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ABSTRACT Data releasing is a key part bridging between the collection of big data and their applications.
Traditional methods release the static version of dataset or publish the snapshot with a fixed sampling
interval, which cannot meet the dynamic query requirements and query precision for big data. Moreover,
the quality of published data cannot reflect the characteristics of the dynamic changes of big data, which often
leads to subsequent data analysis and mining errors. This paper proposes an adaptive sampling mechanism
and privacy protection method for the release of big location data. In order to reflect the dynamic change
of data in time, we design an adaptive sampling mechanism based on the proportional-integral-derivative
(PID) controller according to the temporal and spatial correlation of the location data. To ensure the privacy
of published data, we propose a heuristic quad-tree partitioning method as well as a corresponding privacy
budget allocation strategy. Experiments and analysis prove that the adaptive sampling mechanism proposed
in this paper can effectively track the trend of dynamic changes of data, and the designed differential privacy
method can improve the accuracy of counting query and enhance the availability of published data under
the premise of certain privacy intensity. The proposed methods can also be readily extended to other areas
of big data release applications.

INDEX TERMS Big location data, privacy preserving data publishing, adaptive sampling, differential

privacy, heuristic quad-tree partitioning.

I. INTRODUCTION
Location information is widely used in big data applica-
tions such as Mobile Internet, Internet of Vehicles, Intelli-
gent Transportation System, Mobile Social Networks, and
Location-based Services. Location information collected and
released in real time can help the public understand current
traffic conditions, realize communication and sharing based
on social networks, perform e-commerce-based diet, play,
shopping, and check news, make friends, post information
and etc. The immeasurable values brought by the analysis,
mining and application of location information has attracted
the attention of governments, industries and research depart-
ments all over the world.

The existing big location data systems mainly adopt a
fixed publishing time interval. For example, in an intelligent

The associate editor coordinating the review of this manuscript and
approving it for publication was Mahmoud Barhamgi.

164962

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

transportation system, a GPS device equipped on vehicle
reports the location information to the traffic management
center every 10-20 seconds. Vehicle detector stations usually
report the nearby traffic flows every few minutes. The pub-
lishing platform provides statistic location information for
users to keep abreast of traffic conditions, to plan personal
travel plan, and to get location-based services, etc. Sampling
and publishing big location data with a fixed time intervals
makes the implementation the easiest and most convenient.
However, from the perspective of the availability and effect
of published data, it is far from satisfying the user’s demand
for real-time application of location big data. Figure 1 shows
the real-time traffic flow and sampling results with a fixed
time interval in a city for one day. It is not difficult to find
that although the published data maintains the trend of the
original data as a whole, when the time interval At s too large,
the sampling result is easy to lose the peak and valley values
of the traffic flow, or the overall trend has shifted in time (the
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FIGURE 1. Traffic flow and fixed sampling interval.

peak time of the sample result is always earlier or later than
the true peak time). It will severely compromise the appli-
cation performance of location-based big data. For example,
users will not be able to schedule their travel at reasonable
times. On the contrary, when the time interval At is too small,
the amount of storage, operations, and calculations required
for the publishing of data will increase sharply, resulting in
unnecessary waste of resources. Therefore, the reasonable
releasing time should be adaptively adjusted according to
the change of data volume, so that the sampled value at the
releasing time can accurately reflect the dynamic change of
location data, and at the same time can balance the amount of
system calculation and the availability of published data.

Big location data are closely related to user’s private infor-
mation. By collecting, mining, and analyzing position or
trajectory information (time series of position), attackers can
not only obtain the location where a user always stays, but
also further predict the current position and future trajectory
of the user, resulting in the disclosure of personal private
information, such as home address, lifestyle, health status,
personal interests and income levels. In some serious cases,
the leakage of family location may leads to the theft of
property, and the leakage of user’s trajectory may leads to
kidnapping [1], [2].

The privacy protection task for location data can be
achieved by cutting off association between users and spe-
cific location points or track by the means of anonymity,
suppression, perturbations, and encryption [3]-[7]. However,
suppressing sensitive location points or encrypting location
information will block the application of location big data.
Because location-based services need to give the query result
or recommendations according to a user’s location. Most of
the methods based on k-anonymity model and its improved
strategy use generalization operations, which have a great
impact on the availability of published data. Perturbation
methods can achieve privacy protection by adding noise to the
real records, and maintain the availability of location infor-
mation. As one of the research hot-spots of privacy protection
perturbation methods, the differential privacy model [8], [9]
has been widely used in the privacy protection process of sta-
tistical big data. By adding random noise to the original data,
the differential privacy model ensures that attackers cannot
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recognize whether a record exists in the data set. Differential
privacy model allows attackers to have infinite computing
power and any useful background knowledge, without the
need to care about specific attack strategies. In the worst
case, even if the attacker obtains all sensitive data except one
record, differential privacy model can still guarantee that the
attacker cannot judge whether the record is in the dataset.

The differential privacy protection model has a natural
match with the application of big location data publishing.
The reason is that the large-scaled location data makes the
impact of adding or deleting a certain location point on the
overall data set very small. This characteristic just coincides
the connotation of the differential privacy definition. How-
ever, the dynamic update feature of location data also brings
new challenges to the application of the differential privacy
model, specifically:

« How to dynamically adjust the privacy budget allocation
according to the changing location big data, and then
maintain a certain privacy protection intensity in each
release result, so as to prevent attackers from obtaining
user’s private information through joint analysis of the
published data at different times?

« How to adjust the embedding strategy of random noise
according to different distribution of location big data,
so as to improve the availability of published data?

In this paper, we discuss the dynamic publishing mecha-
nism and differential privacy protection method for big loca-
tion data. In a nutshell, the main contributions of this paper
are as the following:

e In order to make the published information more
accurately reflect the dynamic changing of real big
location data, we propose an adaptive sampling mech-
anism based on proportional-integral-derivation (PID)
controller. It can adaptively adjust the length of publish-
ing time intervals according to the amount of updated
location information, which not only overcomes the
disadvantages of the uniform time interval publishing
method, but also improves the availability of published
data.

« Aiming at the privacy protection problem of big location
data publishing, we propose a heuristic quad-tree parti-
tion algorithm based on regional uniformity, and design
the corresponding privacy budget allocation strategy to
solve the difficulty of determining the stopping condi-
tion for top-down space decomposition. It can balance
the influence of noise error and non-uniformity error on
the query accuracy of published data.

« We conduct extensive experimental studies to demon-
strate 1) the effectiveness of our proposed adaptive sam-
pling mechanism in tracking the trend of dynamic big
location data and ii) the improvement of the differential
privacy method in accuracy of the counting queries and
availability of released big location data.

The rest of the paper is organized as follows. Section II

introduces the preliminaries. Section III provides the basic
principle and implementation method of the proposed
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FIGURE 2. The framework of centralized release of big location data.

adaptive sampling mechanism. Section IV details the heuris-
tic partition and differential privacy protection algorithm after
adaptive sampling. Section V reports a set of empirical studies
and the results. Section VI reviews the related works, and
Section VII concludes the paper.

Il. PRELIMINARIES

A. THE FRAMEWORK

Figure 2 shows the framework of centralized release and
privacy preserving of big location data. Massive sensors and
intelligent terminals continuously collect location informa-
tion from various users. After the aggregation, integration,
analysis and processing, location data are provided to differ-
ent fields of scientific research, decision support and public
services, which fully reflect the value of location data in var-
ious applications such as intelligent transportation systems,
location-based services, location-based advertising. Because
of the close relationship between location information and
personal privacy, releasing location data without privacy pro-
tection is very likely to cause user privacy leakage, leading to
serious threats on personal reputation, interests and security.
The goal of privacy preserving-based location data publishing
is to improve the availability of data and achieve various
location-based applications while ensuring that user privacy
is not compromised.

The data producers can be different kinds of terminals,
devices, sensors, vehicles, users, etc. from diverse channels
such as the Mobile Internet, Internet of Vehicles, Internet of
Things, Sensor Networks and Social Networks. Location data
are constantly sent to the publishing platform in different
forms, structures and quality. Most of this process uses an
honest model, assuming that all the data is sent to a reliable
data publisher. In order to protect the privacy information of
data producer, the identifier attribute of the original data that
can uniquely identify the user is generally deleted, so that the
original data is anonymized.

The publishing stage is the bridge connecting the
collection stage and the application stage. After clean-
ing, pre-processing, fusion, analysis and privacy protection
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processing, location data are fed to various applications
according to different needs and methods. The process of
releasing location data can be either interactive query meth-
ods or non-interactive publishing. The published data can
be organized in the form of location information database,
statistical reports, news reports, research reports, etc. The
publishing stage of big location data adopts a non-honest
model because there may be malicious users (called attack-
ers). By collecting large-scale location data, using advanced
big data analysis and mining tools, and leveraging back-
ground knowledge gained from other sources, attackers could
identify specific users from the published data or gain further
access to the user’s private information.

In addition to the diversity and openness of big data pub-
lishing methods, the continuous development of data mining
and analysis technology has helped people discover new
knowledge and also led to the disclosure of privacy. For the
publishers of location data, it is impossible to fully under-
stand the background knowledge of the data recipients, nor
to control how the published data will be used. Therefore,
the privacy preserving technology used in the data release
process is particularly important. Reasonable and effective
privacy protection algorithm can improve the accuracy of
query and analysis on the published data under the premise
of ensuring user privacy, as well as achieve a balance of data
privacy and availability.

B. DIFFERENTIAL PRIVACY

Definition 1 (e-Differential Privacy [8], [9]): For any pair
of neighboring datasets D and D’ (differing on at most one
element, written as ||[D — D'|| = 1) and all U € Range(M),
a randomized algorithm M gives e-differential privacy if:

P[M (D) eUl<e xP[M (D) e U] (1)

Differential privacy gives a strong guarantee that the pres-
ence or absence of an individual will not significantly affect
the final output of a query. Parameter € is called the privacy
preserving budget. The smaller the value of €, the higher the
privacy protection of user information.

Definition 2 (Global Sensitivity): For any pair of neighbor-
ing data sets D and D’, and a query Q, the global sensitivity
of Q is the maximum value between the query results of D
and D’:

GS (Q) = max |Q (D) — Q (D), 2
D,D

where ||Q (D) — Q (D’ ) |l1 denotes the first-order norm dis-
tance of Q (D) and Q (D’ )

Definition 3 (Laplace Mechanism): For any algorithm M,
if the output result satisfies Formula (3), algorithm M is said
to provide e-differential privacy:

3)

M (D') = M (D) + Laplace (GS (Q))

€

where M (D') is the noisy count of the algorithm on the
published data set, and M (D) is the result on original
data set.
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Theorem 1 (Serial Composition): For a set of randomized
algorithm {M{, M>, ..., M,},each of M; (1 < i < n) satisfies
¢; differential privacy on the dataset D, then the composite

n
algorithm of {My, My, ..., M,} can realize ) _ ¢; differential

i=1
privacy on the same dataset D.

Theorem 2 (Parallel Composition): Suppose the dataset
D can be divided into a series of disjoint subsets
{D{,D,,...,Dy,} and there is a set of randomized algo-
rithm {M, M3, ..., M,} acting on the above subsets, where
M; (1 <i < n) satisfies ¢; differential privacy on the sub-
set D;. Then the set of randomized algorithm can achieve
max {¢;} differential privacy on the dataset D.

Definition 4 (Noise Error): In order to prevent attackers
from inferring user’s specific information through a large
number of queries, Laplace mechanism is often adopted to
add noise to the statistical data, so as to satisfy the differential
privacy protection requirement. The effect of the added noise
on the query results is called noise error:

Noise_error (P;) = |C (P)—C (P/i)| @

where C (P) and C (P') indicate the original statistical value
and the noisy statistical value of a certain area P;, respectively.
Definition 5 (Non-Uniformity Error): For a query Q,

Pi(i=1,2,...,m) represents all the cells that are inter-
sect with the query rectangle or contained within it,
PiNP; =o.r(i=1,2,...,m)is the area ratio of the

1< j<mAi]
query area to a cell. The non-uniformity error for the query Q
can be described as:

m

NonUni_err (Q) = Z ri-C(P) —C () (5

i=1

1IlIl. ADAPTIVE SAMPLING METHOD FOR DYNAMIC

BIG LOCATION DATA

Big location data mainly come from the GPS positioning
information, vehicle data captured by the road induction coil
and the cameras, navigation and positioning information of
mobile user, etc. For such large-scale, fast-changing, complex
and sparse data, if the publishing (i.e., releasing) time interval
is fixed, it will face the following dilemma: if the data change
faster and the sampling frequency is lower, the sampled data
can not reflect the real-time dynamic change of location data,
and the quality of the query result returned to user is poor.
On the contrary, if the data change slowly while the sampling
frequency is high, more computing resources will be wasted,
and the corresponding privacy protection process may intro-
duce excessive noise and affect service quality. Therefore,
it is necessary to design an adaptive sampling method, which
can capture the trend of data updating and reduce the query
error of the published data by using the temporal and spatial
correlation between sampled datasets.

A. MOVING BOUNDARY
Combined with the distribution characteristics of infrastruc-
tures and the behavioral characteristics of the population,
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location information is always densely distributed within a
certain time and space. As a result, between the adjacent
releasing times, the distribution features of location data are
spatially redundant. The user’s moving boundary therefore
can be used as a constraint. Assuming that the speed of a
mobile user is V, then the extended area of the adjacent time
is X =V x (tiy1 — t;). The moving boundary is defined as
follows:

Definition 6 (Maximum Moving Boundary M, MB): R rep-
resents an area covered by location information on the current
time. When location data is updated, all the points located in
the extended annular area may enter the area R to form a larger
area M, MB, as shown in Figure 3(a).

Definition 7 (Minimum Moving Boundary M;,MB): R rep-
resents the location area of the current time. When the data
is updated, some points located in the annular area may dis-
appear, causing the area R shrink into a smaller area M;,MB,
as shown in Figure 3(b).

Generally speaking, the maximum and minimum mov-
ing boundaries can be calculated by sampling time intervals
and user’s moving speed. However, when the latitude and
longitude are different, the distance obtained according to
user’s moving speed and time has different meanings. For
example, in the case of equal longitude, the distance is about
1,113 meters per 0.01 degree; while in the case of equal
latitude, the distance is about 1,000 meters per 0.01 degree.

B. ADAPTIVE SAMPLING MECHANISM BASED
ON PID CONTROLLER
PID controller is the most common form of feedback con-
trol, and is mainly used to measure the variation of sam-
pling performance over time [10]. In this section, we design
an adaptive sampling PID control method for the dynamic
publishing requirements of location data based on moving
boundaries. At the initial moment, location data are sampled
according to a fixed time interval and obtain a snapshot
dataset. The predicted data are then obtained by predicting
the maximum and minimum moving boundary according to
Definitions 6 and 7. Finally, the feedback error is obtained by
comparing the count values of the two datasets, and the PID
controller is adjusted to obtain a new sampling time interval
according to the feedback error. The principle flow chart of
the adaptive sampling control is shown in Figure 4.

After we get the maximum and minimum moving bound-
aries for the snapshot dataset, the feedback error between
the snapshot dataset and the forecast dataset can be obtained
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FIGURE 4. Adaptive sampling scheme based on PID.

by comparing the statistic values under the same range. The
feedback error is defined as follows:

Definition 8 (Feedback Error): My, MBCount and
M MBCount represent the count value within the predicted
maximum and minimum moving boundaries respectively,
realCount indicates the actual count value of the region after
sampling. The feedback error FE can be calculated by using:

(a): if realCount < M;, MBCount,

M;uMBCount — realCount
FE = ©)
realCount

(b): if realCount > M, MBCount,
realCount — M, MBCount

FE = 7
realCount

(¢): if M;,MBCount < realCount < M, MBCount,
M;MBCount + M, MBCount

meanCount = > (8)
|realCount — meanCount|
FE = ©))
realCount

The variation process of the feedback error can reflect the
dynamic change of actual location data sampling and publish-
ing. Therefore, the corresponding feedback controller can be
designed according to the change of feedback error, which
is used to adjust the time for big location data sampling and
publishing. By combining the time and spatial correlations of
big location data, we redefine the proportional error, integral
error and differential error of PID as follows:

Definition 9 (Proportional Error ®p): Proportional Error
is used to keep the output of the controller proportional to the
current error, so that the system deviations can be controlled
within a certain range. Once the deviation occurs, the regu-
lator immediately produces a control to reduce the deviation.
Let Dp represent the proportional gain, FE is the feedback
error, the proportional error can be specifically defined as:

CI)P = Dp x FE (10)

Definition 10 (Integral Error ®;): Integral error is used to
eliminate the offset by controlling the output rate of the pro-
portional, improving the system’s indifference, specifically
defined as:

D
o="Lx Y FE (11)
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where Dy represents the integral gain, 77 represents the num-
ber of regions that have errors, and n represents the total
number of divided regions.

Definition 11 (Derivative Error ®p): Derivative error can
reflect the trend or rate of the change of deviation signal,
and can speed up the system and reduce the adjustment time
by preventing the occurrence of large errors according to the
change ratio before the value of deviation signal becomes too
large, specifically defined as:

FEuw, — FEp,_,

m; — nmj—1

®p = Dp x (12)

where Dp is the derivative gain of the derivative error and
m;(j=1,2,...,n) represents a partitioned region.

Definition 12 (PID Error ®): PID error integrates all the
factors from proportional error, integral error, and derivative
error, specifically defined as:

FEu;—FE,,_,
mj—m;—q

(13)

Dy -
®=Dp x FE—i—?Ix' Z FEj+Dp x
J=n—=Tr+1

where Dp, D;, Dp >0,Dp + D; +Dp = 1.
According to the total error of PID, the new sampling
interval can be defined as:

d—
Trew =max{T0,T+a <1 —e'ln>} (14)

where T is the original fixed sampling interval, & and ) are the
specified parameters, o determines the magnitude of change,
n is the PID error within the maximum allowable range, T is
the given minimum interval.

Algorithm 1 presents the details of the adaptive sampling
method based on the PID controller.

IV. PARTITION AND PRIVACY PROTECTION OF BIG
LOCATION DATA

Partition is an effective way to release statistical location
information, which can provide the query service for the
number of users within a certain geographical range, and
understand the traffic flow condition within certain areas.
Two-dimensional partition method usually divides the space
according to a certain index structure. Each index area is
represented by the statistical value of the data within the
area, which can reduce the disclosure risk of the real loca-
tion information. By adding differential privacy noise to the
statistical value of an index area, the effect of location privacy
protection can be further improved.

A. HEURISTIC QUAD-TREE PARTITION AND PRIVACY
PROTECTION METHOD

When partitioning the two-dimensional space from top to
bottom, it is important to determine the stop condition. If a
region has very few points, over-partitioning will create a
set of cells with close to zero data points, thus introducing
too much noise error. On the other hand, if a region is very
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Algorithm 1 Adaptive Sampling Based on PID

Algorithm 2 Heuristic Quad-Tree Partition (HQP)

Require: incoming dataset D, moving speed V, the original
fixed sampling interval 7', minimum sampling interval T
Ensure: snapshot dataset SD, new sampling interval T},
1:t1=0,=T
2: while the amount of new incoming data point # 0 do
3:  snapshot dataset SD <« select data points from D
within time interval [1, £2]
partition SD to get subareas R; (1 < i < n)
if i in n then
get the realCount of region R;
get M, MBCount and M;,MBCount according to
moving speed V
end if
:  get FE according to Definition 8
10  get ®p, ®;, ®p and P according to Formula (10)-(13)
11:  get Ty, according to Formula (14)
12: IR %)
130 1y <11 + Thew
14:  return SD and T,
15: end while

Nk

o ®

dense, under-partitioning will increase the non-uniformity
error, and reduce the accuracy of count query. Most of the
existing partition methods get the proper level of partition
(such as the depth of the tree structure) according to some
experimental results. Assigning the level of partition based on
posteriori results will limit the accuracy of the allocation of
privacy budget, and cannot meet the requirement of dynamic
publishing of location data. In order to solve this problem,
we define the uniformity of a region and design a heuristic
quad-tree partitioning algorithm based on region uniformity.

Definition 13 (Regional Uniformity): For a given region S,
den (D), den (Dy),...,den (D;) represent the density of sub-
areas after multiple direction partition (for example: vertical,
horizontal, diagonal, center and periphery). A row vector
V = {den (Dy),den (D3), ..., den (D;)} can be constructed,
and the uniformity can be expressed as U = log;, (Var (V)).
For the given threshold 6, if Formula (15) is satisfied, the area
is uniform.

de"(s)>2 <0 (15)

U—logm( ;
l

Algorithm 2 describes the details of the heuristic quad-tree
partition method based on region uniformity. Firstly, we judge
the uniformity of the area according to Definition 13. If it
is not satisfied, the area will be partitioned into four sub-
areas of the same size, and each of the subarea will be
traversed in turn according to the depth-first rule and carry
out the same uniformity judgement and partition steps, until
the distribution characteristics of the current region meet the
uniformity condition or the current region area is smaller than
the given minimum value.
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Require: snapshot dataset SD, minimum region value M,
Ensure: special structure anc after heuristic quad-tree parti-
tion, depth of quad-tree h

1: root =SD
22 h=0
3: anc <— SD
4: PreNode = SD
5: if range(SD) < M, then
6:  return anc and h
7: else
8: if SD satisfies the uniformity condition then
9: anc < mark PreNode as a leave node
10: if PreNode is the root then
11: return anc and h
12: else
13: set four sub-areas as PreNode one by one
14: anc < recursive call algorithm HQP
15: end if
16:  else
17: partition PreNode with Quad-tree method
18: h=h+1
19: set four sub-areas as PreNode one by one
20: if PreNode is the root then
21: return anc and h
22: else
23: anc < recursive call algorithm HQP
24: end if
25:  end if
26: end if

B. ALLOCATION AND ADJUSTMENT OF PRIVACY BUDGET
Traditional quad-tree partition method uses the geometric
privacy budget allocation strategy [4], that is, the privacy
budget increases by 23 step by step starting from the root
node of quad-tree, and the query precision of the leaf nodes
is optimal. In order to achieve better query precision of the
dynamic release of location data, we improve the traditional
geometric budget allocation scheme and apply it into the
heuristic quad-tree partition and privacy protection process.

Suppose the total privacy budget is €, the depth of quad-

tree obtained by heuristic quad-tree partition algorithm is A.
In order to maintain each path from the leaf node to the
root node that satisfies e-differential privacy, the geometric
budget allocation can be adjusted as follows:

1) For areas that do not satisfy the uniformity condition
(which means the nodes need to be partitioned by
standard quad-tree structure), the traditional geometric
budget allocation method is used:

3
6 =2 xex % (16)
S
h
> =« (17)
i=0
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FIGURE 5. Example of heuristic quad-tree partition and privacy
budget allocation.

2) For areas that the uniformity condition is satisfied
(which means no partitioning is need), the privacy bud-
get can be set to:

j
&' = € (18)
i=0

Figure 5 is an example of heuristic quad-tree partition and
privacy budget allocation. The red node represents the area
where the uniformity condition is satisfied and no further
partitioning is needed. According to the adjusted geometric

1

privacy budget allocation method, €* = )" ¢ = €y + €1,
i=0
2

€% = Y € = €y + €1 + €. Each of the path from the

red leaf lﬁgde to the root node can achieve €y + €; + € +
€3 = € differential privacy, thus ensuring the correctness and
stability of privacy budget allocation for the heuristic quad-
tree partition algorithm.

In order to further enhance the query accuracy of the
released data, the post-processing method [11] is used to
adjust the consistency of the noisy count after heuristic quad-
tree partition and differential privacy protection. The above
objectives can be achieved by two steps:

« Step 1: calculating the estimate value Z (v) for each node

v in the heuristic quad-tree structure from bottom to top.

For leaf node v, set Z (v) = C (V'), otherwise,
I -1
m —m N mT =1
ZW)= ml — 1 C(v)+ ml —1 2 Z ()

uesucc(v)

(19)

where C (v') represents the noisy count of node v, m rep-
resents the number of leaf nodes of the current subtree
(m = 4 for a quad-tree partition), / is the level at which
node v is located (from the leaf node to the upper node
l=1,2,...,h+ 1), succ (v) is the set of child nodes of
node v.

« Step 2: Obtaining the consistency estimate value H (v)
for all the nodes from top to bottom. For the root node
v, set H (v) = Z (v), otherwise,

1
H(v):Z(v)—I—Z H (u) — Z Zw) | (0

wesucc(u)

where u represents the parent node of v.
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FIGURE 6. Distribution area of the experimental dataset.

C. DYNAMIC DIFFERENTIAL PRIVACY RELEASE
ALGORITHM FOR BIG LOCATION DATA

Combined with the above-designed adaptive sampling mech-
anism and differential privacy partition method, we design the
overall process of dynamic publishing and privacy protection
algorithm for location data, as shown in Algorithm 3. For the
location data that arrive continuously and change constantly,
first, we adaptively select the publishing time interval by
Algorithm 1, so as to obtain a snapshot of sampled data.
Next, we carry out the heuristic quad-tree partition on the
snapshot dataset according to Algorithm 2, to get the spatial
partition structure and depth of quad-tree which satisfies the
uniformity condition. Then, the privacy budget is assigned to
nodes of different levels according to the scheme designed by
Formula (16)-(18), and the Laplace differential privacy noise
is added into the original statistic results. Finally, we post-
process the noisy count according to the consistency con-
dition given in Formula (19)-(20) and get the final released
data.

Algorithm 3 Dynamic Differential Privacy Release Method
Require: incoming dataset D, privacy budget €
Ensure: published data
1: while the amount of new incoming data point # 0 do
2:  carry out Algorithm 1 to get snapshot dataset SD and
new sampling interval T},
3:  carry out Algorithm 2 on SD to get special structure
anc and the depth of quad-tree &
4:  calculate privacy budget ¢; (1 <[ < h) according to
Formula (16)-(18)

5:  for each node within anc do
6: for each level of quad-tree / do
7: get the realCount of node region
8: noiseCount = realCount + Laplace (Gé—ls)
9: end for
10:  end for

11:  published data <— post-process the noiseCount accord-
ing to Formula (19)-(20)
12: end while
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V. EXPERIMENT AND ANALYSIS

We evaluate the performance of our method through an exten-
sive set of experiments and analysis. Some typical partition
algorithms such as UG [2], AG [2], Quad-post [1] and Quad-
heu [12] are used to compare with the proposed heuristic
quad-tree partition and privacy preserving method.

A. EXPERIMENTAL SETUP

We use the TLC travel record dataset of New York City! in
our experiments. The experimental datasets select the latitude
and longitude information between the period from 18:00 to
20:00 each day in 2015. Distribution area of the dataset is
shown in Figure 6. The experimental platform is Alibaba
Cloud Server ECS (ecs.r5.xlarge: 4-core CPU, 32GB RAM,
100G SSD cloud disk, Windows Server 2008 R2 Enter-
prise Edition image). All the algorithms are programmed
by MATLAB R2015b. The location information is arranged
in chronological order to obtain the statistical graph in the
statistical sense, as shown in Figure 7. During this period,
the statistical information reflects a certain trend, represent-
ing the lifestyle of the public during the corresponding time
period.

B. EXPERIMENTAL RESULTS

1) ADAPTIVE SAMPLING EFFECT OF REAL

LOCATION BIG DATA

In the experiment of adaptive sampling mechanism based on
PID controller, we set V=17m/s(equal to 60 km/h), Dp=0.9,

1 http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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D;=0.1, Dp=0, n=0.2, «=15, T=15. In order to prevent com-
putation and storage resource consumption caused by small
sampling intervals, we set Top=5. Figure 8§ compares the results
of real statistical information of the data with adaptive sam-
pling during the time range from 18:00:00 to 18:02:40. It can
be seen from the figure that the sampling interval obtained
by the proposed adaptive sampling mechanism can capture
the trend of data changes. When the statistical data fluctuates
significantly, the sampling interval is reduced and the the
sampling rate is increased. When the amount of data change
is relatively flat, the sampling interval increases, the sam-
pling rate decreases, and unnecessary calculation and storage
steps are avoided. At the beginning of the experiment (from
18:00:00 to 18:00:15), the first data snapshot is obtained by
a fixed sampling interval (T'=15), so the released data do
not reflect the violent changes during this period. This also
verifies the limitations of the evenly spaced sampling and
publishing method.

Figures 9 and 10 show the results of sampling with fixed
time interval and adaptive sampling over the same time
period. The experiment period is 2 minutes long and the mean
value change is not obvious. The sampling method with fixed
time interval obtains 8 snapshots, and the total amount of
each snapshot is basically the same. However, the adaptive
sampling method gets 7 snapshots, the total amount of the
snapshot changes significantly, and the trend is closer to
the original data. The experimental results further prove that
the adaptive sampling method has better ability to capture the
details of the dynamic changing location data.
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2) COMPARISON OF QUERY ERRORS BETWEEN DIFFERENT
SAMPLING METHODS

Next, we carry out the partition step on the snapshots at each
sampling time and add the differential privacy noise based
on Laplace mechanism to achieve privacy protection for the
published data. Relative error of different scales is used to
represent the effects of the sampling method with fixed time
interval and the adaptive sampling method. To be fair, we use
the same heuristic quad-tree partition method and differential
privacy intensity. The results are shown in Figure 11. During
the experiment, the Laplace noise is changed by adjusting the
privacy budget €. The calculation method of relative error is
defined as follows:

e 12D -0 (D)
max{Q (D), p}

where Q (D) is the query result of the real statistical value,
Q (D) is the statistical value after adding Laplace noise,
p = 0.001 x |D|, |D| represents the size of the experimental
dataset.

2
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As can be seen from Figure 11, under the same privacy bud-
get, the published data of the adaptive sampling mechanism
has a smaller relative error at various query sizes. Therefore,
it is possible to provide location-based services with higher
quality.

3) COMPARISON OF DIFFERENT PARTITION METHODS

In order to verify the effectiveness of heuristic quad-tree
partition and privacy budget allocation method, we compare
the proposed algorithm with some typical differential pri-
vacy partition algorithms, such as UG, AG, Quad-post and
Quad-heu. To be fair, all the partition methods use the same
snapshot dataset and differential privacy intensity. During
the experiment, Laplace noise was changed by adjusting the
privacy budget €. Relative errors of different scales are used to
evaluate the performance of different algorithms. The experi-
mental datasets (Data; and Datay) are selected from snapshot
datasets after adaptive sampling. Table 1 shows the overall
situation and query range information of the experimental
datasets, where g1 — g6 represents the coverage of longitude
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and latitude. During the experiments, the grid-based parti-
tion algorithm UG and AG adopt the partition granularity of
¢ = 10, and the tree-based partition algorithm Quad-post and
Quad-heu set the depth & = 6.

Figures 12 and 13 show the range of relative error of differ-
ent partition algorithms over different query scales. Among
them, the black line, the blue line and the red line respectively
indicate the relative error of the privacy budget ¢ = 0.1,
€ = 0.5, and ¢ = 1.0. As can be seen from the figure,
the relative errors of the proposed algorithm are lower than the
other algorithms under almost all query scales. For example,
on the dataset Data;, when the query range is gl ande = 0.1,
the relative error of the proposed algorithm is 0.0163, UG
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TABLE 1. Experimental dataset and query ranges.

Parameter Data sefs
Dataq Datao

Total data amount 106561 70428
Coverage 0.3x0.36
ql 0.00375x0.004375
q2 0.0075x0.00875
q3 0.015x0.0175
q4 0.03x0.035
q5 0.06x0.07
q6 0.12x0.14

achieves 0.0222, AG achieves 0.0190, Quad-heu achieves
0.0195 and Quad-post achieves 0.0212. The relative error of
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the proposed algorithm is reduced by 36%, 17%, 20%, and
30% compared with other algorithms. When the query range
is g5 and € = 1.0, the relative error of proposed algorithm
is 0.1203, the UG algorithm is 0.1960, the AG algorithm is
0.1766, the Quad-heu algorithm is 0.1621, and the Quad-post
algorithm is 0.1983. The relative error is reduced by 63%,
47%, 35%, and 65% respectively. The results of Figure 13
also give the similar conclusions.

It can also be observed from Figure 12 and 13 that as the
privacy budget increases, the relative errors of different algo-
rithms gradually decrease. Because for the same sensitivity,
the increase of privacy budget leads to a reduction of Laplace
noise, so the deviation between the published results and the
actual data is reduced, and the relative error of the query is
also reduced. The above experimental results show that com-
pared with the existing partition and publishing algorithms,
the proposed algorithm has smaller relative errors in different
datasets, different privacy budgets and different query ranges,
which can meet the high-precision query requirements of user
while using the location-based big data services.

C. ANALYSIS OF THE PRIVACY PROTECTION INTENSITY
This section discusses the proof that statistical release of big
location data using the heuristic quad-tree partition method
and the dynamic privacy budget allocation strategy, can pro-
vide € differential privacy intensity for any range of query
area Q.

Proof: For the counting query within an arbitrary range
Q proposed by a user, there are generally the following two

situations:
o The query range Q falls completely within a certain node

area after heuristic quad-tree partition. Let €p indicate

the privacy protection intensity of the node area, assum-

ing that the node is located in the layer / of the heuris-

tic quad-tree structure (/=0 represents the leaf node,

I=h represents the root node), according to the serial

combination property of differential privacy, the privacy
l

intensity of the node is g = ) ¢;. If the layer j is not
J=0
a heuristic quad-tree partitioning area, then the node’s

J J
privacy budget ¢; = € = Zei and € = Ze,-.

If the layer j has been heuristic I)artitioned, the nl(;doe’s
. . I e R W | _ h

privacy budget willbe €, = 23 e —f7—,€ = D €.

273 —1 =0
Therefore, the overall privacy budget for the query]range
Qisep =e.

o The query range Q contains n(2 <n < N) different
node regions. Let €p, (i =1, 2, ..., n) indicate the pri-
vacy protection intensity of different node areas, accord-
ing to the parallel combination property of differential
privacy, the privacy protection intensity of query range
Q will be g = max {eg,}. For VQ;, the intensity
of privacy protection is exactly the same as situation
(1), that is ey, = €, so we can also get the result
eg=¢€.1
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VI. RELATED WORK

Dynamically changing big data can be seen as a kind of
data streams. Sampling and publishing according to certain
strategies is the main method to realize the dynamic release
of big data. Obviously, this kind of method can save a lot
of resources, but presents the research problem of effective
and efficient data sampling [13]. Within this area, regional
sampling, reservoir sampling, priority sampling, as well as
the combination methods [14]-[18] have been proposed.
However, there are limitations and difficulties of refining
the characteristics of stream data. Some research proposed
sliding window sampling methods to solve the transient char-
acteristics of streaming data [19], [20]. Although these sam-
pling methods have obvious advantages in data processing,
there is no complete probability structure, which makes hard
to analyze the sampling error and accuracy.

Numerous techniques have been proposed to protect the
privacy of location information, such as dummy locations, k-
anonymity, obfuscation methods, and differential privacy. K-
anonymity methods [3], [4] replace the user’s exact location
point with a spatial region containing the location point,
and combine the k-anonymity model to generalize the user
coordinates into an area containing at least k users, thereby
protecting the user’s precise location. The dummy location
method [5] allows a user to generate fake location points
according to his privacy protection requirement, and sends
the fake location points together with the real ones to the
service provider, so that the true location of the user cannot
be easily guessed by malicious attackers. This kind of method
is widely used to protect user location privacy in a single
query. For a large number of cellular network mobile data,
the DP-Where method [6] was designed to achieve differ-
ential privacy protection by adding controlled noise to the
uniform grid structure. The Kd-PPDP algorithm [7] uses the
square sum error to measure the uniformity of the current
mesh after adaptive meshing and noise addition, and merges
the adjacent regions to reduce the noise error. Differential
privacy model protects location privacy by introducing a
trusted third party and partition the two-dimensional space
according to certain index structures. Some typical methods
such as tree-based partitioning methods [21], [22], grid-based
partitioning method [23], and hybrid structure partitioning
method [24] are all aimed at reducing the non-uniform
errors and noise errors generated during the partition process.
Xiong et al. [25] presented a differential private allocation
mechanism for reward-based spatial crowdsourcing. They
presented a contour plot to characterize location distribution,
which firstly partitions the entire area into some disjoint cells,
and then connects the cells with the same noisy count to
form a larger region. Yang et al. [26] proposed a data release
mechanism for mobile crowdsensing with differential privacy
to provide rigorous protection of worker locations. They
designed a recursive partitioning process based on worker
density, and applied the non-uniform quad-tree partitioning
technique to divide the cells according to the density of
workers.
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VIi. CONCLUSION

Large-scale and variability of big location data present new
challenges to privacy protection, which may break the privacy
model established during the dynamic publishing process,
resulting in the invalidation of privacy protection method,
and increasing the difficulty of partitioning and privacy bud-
get allocation. If the published data cannot reflect the trend
and magnitude of big data changes, it will lose the real-time
performance and affect the quality and availability. In order
to better provide users with high-quality location-based ser-
vices, this paper proposes an adaptive sampling mechanism
and privacy protection method for the release of location data.
The adaptive sampling method based on the proportional-
integral-derivative (PID) controller is designed to determine a
reasonable release time for dynamical location data. A heuris-
tic quad-tree partitioning method and a privacy budget allo-
cation strategy are proposed to perform differential privacy
protection on the published data. The experiments show that
our proposed method can improve the accuracy of counting
query and enhance the availability of location-based big data
under the premise of certain privacy intensity.

There are some limitations in the proposed method. For
example, the data trend on previous interval is not considered
when sampling, and only the current snapshot is used to
predict the amount of data on the next moment. In our future
work, we will focus on the prediction based on the data from
adjacent moments. Moreover, the real-time update feature
of location data can be regarded as a set of uncertain data
streams that grow indefinitely over time. Therefore, privacy
protection of streaming location-based big data is another
research direction for our future work. This can take into
account the real-time nature of data updates, as well as the
effectiveness of the privacy model established in the dynamic
process.
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