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ABSTRACT Karyotype analysis is one of the main techniques of cytogenetics through medical image
processing, which has an important role in modern medical treatment and diagnosis. The process of human
karyotype analysis contains two key components: Firstly, chromosomes are segmented from metaphase
chromosome digital images taken under a microscope. Chromosomes then are analyzed, compared, ordered
and classified one by one carefully. Under this procedure, the operation on segmentation and classification
is cumbersomely time-consuming, where traditional geometric or statistical methods only have limited
effect due to low accuracy. Thus, in most conditions, human effort is still heavily required to monitor the
workflow and correct the errors. In this paper, we present an integrated workflow to segment out and classify
chromosomes automatically using a combination of multiple input convolutional neural networks (CNN)
and geometric optimization, called mCNN_GO. We investigate Mask R-CNN to segment out chromosomes
from metaphase chromosome images and train the mCNN_GO to classify the sub-images. To improve the
performance of the segmentation network, we adapt a new feature-based approach to synthesize images on
the labeled data. Furthermore, we develop a geometric algorithm to straighten the chromosomes before
classification to ensure the consistency of the data. Experimental results demonstrate that our approach

significantly outperforms the state-of-the-art methods on automatic karyotype analysis.

INDEX TERMS Biomedical image processing, image processing, machine learning.

I. INTRODUCTION

Medical image processing has become an important assistant
tool of diagnosis and therapy. Nowadays, human karyotype
analysis is of great significance for the clinical diagnosis
of genetic diseases. Karyotype analysis is one of the main
techniques of cytogenetics, including analyzing, compar-
ing, sequencing and numbering of metaphase chromosomes
through the captured chromosomes digital images. Before
karyotyping, cells need to be cultured. As shown in Figure 1,
when chromosomes are at the metaphase, they will be sep-
arated from the nucleus and stained onto glass slides for
observation and photography under the optical microscope.
The division and classification process of chromosomes will
be done by professional doctors with the help of auxiliary
equipment. This set of operation is time-consuming and labo-
rious, which is mainly due to the following difficulties:
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- Each piece of the captured image contains massive
chromosomes. They need to be observed by laboratory
doctors one by one. Especially, the cases with impuri-
ties, overlapping area and contacting will significantly
increase the difficulty of the operation;

- After segmentation, the classification of chromo-
somes is also exhaustive and labor-intensive. In clinic,
the chromosomes are often curved or bent heav-
ily, which makes it harder to verify the classes of
chromosomes.

To minimize the human effort consumption in karyotype
analysis, Sharma et al. [1] provided a chromosome segmen-
tation method based on crowdsourcing. This is the first who
used CNN on chromosome classification. They also proposed
several preprocessing methods such as the straightening and
length normalization. However, the results could not meet the
requirements of automatic karyotype analyzing. The accu-
racy of classification is relatively low and unsatisfactory.
To improve the accuracy of chromosome segmentation and
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FIGURE 1. The pipeline of our system, includes: 1) Chromosome Segmentation 2) Geometric Optimization and 3) Chromosomes Classification.

classification, we make significant improvements to the exist-
ing approaches and increase the accuracy and availability of
automatic karyotype analyzing.

In this paper, we provide an approach for performing
karyotype analysis using deep learning. The metaphase chro-
mosome images are fed into a segmentation network for
instance segmentation, and then each single chromosome will
be extracted from the whole picture. After that, we investigate
amulti-input CNN to classify the extracted chromosomes into
24 classes for karyotype analysis. For certain cases where the
extracted chromosomes are curved, we develop a geometric
algorithm to straighten each chromosome before classifi-
cation to ensure the consistency of the training data. The
straighteng method is based on the medial axis of chromo-
some. This preprocessing is proved to improve the accuracy
of classification. The main contributions of this paper are as
follows:

1) This is the first segmentation network to accomplish
the task of instance segmentation of metaphase chro-
mosome images. Mask R-CNN [2] is investigated on
the pixel-level segmentation.
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2) The straightening algorithm based on the medial axis of
chromosome is proposed, which considerably increase
the classification accuracy. It improves the usability of
our system on the clinic samples.

Using a multi-input CNN to classify the chromosomes,
the accuracy has been significantly improved compar-
ing to the classic baselines and predecessors.

3)

Il. RELATED WORKS

Karyotyping of chromosomes can be regarded as the task
including two steps, respectively, segmentation and classifi-
cation. To mitigate the human effort in karyotyping, numer-
ous methods for segmentation and classification have been
proposed.

A. CHROMOSOME SEGMENTATION

Segmenting out chromosomes from the meta-phase chro-
mosome image is primarily crucial, because it will directly
affect the accuracy of following classification process.
Pham et al. [3] surveyed on the traditional segmenta-
tion methods widely used in medical image segmentation.
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Charters and Graham [4] provided an algorithm to segment
according to the comparison between the band profiles and
the templates. Sharma et al. [1] used crowdsourcing to seg-
ment out the chromosomes and represented a method to
evaluate the results. Many approaches based on the heuristic
rules and geometry are also represented, such as [5]-[7]. But
they had low robustness under the clinic conditions, where
the shapes and distribution of chromosomes usually vary
greatly. Furthermore, in clinic, the overlapping and contacting
of chromosomes often appear, while the traditional methods
like [8], [9] are highly depend on manual intervention and
preset parameters, which means that they had certain limita-
tion when the condition changes.

As the advent of deep learning, CNN have achieved excel-
lent performance on many computer vision tasks. In medical
image, scholars also tended to apply CNN for image seg-
mentation. Long et al. [10] first used Fully Convolutional
Networks (FCN) to do image segmentation. BenTaieb and
Hamarneh [11] optimized the structure of FCN and success-
fully used it on medical image processing. Medical image
segmentation network U-net offers high accuracy while train-
ing on a small amount of annotated data, and have superior
performance on Hela cell segmentation and neuron segmen-
tation tasks [12]. However, most of the existing models are
designed for semantic segmentation, while karyotyping needs
to segment out each instance of chromosomes. In this paper,
we first use deep learning for chromosome segmentation, and
we compared three widely used models: Mask R-CNN [2],
FCIS [13] and YOLOV3 [14]. YOLOvV3 can be trained and run
fast while keeping high accuracy, especially on detecting tiny
objects. However, YOLOv3 can only predict labels on bound-
ing box level, while our task needs pixel-level prediction
because chromosomes can be intensive in a small area. FCIS
can generate masks at pixel-level, but the accuracy of it is
lower than Mask R-CNN in most conditions. Thus, we choose
Mask R-CNN as our segmentation network and the results
show that it works well on the chromosome segmentation
task.

A major impediment in deploying deep learning on chro-
mosome detection and segmentation is the lack of large
annotated data. Annotation in pixel-level is daunting for
microscopic images like the metaphase chromosome image.
The widely used method to collect annotated data is crowd-
sourcing [1]; however, the quality of these crowdsourcing
data is hard to ensure, because the annotation of medical
images is a tough task and requires operators to have a
wealth of experience. As the advent of generative adver-
sarial networks (GAN), many synthesis methods based on
GAN had been developed [15], [16]. However, these methods
could only generate annotated images for semantic segmen-
tation. They are not feasible for distinguishing instances.
Dwibedi et al. [17] represented an approach to automatically
extract object images and pasted them on backgrounds to
synthesize training data with bounding box labels. This pro-
cess could collect large amount of data rapidly for instance
detection. Inspired from this work, we propose a synthesis
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method to generate pixel-level annotated data for chromo-
some segmentation. Extensive experiments demonstrated that
our synthetic data has high realism so as to improve the
segmentation performance considerably.

B. CHROMOSOME CLASSIFICATION

Chromosome classification is a well studied problem. Earlier
approaches, such as [18], were highly relied on geometric
features (like the length of chromosomes or the position
of centromere) and the banding profiles of chromosomes.
Robust performance started from introducing medial axis
transformation (MAT) into chromosome classification [19].
As follows, many MAT-based studies have been conduc-
ted [20], [21]. Also, multi-layer perceptron (MLP) was
applied to make the predictions [19].

Then, many CNN-based methods on chromosome classi-
fication have been developed. Sharma er al. [1] first used
CNN to classify chromosome. In this method, the preprocess-
ing procedure was also proposed to straighten those curved
chromosomes. Their model was trained under 1600 indi-
vidual images and tested on 200 images. The accuracy on
preprocessed images is 86.7%. Because of the limitation of
labeled images, Jindal et al. [22] represented a method based
on Siamense Network, which has good performance under
scarce training data. In detail, chromosomes were straight-
ened by two different approaches in parallel before sending
to Siamense Network. The accuracy on 209 images achieved
84.6% after being trained on 1296 images. Wu et al. [23]
then proposed a Multiple Distribution Generative Advertis-
ing Network (MD-GAN) to generate labeled data and used
a pre-trained CNN to classify chromosomes with samples
generated by MD-GAN. However, their average precision
only achieved 63.5%, which is further below the requirement
for clinic application. One main challenge is the lack of
labeled data. This may lead to overfitting, low accuracy and
low robustness. Another challenge is that, the performance
of learning model highly relies on the results of chromo-
some straightening. Our framework is built on the multi-input
CNN [24]. It can extract features from not only preprocessed
images, but also original images.

Ill. OVERVIEW

Figure 1 illustrates the whole workflow of our system. In the
first stage, we input the original Giemsa stained images into
the segmentation network. The mask of each individual chro-
mosome is calculated as its output. Then, system extracts the
chromosomes to sub-images separately. In the second stage,
each sub-image will be geometrically optimized by cropping,
rotation and straightening. In the last stage, the original and
optimized sub-images are fed into our classification network.
The entire workflow is fully automatic and has no need for
human intervention. Due to the high complexity and uncer-
tainty in clinic conditions, the accuracy of our system can
vary widely in some most extreme case. Instead of replacing
doctors during the karyotype analysis completely, we aim to
optimizing the processing by minimizing doctors’ load.
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FIGURE 2. A simple but effective method to synthesize pixel-level annotated images for chromosome instance segmentation.

IV. METHODOLOGY

A. DATA COLLECTION AND SYNTHESIS

The dataset of segmentation consists of two groups: the
original images and the synthetic images. The original set
is provided by a hospital. Annotation is done manually.
Due to huge quantity of the dataset, it is hard to anno-
tate them all. In practical, we adapt and improve the ’cut
and paste’ image synthesis method developed by [17] to
synthesize the annotated images. By doing so, it saves
much human effort. Nevertheless, we demonstrate that all
synthetic images are annotated in pixel level. The main
steps of our method (as illustrated as Figure 2) are as
follows:

1) Chromosome image collecting. The sub-images of
chromosome are extracted from the ordered karyogram
provided by hospital in grayscale. We collect 5000 sub-
images. Each one only contains a single chromosome
in 128 x 128.

2) Distractors and background image collecting. We
collect 50 kinds of distractors and 20 backgrounds
without chromosomes from metaphase Giemsa stained
images in grayscale.

3) Foreground mask synthesizing. Mask of each chro-
mosome is synthetized by binarizing sub-images.
Meanwhile, we calculate its bounding polygon.

4) Foreground and background assembling: 48 chro-
mosomes and 2 to 6 distractors are chosen and pasted
on a background randomly. To prevent unnecessary
overlapping and obstruction, chromosomes are placed
on the central area of backgrounds, while distractors
are more intensive on the edge area. According to
Dwibedi et al. [17], using various modes of blending to
synthesize same images can increase the robustness of
the training model. Thus, three different blending pat-
terns are applied including Gaussian blurring, motion
blurring, and box blurring.
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B. SEGMENTATION USING MASK R-CNN

In the task of chromosome segmentation, we need to segment
out every single chromosome from the complex meta-phase
Giemsa staining image, where contains not only chromo-
somes, but also impurities. Moreover, chromosomes often
overlap or contact on others. Our model needs to be powerful
enough to complete following tasks: 1) Object detection,
which means it should be able to detect the chromosomes
from a messy background; 2) Pixel-level segmentation.
Because the chromosomes can be intensive or intertwined,
our model needs to distinguish and segment each chromo-
some precisely. In this part, we introduce Mask R-CNN to
the task of chromosomes segmentation. Mask R-CNN is
a general framework for object instance segmentation [2].
The backbone of Mask R-CNN is a standard convolutional
neural network (ResNetl0I in our task) combined with a
Feature Pyramid Network (FPN) as the component of feature
extraction. Region Proposal Network (RPN) then scans the
backbone feature map through sliding window so as to target
areas called anchors, where contain objects. Using the RPN
predictions, we can find the top anchors that are likely to
contain objects and refine their configuration such as location
and size. Finally, the regions of interests (ROIs) are calculated
using RPN including ROI class, the optimal bounding box
and the corresponding mask.

C. MEDIAL AXIS BASED GEOMETRIC OPTIMIZATION

In practical, chromosomes lay on the Giemsa staining image
in disorder as illustrated in Figure 1, which makes classifi-
cation process much harder and unstable. The straightening
operation on chromosomes is often performed before clas-
sification. The results demonstrated that it can improve the
accuracy of classification considerably [1], [22]. However,
through the experiment on our dataset, we observe that these
existing methods are only feasible on the chromosomes under
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FIGURE 3. Illustration of our straightening algorithm.

fairly flat gesture. The performance on the heavily curved
ones is limited.

To solve it, we extend the existing the straightening

approach via Projection Vectors [1] as follows:

1) Medial axis extraction. First, as shown in
Figure 3(i)-(v), we binarize the chromosome sub-image
and extract its contour. Then, sample the contour every
« pixels and generate Delaunay triangles based on these
sample points. After removing triangles outside the
contour, we can get the medial axis S by connecting the
center of triangles. The result shows that our approach
is more clear and has fewer branches than the medial
axis locating algorithm used in scikit-image [25].

2) Cutting-point finding. Javan-Roshtkhari and
Setarehdan [26] found that, when rotating the original
image of chromosome, the position of the bending
point can be obtained from the change of histogram.
However, when the width of the chromosome is rel-
atively average or the total pixel amount is small,
the histogram tends to be unchangeable during rotation
and the bending point cannot be found. In our approach,
we connect two ends of the medial axis S and get a
line segment L (Figure 3(vi)). Because the two ends
of the medial axis are actually the ends of the whole
chromosome, the point farthest from L must be the
bending point.

3) Rotation. After finding the cutting point P, we can
cut the image into two parts, and get the minimum
bounding box Bbox; and Bboxy:

Bbox; = I [Piow, Peur]
Bbox, =1 [Pcutv Phigh]
where Py, and Py;g;, means the end points of L. Then

we can find the slope of Bbox; and Bbox; and rotate
them to vertical to get Bbox; and Bboxj,.
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(111)

4) Pixel filling. Because we want to maximize the
horizontal banding features in the processed image.
We apply a new interpolation method in our algorithm.
For one pixel Pix; :

. 1 n .
Pix! = Pix!
" len(Ly,) ; en

where I,, means the line vector of image I and Pix,
means effective ith pixel in the mth line. Experimental
results on 90000 real images show that our method has
high robustness and generality. As shown in Table 3,
this method can improve the classification accuracy by
two percentage points.

D. CHROMOSOME CLASSIFICATION

USING MULTI-INPUT CNN

As mentioned in Sectionll, we believe the low accuracy of
existing classification models is because of the insufficient
feature extraction and the changeable shape of chromosomes.
Inspired by the multi-scale convolutional network developed
by [24], we propose a multi-input CNN to classify the chro-
mosomes, and the structure of our model is shown in Fig.1.
Our mCNN_GO (multi-input CNN with Geometric Opti-
mization) model takes three inputs at the same time: original
image, straightened image and cropped image. We extract
global-level features by the Global-Net, and the Local-Net
can extract local-scale features from the cropped image,
meanwhile, we feed the straightened image to the Straighten-
Net in parallel, which can improve the robustness in case
the original image is highly curved. This mCNN_GO model
is composed by three stages: 1) Feature extraction using
ResNet; 2) Combination of the three feature maps; 3) Clas-
sification via a MLP classifier based on the merged feature
map.
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FIGURE 4. The mask generated by segmentation network. We can see that our model has high robustness and good performance on the

segmentation of overlapping chromosomes.

Encouraged by the success of the residual learning [29],
we apply ResNet-50 as our backbone. The original image
and straighten image will pass a maxpooling layer with a
2x2 kernel and a convolution layer with 3x3 kernel. The
cropped image will be feed into ResNet directly. By doing
this, we can maximum the extracted features.

Once the CNNs are optimized, the global-level, local-level
and straightened features can be extracted and sent to the
classifier. To make full use of the features, we build a con-
catenation layer with 4096 nodes to merge these features into
a big feature map. Then a MLP classifier composed by two
FC layers with 1024 nodes and one softmax layer will learn
the correspondence between the features and the possibility
of each classes.

To optimize this model, we first train the Global-Net,
Local-Net and Straighten-Net individually until convergence
and fine-tuning the models. Then, we combine them together.
Fix the parameters of ResNet blocks and just train the upper
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layers. Then unlock all parameters and fine-tune the whole
model under a very small learning rate (0.0005).

V. RESULTS AND DISCUSSION

A. RESULTS ON SEGMENTATION

In this section, we introduce the experimental results on
the segmentation. As illustrated in Table 1, we set up six
training datasets and two validation datasets by combining
real data and synthetic data with multiple scheme of ratios.
We train 6 models on each train set individually. Our mod-
els are built based on and [31]. The hyper-parameters is
tuned during the process. The sizes of anchors of RPN is set
to [8, 16, 32, 64, 128]. The aspect ratio is set to [0.5, 1, 2].
To ensure the accuracy of ROI extraction, the threshold of
IoU is set to 0.7. We load the weights pre-trained on COCO
dataset and just fine-tune the top layers. Adam optimizer is
used for training with 81=0.9, 8,=0.999. The learning rate is
initialized to 0.001. Each model is trained for 60 epochs on
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TABLE 1. Experimental results of our segmentation network trained on different datasets. AP means computing average precision over a loU thresholds
of 0.5-0.95; AP5y means average precision on loU threshold 0.5. Results show that our segmentation network has a good performance, and the synthetic

images can improve the accuracy of our network.

N 100 Real (AP) 100 Real+100 Syn (AP) 100 Real (APs0) 100 Real+100 Syn (APs0)
343 Real Images 52.059 44.488 90.590 90.010
343 Syn Images 47.563 31.805 88.194 76.967
1000 Syn Images 53.476 35.450 91.657 83.855
50% Real + Syn 57.827 41.882 94.030 91.931
30% Real + Syn 57.841 43.248 94.563 91.673
20% Real + Syn 59.998 44.794 95.644 91.662
TABLE 2. Performance of classification model on each type.
Class 1 2 3 4 5 6 7 8 9 10 11 12 13
Precision  0.9941 0.9737 0.9862 09370 09611 0.9677 09615 09191 0.9251 0.9401 09715 0.9681 0.9681
Recall 0.9861 0.9927 0.9887 0.9554 0.9295 0.9841 0.9619 0.9337 0.9246 0.9446 0.9729 0.9678 0.9813
Fl-score ~ 0.9901 0.9831 0.9875 0.9461 0.9450 0.9758 0.9615 0.9264 0.9248 0.9423 0.9426 0.9644 0.9747
Class 14 15 16 17 18 19 20 21 22 X Y Avg
Precision  0.9322  0.9490 0.9639 0.9693 0.9643 0.9426 0.9644 0.9425 09291 09493 0.9200 0.9567
Recall 0.9397  0.9406 0.9639 0.9726 0.9469 0.9209 0.9571 0.9560 0.9301 0.9407 0.9327 0.9552
F1-score 0.9360 0.9448 09639 09711 09556 09316 0.9608 0.9492 0.9296 0.9450 0.9263 0.9560

one piece of NVIDIA GTX1080Ti GPU with a total batch
size of 2.

The results are shown in Table 1. After training on 343 real
images, our model has achieved 52.059 AP points and 90.590
APs points on 100 real test images. Alternatively, by com-
bining 20% real data and 80% synthetic data in the training
dataset, the AP points and APs5( points has been improved by
8 points and 5 points respectively. The experimental results on
various test datasets show that the our synthetic data have high
availability and can improve the segmentation performance.
When IoU is set to 0.5, the accuracy of segmentation tested
on 100 real images is 95.644%. In the case on 200 combined
images, the accuracy is 91.673%. Figure 4 shows the results
on real meta-phase chromosome images. We can observe that
our model performs well, even when the chromosomes are
overlapped and bowed.

B. RESULTS ON CLASSIFICATION
In our training dataset, 480000 pairs of the original images
and the corresponding classified ordered output images of
chromosomes are used. 90000 samples used for validation.
90000 samples are set as test set. All images are straightened
and cropped into the size as 64x32. The preprocessed images
and original images are sent to the classification network in
parallel. As a multi-label classification task, we measure the
performance of our classification by accuracy and F1 score.
Table 3 gives the result of each single model of us and the
combined model. It also shows the accuracy of some popular
CNN models and the results of predecessors. The mCNN_GO
model has better performance than any single-input models.
We analyze that the multi-input CNN can extract more valu-
able features and reduce the error of classification because
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TABLE 3. Comparison of our methods with the state-of-the-art methods

and predecessors.

Method Accuracy
AlexNet [27] 0.8975
VGG-16 [28] 0.9023
ResNet-50 [29] 0.9445
DenseNet [30] 0.9414
Sharma et al. [1] 0.8670
Jindal er al. [22] 0.8460
Global-only 0.9445
Local-only 0.9220
Straighten-only 0.8200
Global & Local 0.9455
mCNN_GO (Ours) 0.9570

the combined features have higher robustness. For compar-
ison, we implemented the method [1]. It is then trained on
our own dataset. The result shows that, after straightening,
the accuracy is slightly higher than using AlexNet only. But,
it highly relies on the results of preprocessing. Once the
preprocessing result is not ideal, the accuracy of classification
may decrease significantly. In our system, we feed both of the
original images and preprocessed images into the classifica-
tion network so as to minimize the uncertainty caused by bad
preprocessing results. From the comparison, we can observe
that our accuracy is 5% higher than others including AlexNet,
VGG-16, ResNet-50 and DenseNet.

Table 2 gives the classification performance on each class.
We can see that our mCNN_GO model has high robustness
and good performance on most types. Our model performs
best on Class 1, with the F1 score of 0.9901, and performs
worst on Y chromosomes, but the F1 score is still greater
than 0.92.
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VI. CONCLUSION
We propose a automatic approach for karyotype analysis
using deep learning and geometry optimization, and first use
deep learning method to perform chromosome segmentation.
We propose an simple but efficient approach to generate
annotated data automatically for chromosome segmentation,
which can improve the accuracy of deep models and build the
foundation for deep learning applications in this field. We try
to use Mask R-CNN to achieve the automation of chromo-
some segmentation and get a relatively good performance,
especially on the overlapping and contacting chromosomes.
For the highly curved chromosomes, we represent an opti-
mization algorithm which has better generality than existing
methods. Based on this optimization algorithm, we build a
multi-input CNN to classify the chromosomes and the per-
formance is better than other existing approaches. We are one
step closer to the fully automated karyotype analysis.

For the future work, we may extend it to a hashing-based
methods [32], [33] for this classification task, due to their
high efficiency in storage and retrieval.
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