates are computed for pre-
dicted contours and compared against ground truth bound-
aries. The terrain extends from 690m down to 610m and is
partitioned into disjoint 10m intervals (called benches) and
processed top-down. Predictions are made using only infor-
mation above the current bench floor. Therefore, predicted
contours represent extrapolations from the known interval.
For each comparison, data at the predicted depths from the
bench below are withheld (not used to inform the predic-
tion model) and these contours are used only for valida-
tion purpose at a given bench. Precision and recall rates
are defined using set notations. The general setup is shown
in Fig. 16. For predicted region Pi, precision is defined
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FIGURE 14. (a) Blasthole pattern superimposed on the terrain. Extracted contours and triangulated surfaces for two geozones: g1 in (b)-(c) and g2
in (e)-(f). The surface appearing in (c) is shown from a different vantage point in (d).

TABLE 3. Model precision and recall rates vs prediction depth.

as p(i) =
⋃

j|Gj∩Pi

∣∣Pi ∩ Gj∣∣ / |Pi|. For ground truth region
Gi, recall is defined as r(i) =

⋃
k|Gi∩Pk |Gi ∩ Pk | / |Gi|.

The overall precision (resp., recall rate) at depth d is the
area-weighted average precision (resp., recall rate) of all con-
tours at the specified depth. The depth varies from 0 to 10m
in steps of 1.25m. Precision and recall statistics are computed
under two conditions: (i) not using slope information [pre-
diction employs zero-order hold], (ii) using the gradient field
from the proposed model to obtain displacement estimates,
i.e., combining the translation with the local deformation
component estimated during spatial correspondence and con-
tour metamorphosis, respectively.

Fig. 17 demonstrates a consistent improvement in pre-
cision and recall rate when slope information is used
in the model prediction. Significant gains in precision
(12.7–19.2%) and recall (17.6–22.8%) are observed at depths
of 5 to 10 meter. These statistics are summarized in Table 3.

VI. DISCUSSION
These results demonstrate the feasibility of modeling subsur-
face boundary geometry using interdisciplinary techniques.
In spite of the incomplete, sparse, causal and limited nature
of the spatial patterns, computational physics (partial dif-
ferential equations) and computer vision techniques can be
combined to estimate directionality and produce a subsurface
model that gives greater insight into the general structure of
a geological domain. Modeling geological boundaries using
differential geometry also offers other advantages. For ore
reserve estimation, the volume of the triangulated surfaces
may be computed easily from the vertices as outlined by
Zhang [51]. Given coherent slope estimates, directional pre-
dictions made by the model may be used in adaptive sam-
pling [52] to make drilling more targeted and cost-effective.
Indeed, various forms of analysis performed on those sam-
ples (including chemical assays and material classification
by experts) can further constrain or correct inaccurate pre-
dictions, when geological boundaries need to be updated or
learned further afield. This may be appreciated as a form of
active learning in an exploration/exploitation framework. The
surface slopes can also serve as a decision support tool for
multi-agent scheduling and planning activities that involve
drilling and excavation.

Several observations about the BGM system should be
noted. First, although the boundary segmentation process has
been designed to extract contours from sparse spatial patterns,
it can take as input any sensible closed contour generated by
humans or computers, such as lithological boundary detection
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FIGURE 15. Extracted surfaces for geozone g1 (orange) and g2 (blue)
conform to the local geological structure where one is stacked on top of
the other. Two vantage points from above and below in the top and
bottom panels.

FIGURE 16. Concept of precision and recall for spatial regions.

using rock face image segmentation [53] and 2D decision
boundaries from Gaussian process implicit surfaces [54] or
SVM. Second, for spatial correspondence, it is possible to
have humans in the loop to provide interactive estimates
and perform component alignment in difficult cases. Third,
the contour metamorphosis step may be preceded by geo-
metric operations such as affine transform. For instance,
a rotation between the source and target components can be
estimated in the Fourier domain using the technique described
by Nagashima [28]. Fourth, the directional estimates gener-
ated by the model can feedback into the system and act as

FIGURE 17. Precision and recall rates for prediction: (gray) proposed
model, (black) scenario where slope information is unavailable.

a prior during region association. Finally, when data becomes
more abundant, machine learning techniques can potentially
be used to estimate certain parameters relating to surface
dynamics (e.g., the anticipated lateral movement for certain
regions).

VII. CONCLUSION
This paper presented a framework for modeling geologi-
cal boundaries using differential geometry. The objective
was to create subsurfaces from sparse spatial patterns and
obtain coherent directional predictions along the boundary of
the extracted surfaces. Under the model, the precision and
recall rate for contour prediction improved on average by
15–20%. For boundary extraction, an edge map synthesis
procedure was described. This converted sparse non-uniform
data points to an image representation and facilitated the
use of PDE-based techniques which operate on dense uni-
form 2D arrays. Gradient vector field and active contours
were used to obtain regularized contours from unordered
edge pixels. For spatial correspondence, region association
and component alignment problems were examined, trans-
lation estimates were obtained using FFT cross-correlation
under spatial constraints. Multi-source mult-target compo-
nent relationships were explored using intersection graphs;
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TABLE 4. List of appendixes (see supplemental material).

TABLE 5. List of algorithms (see supplemental material).

strategies for obstacle avoidance were formulated from a
resource allocation perspective. For contour metamorphosis,
local surface deformation was modeled using PDE (described
in Appendix B). Surface slopes were estimated using nor-
malized particle trajectories. The branching phenomenon
was described: branching occurs during contour morphing
when there is a significant mismatch in curvature between
the source and target boundary segments. A curvelet back-
tracking algorithm was proposed to recover information lost
during particle advection and thus overcome tracking fail-
ure caused by branching. In essence, the overall solution
dealt with sparsity (irregularity), spatial constraints, and
branching-induced tracking failure.

In a Nature editorial, an opinion piece [55] character-
ized interdisciplinary research as a synthesis of different
approaches into something unique. This captures the essence
of this study which is to re-imagine how concepts from
established areas can be synthesized and applied to a dif-
ferent field. This study had a narrow focus on estimating
and exploiting the directionality of subsurface boundaries
for more targeted drilling and exploration. Its uniqueness
stems from applying differential geometry to sparse data.
A different blend of technologies may be appropriate in a
different setting where automation involves something dif-
ferent. Whilst research papers in engineering and the natu-
ral sciences have increasingly cited work outside their own
disciplines [56], some areas remain unexplored. These areas
can benefit from fresh perspectives and offer opportunities
for meaningful collaboration [57]. It is hoped this work can
encourage more people to engage in and apply their expertise
to various emerging and non-traditional fields.

APPENDIXES
Appendixes are included as supplemental material. The sub-
ject matters are outlined in Table 4.

ALGORITHMS
Algorithms are included as supplemental material. Table 5
lists the algorithms and referenced sections.
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