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ABSTRACT Adaptive signal processing techniques can estimate the directions of arrival (DOAs), ranges,
and radial velocities of radar targets with high resolution when applied in the space, frequency, and time
domains, respectively. However, the performance of these techniques is limited when they are applied
separately in each domain. Recently, adaptive signal processing algorithms based on high-dimensional
signal subspaces have been studied extensively. We apply a four-dimensional unitary estimation of signal
parameters via rotational invariant techniques (ESPRIT) algorithm for the simultaneous estimation of the
DOAs, ranges, and Doppler velocities of multiple targets in an ultra-wideband radar imaging setting and
show the effectiveness of the high-dimensional ESPRIT for the near-field imaging of distributed moving
targets. The four-dimensional ESPRIT algorithm is demonstrated to be able to separate targets moving
in close proximity, whereas the two- and three-dimensional ESPRIT algorithms fail to separate these
targets accurately because of their limited resolutions. The application of the high-dimensional ESPRIT to
near-field radar imaging covers a wide range of applications that require themeasurement of multiple moving
targets in close proximity. An example of such an application is radar-based human monitoring. Therefore,
the superior resolution of the high-dimensional ESPRIT has the potential to improve the performance of
various real-world security and healthcare systems.

INDEX TERMS Adaptive signal processing, direction-of-arrival, multidimensional signal processing, radar
imaging, ultra wideband radar.

I. INTRODUCTION
Recently, radar-based monitoring of human activities has
been attracting increasing attention, particularly for use in
healthcare and security applications. Unlike camera-based
monitoring techniques, radar-based techniques can avoid pri-
vacy concerns. Additionally, radar-based systems can mea-
sure people through various materials (e.g., building walls,
clothing, and bed sheets) and are not affected by lighting
conditions. In particular, ultra-wideband (UWB) radar is
considered to be promising because it provides high-range
resolution that enables near-field imaging.

The associate editor coordinating the review of this manuscript and

approving it for publication was Liangtian Wan .

One of the most popular radar-based techniques for mon-
itoring human activities is based on micro-Doppler, which
is a time-dependent Doppler shift caused by limb motion
and obtained through time-frequency analysis. Because this
approach requires only a Doppler shift as a function of time,
the system does not require antenna arrays or wideband sig-
nals. Therefore, the measurement can be implemented using
a relatively low-cost system, which has attracted a number of
research groups [1]–[9].

In addition to the Doppler shift, range information can be
also used if wideband signals are used. The range-frequency
domain expression is also called an inverse synthetic aper-
ture radar (ISAR) image, which exhibits a large amount
of information on human activities [10]–[12]. The use
of three-dimensional (3D) time-range-frequency domain
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analysis [13] has also been reported for monitoring human
activities.

By introducing multiple antenna elements, spatial res-
olution can be obtained, realizing human body imaging.
Lin and Ling [14], [15] developed a frequency-domain inter-
ferometry technique that separates echoes in the frequency
domain using their different Doppler shifts, and estimates
the directions of arrival (DOAs) using three antenna ele-
ments. Their studies were followed by other research
groups [16]–[19]. Because these studies use the Fourier trans-
form to separate multiple echoes in the frequency domain,
the echoes cannot be separated if their Doppler velocities hap-
pen to be the same. To resolve this issue, frequency-domain
interferometry was combined with subspace-based algo-
rithms [20], [21]. However, these algorithms perform signal
filtering separately in multiple domains; first in the frequency
domain to estimate the Doppler velocities and then in the
spatial domain to estimate the DOAs, and this compromises
both the spatial and frequency resolutions.

In radar signal processing, space-time adaptive process-
ing (STAP) [22], [23] has been studied mainly for far-field
targets. In STAP, multidimensional adaptive signal process-
ing is performed simultaneously in the space-time domain.
STAP has been shown to be effective for separating multi-
ple radar echoes with high resolution. Conventionally, most
STAP approaches are based on the Capon method [24] that
is a well-known classic algorithm used to achieve high res-
olution. The Capon method, however, suffers from a heavy
computational burden and limited resolution. Additionally,
the exact response of each antenna element must be calibrated
in advance, which makes Capon-based STAP difficult to use
in practice.

By contrast, the estimation of signal parameters via rota-
tional invariant techniques (ESPRIT) algorithm achieves a
higher resolution with a less computational cost because a
time-consuming peak search is not necessary. Additionally,
ESPRIT does not require information about antenna ele-
ment responses. Multidimensional ESPRIT algorithms have
been intensively studied: Haardt and Nossek [25] applied
a 3D ESPRIT algorithm in the space-time domain to esti-
mate two DOAs and a Doppler frequency. Multidimensional
ESPRIT has also been proposed for use in wireless com-
munications [26], [27]. Sakaguchi et al. [26] applied the
3D ESPRIT algorithm in the space-frequency domain to
estimate two DOAs and the time of arrival (TOA). A four-
dimensional (4D) ESPRIT algorithm was applied in the
space-time-frequency domain [27] and two DOAs, the TOA,
and the Doppler frequency were successfully estimated
using this algorithm. Haardt et al. [28] also developed a
parameter estimation technique using a high-order singular
value decomposition (SVD), and Raimondi et al. [29] and
Sahnoun et al. [30] proposed a multidimensional ESPRIT
algorithm based on tensor decomposition. These studies
mostly focused on the application of the multidimen-
sional ESPRIT algorithm to wireless communications and
far-field target detection using radar. Literature on the use of

multidimensional ESPRIT for UWB radar near-field imag-
ing is still scarce, particularly for distributed targets, such
as the human body. It is still unclear how much perfor-
mance improvement can be achieved using multidimensional
ESPRIT applied to near-field UWB radar imaging, which is
related to recent active research on the noncontact measure-
ment of human activities and patient monitoring.

In this paper, we demonstrate the imaging performance
of multiple moving targets located in close proximity using
UWB radar and the 4D unitary ESPRIT algorithm in the
space-time-frequency domain for the joint estimation of the
DOAs (DOA1 and DOA2), Doppler velocity, and range.
Additionally, to improve both the imaging resolution and
imaging accuracy, we also introduce a new pairing algo-
rithm to associate signals that are found in the different
domains of multiple dimensions. We evaluate the perfor-
mance of the 4D ESPRIT-based imaging algorithm using
simulations and study its resolution quantitatively by com-
paring it with two other conventional methods: one that
uses two-dimensional (2D) ESPRIT and another that uses
3D ESPRIT. Although recent theory-based research has
been focused on tensor-based ESPRIT algorithms instead of
matrix-based ESPRIT algorithm, we focus on matrix-based
multidimensional ESPRIT. Note that recent studies in fast
tensor-based approaches for DOA estimation have reported
that they provide more accurate DOA estimation than
matrix-based methods at the cost of lower complexity [31].
In future studies, we will consider using fast tensor-based
approaches for near-field imaging.

The novel aspects of the present paper are as follows:
(1) 4D unitary ESPRIT is applied for the first time to UWB
radar imaging, assuming its application to the imaging of a
human body; and (2) the near-field imaging accuracies of
the 2D, 3D, and 4D unitary ESPRIT algorithms are compared
to evaluate the importance of the high-dimensional unitary
ESPRIT algorithm.

In this paper, we use the following notations: Lowercase a
for scalars, uppercase A for matrices, and boldface lowercase
a for vectors. Vectors are regarded as one-column matrices.
The complex conjugate is denoted by a superscript aster-
isk a∗. The matrix transpose is denoted by a superscript T
aT and AT. The matrix conjugate transpose is denoted by a
super script H. In is an n× n identity matrix. The symbols ⊗
and� denote the Kronecker product andKhatri–Rao product,
respectively. Re{z} and Im{z} denote the real and imaginary
parts of complex number z, respectively, where z can be a
scalar, vector or matrix. diag{a(i)}Ni=1 denotes an N × N
diagonal matrix whose entries are all zero except for its main
diagonal, where the diagonal entries starting in the upper left
corner are a(1), a(2), · · · , a(N ).

II. SYSTEM MODEL
A. ARRAY MODEL
In our system, the presence of L point-like targets is assumed,
and these targets move within a half space, where y > 0 in the
xyz coordinate system. The Doppler velocity and range of the
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FIGURE 1. System model with a single transmitting element, 3× 3
receiving elements, and three point targets.

l(= 1, · · ·,L)-th target are denoted by vl and rl , respectively.
The Doppler velocity is approximated as the radial velocity
from the transmitting antenna (located at the coordinate ori-
gin). The DOAs of the l-th target from the z-y and x-y planes
are θl1 and θl2, respectively.
A single transmitting element Tx and M1×M2 receiv-

ing elements Rx1,1, · · · ,Rx1,M2 ,Rx2,1, · · · ,RxM1,M2 form
a uniform rectangular planar array. All elements of the array
are located on the x-z plane, where y = 0. The antenna ele-
ments are all assumed to have the same omnidirectional beam
pattern. All errors caused by sensor imperfections, such as the
mutual coupling error, gain-phase error, and position error,
are all assumed to be negligible. Fig. 1 shows an example of
the system model forM1 = 3,M2 = 3, and L = 3. As shown
in Fig. 1, a single transmitting element is located at the origin,
whereas the receiving elements are located with a spacing of
1d in the x and z directions and form a rectangular planar
array that is centered at the origin.

The radar system transmits UWB signals at a center
frequency of fc with a 3 dB bandwidth W from transmit-
ting element Tx; the reflected echoes are then received by
the receiving antenna elements Rxi,j and sampled with a
slow-time interval of 1t and fast-time interval of 1τ , which
corresponds to the range sampling interval 1r = c1τ/2,
where c is the speed of light. For simplicity, both multipath
and multiple scattering effects are neglected in this paper.

B. SIGNAL MODEL
We assume that all received echoes have the same known
waveform. The received signals are sampled in terms of both
slow time and fast time, and the signals are then Fourier
transformed with respect to fast time. The signals are thus
expressed using slow time 0 ≤ t ≤ T and fast frequency
fc −W/2 ≤ f ≤ fc +W/2, where T is the observation time,
fc is the carrier frequency, and W is the bandwidth.

The signal received using antenna Rxm1,m2 is denoted by
x ′m1,m2,m3,m4

for slow time t = m31t and fast frequency f =
m41f . The indices m1,m2,m3,m4 are integers that range up
to M1,M2,M3,M4, respectively; hence mi = 1, 2, · · · ,Mi
for i = 1, 2, 3, 4.
The number of antenna elements M1M2 is determined by

the antenna array, whereas the number of slow-time and
fast-frequency samples are M3 = T/1t and M4 = W/1f ,
where1t and1f are sampling intervals of slow time and fast
frequency, respectively.

A signal sample denoted by x ′m1,m2,m3,m4
corresponds to the

antenna location (x, z) = ({m1−(M1+1)/2}1d, {m2−(M2+

1)/2}1d), slow timem31t , and fast frequency f = fc+{m4−

(M4 + 1)/2}1f , and is expressed as

x ′m1,m2,m3,m4
=

L∑
l=1

sl
4∏
i=1

ej{mi−[(Mi+1)/2]}µi(l)

+ n′m1,m2,m3,m4
, (1)

µ1(l) = 2π fc ·1d sin(θl1)/c,
µ2(l) = 2π fc ·1d sin(θl2)/c,
µ3(l) = 2π fc · 2vl1t/c,
µ4(l) = 2π1f · 2rl/c,

(2)

where µi(l) is an unknown parameter of the l-th target in
dimension i(= 1, 2, 3, 4), sl is the complex-valued amplitude
of the l-th target, and n′m1,m2,m3,m4

is additive white Gaussian
noise.

Because we assume that all echoes have the same known
waveform, the received signal can be modeled as a superpo-
sition of multiple amplified and time-shifted template wave-
forms, and thus means that the template waveform Sref(f ) in
the frequency domain can be measured in advance. To mea-
sure Sref(f ), an echo waveform from a known target (such as
a reflector) located at a known position has to be measured
prior to the actual measurement of the unknown targets. The
measurement of Sref(f ) is called the calibration stage in the
present paper. Using this template waveform measured in
the calibration stage, we can perform whitening processing
to compensate for the frequency-dependent response using a
Wiener filter W (m4, η) expressed as

W (m4, η) =
S∗ref(fc + {m4 − (M4 + 1)/2}1f )

|Sref(fc + {m4 − (M4 + 1)/2}1f )|2 + η
. (3)

By applying W (m4, η), we obtain xm1,m2,m3,m4 as

xm1,m2,m3,m4 = W (m4, η)x ′m1,m2,m3,m4
, (4)

where η is a parameter related to the signal-to-noise ratio
(SNR). After the filtering, the additive noise is white in the
time (m3) and space domains (m1 and m2), but is not white
in the frequency domain (m4). We set η = 0 throughout this
paper, which corresponds to an inverse filter. As explained in
Section IV-A, the transmitted and received signals both have a
known Gaussian waveform, where the frequency-dependent
radar cross section is not considered for simplicity.
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As stated above, the proposed method requires a calibra-
tion stage prior to the actual measurement. Therefore, the pro-
posed method is not a generalized method; some information
about the environment must be known in advance to accom-
plish the calibration task.

III. UWB DOPPLER RADAR IMAGING ALGORITHM
WITH 4D UNITARY ESPRIT
A. 4D UNITARY ESPRIT
In this section, we show how the Doppler velocity, range, and
two DOAs (DOA1 and DOA2) can be estimated simultane-
ously using the 4D unitary ESPRIT algorithm in the time-
space-frequency domain. Although the algorithm described
below corresponds to a special case (R = 4) of the R-D uni-
tary ESPRIT algorithm proposed by Haardt and Nossek [25],
the exact procedures are restated here for convenience.

First, we define the unified signal vector x using
xm1,m2,m3,m4 as

x =



x1,1,1,1
x2,1,1,1
...

xM1,1,1,1
x1,2,1,1
...

xM1,M2,1,1
x1,1,2,1
...

xM1,M2,M3,1
x1,1,1,2
...

xM1,M2,M3,M4



. (5)

x can also be expressed as

x = A[s1, · · ·, sL]T + n,

A = A′4 � A′3 � A′2 � A′1,

A′i = [a (µi(1)) , · · ·, a (µi(L))] ,

a (µi(l)) = [ej{−(Mi−1)/2}µi(l), · · ·, ej{(Mi−1)/2}µi(l)]
T
,

n =
[
n1,1,1,1, · · · , nM1,M2,M3,M4

]T
, (6)

where � is the Khatri-Rao product, a (µi(l)) is the steer-
ing vector, A′i is the steering matrix for dimension i, A is
the multidimensional steering matrix, and n is the noise
vector.

Each column of the multidimensional steering matrix A is
centro-symmetric. Therefore, A can be transformed into the
real-valued steering matrix D = QMTA using the unitary
matrix QM (M = M1M2M3M4) [25]. For any even M = 2n
with any positive integer n, unitary matrix QM is then given
by

Q2n =
1
√
2

[
In jIn
5n −j5n

]
. (7)

As stated above, A is transformed into a real-valued
matrix using a unitary transformation, which improves
computational efficiency compared with the original ESPRIT
algorithm using a complex matrix.

For any odd M = 2n+ 1, unitary matrix QM is given by

Q2n+1 =
1
√
2

 In 0 jIn
0T

√
2 0T

5n 0 −j5n

 , (8)

where In is an identity matrix of size n, and 5n is the n × n
anti-diagonal matrix, which is defined as

5n =


1

1
·

1

 . (9)

The real-valued steering matrix D = QMTA satisfies the
rotational invariance requirement for dimension i = 1, 2, 3, 4
as follows:

Re{K(i)}D�i = Im{K(i)}D, (10)

�i = diag{ωi(l)}Ll=1, (11)

ωi(l) = tan (µi(l)/2) , (12)

K(i) = QHM (Mi−1)/Mi
J(i)2QM , (13)

J(1)2 = IM4 ⊗ IM3 ⊗ IM2 ⊗ J
(M1)
2 , (14)

J(2)2 = IM4 ⊗ IM3 ⊗ J
(M2)
2 ⊗ IM1 , (15)

J(3)2 = IM4 ⊗ J
(M3)
2 ⊗ IM2 ⊗ IM1 , (16)

J(4)2 = J (M4)
2 ⊗ IM3 ⊗ IM2 ⊗ IM1 , (17)

J (Mi)
2 =

[
0(Mi−1)×1IMi−1

]
, (18)

where ⊗ is the Kronecker product. If �i in Eq. (10) can be
estimated, then the 4D estimation parameters µi(l) can also
be estimated using Eqs. (11) and (12).

Next, we explain how�i is estimated from the observed x.
Parameter estimation using ESPRIT does not work well if
the signals from multiple targets are strongly correlated.
Smoothing is known to be an easy and effective processing
step for the suppression of signal correlation [25]. As shown
in the Appendix, the Msub × Msub correlation matrix Rxx
is obtained after the application of 4D smoothing. Please
note that, as explained in Section II, before inverse filtering,
the Gaussian-shaped echo spectrum is not flat in the fre-
quency domain, whereas the noise spectrum is white; after
inverse filtering, the echo spectrum becomes flat, whereas
the noise becomes non-white. Despite this, the non-whiteness
of the noise does not affect 4D unitary ESPRIT significantly
because of the 4D smoothing procedure. In this 4D smooth-
ing process, the non-white noise is averaged over different
frequencies, which makes the non-white noise whiter to some
extent, and thus, the non-whiteness of the raw noise sequence
does not greatly affect the ESPRIT algorithm and resultant
images.

The eigenvalue decomposition of correlation matrix
Rxx allows L eigenvectors v1, · · · , vL that correspond

161366 VOLUME 7, 2019



K. Morimoto et al.: Accurate Ultra-Wideband Array Radar Imaging Using Four-Dimensional Unitary ESPRIT

to the L largest eigenvalues to be extracted. Subspace
span(v1, · · · , vL) coincides with an L-dimensional subspace
that is spanned by L row vectors of D. Therefore, when the
signal eigenvectors are defined as Es = [v1 · · · vL], an L × L
matrix T exists that satisfiesD = EsT . SubstitutingD = EsT
into Eq. (10) yields

Re{K(i)}Esϒi = Im{K(i)}Es, (19)

ϒi = T�iT−1, (20)

where ϒi is estimated by applying a total least squares
algorithm [32] to Eq. (19). Diagonal matrix �i is obtained
using the eigenvalue decomposition that was applied
to ϒi.

B. ESTIMATION OF THE NUMBER OF TARGETS USING
THE MINIMUM DESCRIPTION LENGTH
In the ESPRIT algorithm, the information about the number
of targets L is required when extracting L signal eigenvec-
tors v1, · · · , vL from the Msub(≥ L) eigenvectors of the
Msub × Msub matrix Rxx . We use the minimum description
length (MDL) to estimate the number of targets. The MDL
has often been used in (non-multidimensional) adaptive array
processing to estimate the number of targets in combination
with eigenvalue decomposition of the correlation matrix for
DOA estimation [33], [34].

The MDL-based method used to estimate the number
of targets L is explained below. If the correlation can be
completely suppressed by smoothing, then eigenvalue λi of
correlationmatrixRxx , which is arranged in descending order,
satisfies

λ1 ≥ · · · ≥ λL > λL+1 = · · · = λMsub = σ
2, (21)

where σ 2 is the noise power. Therefore, the number of targets
L can be estimated by counting the number of eigenvalues
that are larger than σ 2. However, because the number of
smoothing operations N is actually finite, the (signal and
noise) eigenvalues have fluctuations that depend onN and σ 2.
To overcome this difficulty, the MDL-based method esti-
mates the number of targets based on the information theo-
retic criteria used for model identification. Criterion MDL(l)
that is used in this paper is given by

MDL(l) = − log


∏Msub

j=l+1 λj(
σ 2(l)

)Msub−l


N

+
1
2
l(2Msub − l) logN , (22)

σ 2(l) =
1

Msub − l

Msub∑
j=l+1

λj, (23)

where the value of l that minimizes MDL(l) is used to calcu-
late the estimated number of targets as L̂ = argminl MDL(l).

C. PAIRING EIGENVALUES IN MULTIDIMENSIONAL
ESPRIT
1) OVERVIEW OF EXISTING EIGENVALUE
PAIRING TECHNIQUES
As explained in the preceding sections, the 4D estimation
parameters µi(l) are obtained independently for each dimen-
sion i = 1, 2, 3, 4 using Eqs. (11), (19), and (20). Hence,
the ESPRIT procedure produces unpaired estimation param-
eters. Therefore, for L targets with four parameters (i.e.,
range, Doppler velocity, DOA1, and DOA2), there are (L!)3

possible combinations. Thus, to achieve accurate imaging,
it is necessary to determine the correct combinations among
these possibilities.

In 2D ESPRIT, a simple automatic pairing method [35] is
widely used. This method uses the fact that both �i and ϒi
i = 1, 2, 3, 4 are real-valued. In this method, the eigenvalue
decomposition of ϒi + jϒj for i, j ∈ {1, 2, 3, 4} is performed
as follows:

ϒi + jϒj = T
(
�

(ij)
i + j�(ij)

j

)
T−1, (24)

�
(ij)
i = diag

{
ω
(ij)
i (l)

}L
l=1
, (25)

�
(ij)
j = diag

{
ω
(ij)
j (l)

}L
l=1
, (26)

where ω(ij)
i (l) and ω(ij)

j (l), which are the real and imaginary

parts of the diagonal elements �(ij)
i + j�(ij)

j , respectively, are
the eigenvalues that are paired for the i-th and j-th domains
for the l-th target.

However, this method is not applicable to 3D or
higher-dimensional pairing. Simultaneous Schur decompo-
sition (SSD) [25] is commonly used as a method for 3D or
higher-dimensional pairing; however, SSD is known to suffer
from high computational complexity because it requires iter-
ative calculations. As an alternative, the chain pairing (CP)
method [26] has been proposed for 3D or higher-dimensional
ESPRIT. The CP method has been reported to have lower
computational complexity than SSD but pairing accuracy
equivalent to SSD. However, the CP method is known to
ouput incorrect pairs when multiple identical parameters
occur in any of the domains. Therefore, in this paper, we intro-
duce a new algorithm called the improved CP method, which
is presented in the following section.

2) PROPOSED MULTIDIMENSIONAL CP METHOD
In this section, we propose an accurate multidimensional CP
method called the improved CP method. Specifically, a 4D
pairing procedure is provided below. First, the eigenvalue
decomposition of Eq. (24) is performed four times for the
domain pairs (i, j) = (1, 2), (2, 3), (3, 4), (4, 1) to calculate
(ω(12)

1 (l), ω(12)
2 (l)), (ω(23)

2 (l), ω(23)
3 (l)), (ω(34)

3 (l), ω(34)
4 (l)), and

(ω(41)
4 (l), ω(41)

1 (l)) for l = 1, 2, · · · ,L. Note that these param-
eters are paired between two domains only in each case,
which means that they are not yet associated over all four
domains.
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To associate these parameters over all four domains, it is
necessary to determine the most likely index combinations
l12, l23, l34, l41, where l = l12 represents a paired index
between domains 1 and 2, and l is used as an independent
variable hereafter. Because the parameters are already asso-
ciated for the adjacent domain pairs (1, 2), (2, 3), (3, 4), and
(4, 1), the number of degrees of freedom is three. To optimize
the indices l23, l34, and l41 for l = l12, the evaluation function
1l(l23, l34, l41) is introduced as follows:

1l(l23, l34, l41) =
{
ω1

(41)(l41)− ω1
(12)(l)

}2
+

{
ω2

(12)(l)− ω2
(23)(l23)

}2
+

{
ω3

(23)(l23)− ω3
(34)(l34)

}2
+

{
ω4

(34)(l34)− ω4
(41)(l41)

}2
. (27)

The sum of the evaluation functions
∑L

l=11l(l
(l)
23 , l

(l)
34 , l

(l)
41 )

is minimized via a brute force optimization procedure by
checking all possible combinations. In each domain, the same
index cannot be selected more than once to prevent incor-
rect association. The possible combinations are given as
permutations of the L indices and the number of per-
mutations in each domain is L!, which results in a total
of (L!)3 combinations for three domains while exclud-
ing the ordered index l = l12. Note that each of the
unknown variables of the evaluation function have a super-
script (l) because these indices depend on index l. As a
result, the optimum indices (l, l̂(l)23 , l̂

(l)
34 , l̂

(l)
41 ) are obtained as

(1, l̂(1)23 , l̂
(1)
34 , l̂

(1)
41 ), (2, l̂

(2)
23 , l̂

(2)
34 , l̂

(2)
41 ), · · · , (L, l̂

(L)
23 , l̂

(L)
34 , l̂

(L)
41 ).

Finally, the parameters µ̂i(l) (l = 1, 2, · · · ,L) that are
paired over the four domains are obtained using the averaged
eigenvalues as follows:

µ̂1(l) = 2 tan−1
[(
ω
(41)
1 (l̂(l)41 )+ ω

(12)
1 (l)

)
/2
]
, (28)

µ̂2(l) = 2 tan−1
[(
ω
(12)
2 (l)+ ω(23)

2 (l̂(l)23 )
)
/2
]
, (29)

µ̂3(l) = 2 tan−1
[(
ω
(23)
3 (l̂(l)23 )+ ω

(34)
3 (l̂(l)34 )

)
/2
]
, (30)

µ̂4(l) = 2 tan−1
[(
ω
(34)
3 (l̂(l)34 )+ ω

(41)
3 (l̂(l)41 )

)
/2
]
. (31)

Because the improved CP method calculates
∑L

l=11l(l
(l)
12 ,

l(l)23 , l
(l)
34 ) for all (L!)3 possible combinations, the compu-

tational complexity of this method becomes greater as
L increases. However, our signal separation technique
using multidimensional ESPRIT is only required when
multiple targets are located at almost the same distance
from the antenna array. Because the proposed method is
designed for a UWB radar system with high-range res-
olution, it is unlikely to have more than three targets
within the same range bin, which means that L is typically
two or three at most. Therefore, the computational com-
plexity of the improved CP method is not a problem in
practice.

Algorithm 1 Estimation of Target Position ŷl
1: Compute the correlation matrix Rxx .
2: Compute the eigenvalues λi and eigenvectors vi of Rxx

(i = 1, · · · ,Msub).
3: Estimate the number of targets L using MDL(l).
4: Compute ϒi for i = 1, 2, 3, 4 using Es = [v1 · · · vL] and

Eq. (19).
5: Computeω(12)

1 (l), ω(12)
2 (l), · · · , ω(31)

1 (l) using Eqs. (24)–
(26).

6: Estimate µ̂i(l) using Eqs. (28)–(31).
7: Estimate the target positions ŷl using Eq. (32).

D. ESTIMATION OF THE TARGET POSITION
In the previous section, we explained how to estimate the
4D paired estimation parameters µ̂i(l). Using Eq. (2) and
parameters µ̂i(l), we can estimate velocity v̂l , range r̂l , and
DOAs θ̂l1 and θ̂l2. The 3D position of the l-th target ŷl is
finally obtained as follows:

ŷl =

 r̂l sin θ̂l1

r̂l

√
cos2 θ̂l1 − sin2 θ̂l2
r̂l sin θ̂l2

 . (32)

Algorithm 1 summarizes the algorithm that estimates the
3D positions of L targets. This algorithm is executed every
1tr(= M31t) and we then obtain the target parameters
v̂l(n1tr), θ̂l1(n1tr), θ̂l2(n1tr), r̂l(n1tr), and ŷl(n1tr) for n =
1, 2, 3, · · · . The accuracy of these estimates is discussed in
the following section.

IV. SIMULATION AND PERFORMANCE EVALUATION
A. SIMULATION SETTINGS AND PARAMETERS
We evaluated the multidimensional ESPRIT-based imaging
method using simulations. In these simulations, we assumed
the presence of a single transmitting element at the origin and
a square-shaped planer array withM1 ×M2 elements, where
M1 = M2 = 3. The transmitted signal was a UWB signal
with center frequency fc = 79.0 GHz, center wavelength
λc = 3.8 mm, and −3 dB bandwidth W = 800 MHz.
The signal waveform is Gaussian as s(t) = exp(−t2/2σ 2

c ),
where σc is σc =

√
ln 2/πW = 0.33 ns. Slow-time sampling

interval 1T = 0.24 ms, fast-time sampling interval 1τ =
0.5 ns, range sampling interval 1r = 75 mm, and element
spacing 1d = 2.26 mm (0.6λc) in the receiving array.
Nine-channel signals were recorded over a period of

tmax = 0.95 s, which corresponded to the number of time
samples Ns = tmax/1T = 4 × 103. The target positions
y1(t), y2(t) and y3(t) (0 ≤ t ≤ tmax) were uniform and spiral
motions as follows:

y1(t) =

 0
r0 + v0t

0

 ,
y2(t) =

 rrad cos (t/tmax − π/3)
r0 + v0 t

rrad sin (t/tmax − π/3)

 ,
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FIGURE 2. Received signal power of Rx2,2 as a function of slow time and
range.

FIGURE 3. Received signal power of Rx2,2 as a function of slow time and
Doppler velocity.

y3(t) =

 rrad cos (t/tmax − 5π/6)
r0 + v0 t

rrad sin (t/tmax − 5π/6)

 , (33)

where r0 = 0.425 m, rrad = 0.250 m and v0 = 0.100 m/s.
Note that the target positions and motions were selected to
simulate one of the worst case scenarios, in which multi-
ple targets could not be separated within any of the range,
Doppler, or DOA domains. The received signals were sim-
ulated numerically using a ray tracing procedure, in which,
we did not consider occurrences of multiple scattering. The
SNR was set to SNR = 20 dB, where the SNR is defined as
the ratio of the peak signal power to the noise power in the
time domain after the application of the filter.

Fig. 2 shows the SNR of the signal received by Rx2,2 as
a function of a slow time and range. Fig. 3 shows the SNR
of the same received signal as a function of a slow time and
Doppler velocity, where the spectrogram was obtained using
the short-time Fourier transform (STFT) with a Hann window
of size 15.4 ms (= 641T ). In these figures, the echo signals
from the three targets could not be separated either within
the range or frequency domains because the range differences
between the targets were between 57.0 mm and 68.1 mm,

and their differences in Doppler velocity were also larger
than the frequency resolution. Hence, these echoes could not
be separated, even when using high-resolution UWB radar,
without the aid of an adaptive signal processing technique
such as ESPRIT.

The number of slow-time samples used for the 4D ESPRIT
was M3 = 64. The frequency band used for the 4D ESPRIT
was fc − We/2 ≤ f ≤ fc + We/2, where We = 800 MHz,
which is the same as the −3 dB bandwidth W , and the
frequency domain interval was1f = 200 MHz. Under these
conditions, M4 = bWe/1f c + 1 = 5. Four-dimensional
smoothing was then performed with Msub1 = 2, Msub2 = 2,
Msub3 = 32, and Msub4 = 3. We set the estimation time
interval to tr = Msub31T = 7.62 ms.
In the above assumption, the theoretical maximum num-

ber of targets L ′max that can be separated using 4D unitary
ESPRIT is L ′max = Msub = 384. However, the actual maxi-
mum number of targets Lmax(≤ L ′max) that can be separated
depends on the locations and motions of the targets, in addi-
tion to the resolution in each dimension, which is limited
by multiple factors, such as the echo S/N ratio, correlation
coefficient between echoes, and chain pairing accuracy.

B. COMPARISON WITH OTHER ESPRIT-BASED METHODS
In this section, we introduce two other conventional
ESPRIT-based methods (denoted by method 1 and method
2) for comparison. Method 1 was proposed by the
authors [21], and applies a STFT to obtain the time-frequency
distribution of the received signal. If echoes with different
Doppler velocities are separated in the frequency domain,
then the two DOAs of each echo can be estimated using the
2-D unitary ESPRIT method in the spatial domain, where
the 2D unitary ESPRIT method is applied to each of the
significant peaks of the time-frequency distribution. If echoes
with similar Doppler velocities cannot be separated in the
frequency domain, then method 1 produces incorrect imaging
results.

Method 2, however, applies the 3D unitary ESPRIT
method in the frequency domain and two spatial domains for
joint estimation of the Doppler velocity and two DOAs [25].
These two methods both use the range interpolation method,
which is also known as the P1/P2 method, to estimate the
range of each target [21]. In methods 1 and 2, the numbers
of slow-time samples and numbers of smoothing data sam-
ples for the unitary ESPRIT method were both set to the
same values as those of the 4D ESPRIT for fair comparison.
Additionally, the actual number of targets was assumed to
be known for methods 1 and 2, whereas the number of tar-
gets was assumed to be unknown for the 4D ESPRIT-based
method; this gives a handicap to the 4D method to allow us
to evaluate the upper performance limits of methods 1 and 2.

C. DEFINITIONS OF ACCURACY
To evaluate the performance of thesemethods, the root-mean-
square error (RMSE) was used to assess accuracy in terms of

VOLUME 7, 2019 161369



K. Morimoto et al.: Accurate Ultra-Wideband Array Radar Imaging Using Four-Dimensional Unitary ESPRIT

the target position ŷl(k1tr), Doppler velocity v̂l(k1tr), target
range r̂l(k1tr), and target DOAs θ̂l1(k1tr) and θ̂l2(k1tr).
For example, the RMSE of ŷl(k1tr) was evaluated as

follows:

RMSEy =

√√√√√ 1
K

K∑
k=1

1

L̂(k1tr)

L̂(k1tr)∑
l=1

err(y)l (k1tr), (34)

err(y)l (k1tr) = min
j
‖ŷl(k1tr)− yj(k1tr)‖

2
, (35)

where yj(k1tr) denotes the actual position of the j-th target
at time t = k1tr, K is the number of updates using the
ESPRIT-basedmethods, and L̂(k1tr) is the estimated number
of targets at time t = k1tr. In the two conventional meth-
ods, the number of targets L̂(k1tr) was always set to three
because the number of targets was assumed to be known for
these methods. In the 4D method, however, the number of
targets was estimated using the MDL-based method that was
presented in Section III-B.

The RMSEs in v̂l(k1tr), r̂l(k1tr), θ̂l1(k1tr), and θ̂l2(k1tr)
were also evaluated using Eq. (34), but with different defini-
tions of the errors: err(v)l (k1tr), err

(r)
l (k1tr), err

(θ1)
l (k1tr), and

err(θ2)l (k1tr), rather than err
(y)
l (k1tr):

err(v)l (k1tr) = min
j

{
v̂l(k1tr)− vj(k1tr)

}2
, (36)

err(r)l (k1tr) = min
j

{
r̂l(k1tr)− rj(k1tr)

}2
, (37)

err(θ1)l (k1tr) = min
j
{θ̂l1(k1tr)− θj1(k1tr)}

2
, (38)

err(θ2)l (k1tr) = min
j
{θ̂l2(k1tr)− θj2(k1tr)}

2
, (39)

where vj(k1tr), rj(k1tr), θj1(k1tr), and θj2(k1tr) denote the
actual Doppler velocity, range, andDOAs, respectively, of the
j-th target at time t = k1tr.

D. PERFORMANCE EVALUATION OF THE
THREE IMAGING METHODS
Figs. 4-6 show the imaging results for conventional method 1,
conventional method 2, and the 4D method, respectively.
In these figures, black lines indicate the actual target position
trajectories, whereas circles indicate the estimated positions
ŷl(k1tr) for each time step. As shown in Fig. 4, the target
positions that were estimated using method 1 deviated from
the actual trajectories because the gap between the target
velocities was too small to allow the targets to be separated
in the frequency domain. Simultaneously, Figs. 5 and 6 show
that method 2 and the 4D method both estimated the target
trajectories more accurately than method 1, although incor-
rect estimates were also found in these images. The RMSEs
for the three methods are provided in Table 1.
Figs. 7–9 show the Doppler velocities that were esti-

mated using conventional methods 1 and 2, and the 4D
method, respectively. Targets 2 and 3with their spiral motions
always had almost the same Doppler velocity, whereas tar-
get 1 with its uniform motion had a lower Doppler veloc-

FIGURE 4. Imaging results obtained using conventional method 1.

FIGURE 5. Imaging results obtained using conventional method 2.

FIGURE 6. Imaging results obtained using the 4D method.

TABLE 1. RMSEs of v̂l (k1tr), θ̂l1(k1tr), θ̂l2(k1tr), r̂l (k1tr), and ŷl (k1tr)
for each imaging method.

ity. Therefore, in each figure, we see two lines that show
the actual Doppler velocities. Because method 1 attempted
to separate the echoes in the frequency domain using the
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FIGURE 7. Doppler velocity estimation results obtained using
conventional method 1.

FIGURE 8. Doppler velocity estimation results obtained using
conventional method 2.

FIGURE 9. Doppler velocity estimation results obtained using the 4D
method.

traditional Fourier transform-based spectrum, these echoes
could not be distinguished because of the limitations of
the frequency resolution of the Fourier transform (Fig. 7).
In contrast, as shown in Fig. 8, method 2 separated the two
Doppler velocities using the 3D unitary ESPRIT method.
Surprisingly, however, the accuracy of method 2 was worse
than that of method 1 in terms of the Doppler velocity,

FIGURE 10. RMSEs in ŷl versus SNR.

FIGURE 11. RMSEs in ŷl versus M3.

as shown in Table 1. This is because the Doppler velocity that
was estimated using method 2 had extremely large errors that
lay outside the range of Fig. 8; these errors were caused by
the interference of multiple echoes. By contrast, the accuracy
of the 4D method for estimating the Doppler velocity was
higher than that of both methods 1 and 2, and the two Doppler
velocity curves were estimated accurately, as shown in Fig. 9.

Table 1 shows the remarkable improvement in accuracy of
the estimation of all parameters when using the 4D method.
The accuracy of the 4D method was 15.6 times higher than
that of method 1 and 1.87 times higher than that of method 2.
These results indicate that the higher-dimensional ESPRIT
method separated multiple radar echoes more accurately than
methods 1 and 2, thus achieving higher space-time-frequency
resolution. This occurred because even if the echoes cannot be
separated in one specific domain, they may still be able to be
separated in the other domains. Therefore, the process of joint
estimation of multiple parameters (i.e., the range, Doppler
frequency and DOAs) is promising for the realization of
high-resolution radar imaging.

The RMSEs in estimating ŷl versus SNR are shown
in Fig. 10. The figure shows that 4D unitary ESPRIT
achieved high accuracy even for a relatively low SNR.
Fig. 11 shows the RMSEs in ŷl versus the number of time
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samples M3, where SNR was set to 20 dB. This figure shows
that regardless of M3, 4D unitary ESPRIT achieved the
highest accuracy among the three methods. The RMSEs
in estimating various parameters using a high-dimensional
ESPRIT algorithm and similar techniques were reported in
studies [25], [27], [30], [31].

E. COMPUTATIONAL COMPLEXITY
As stated in the Introduction, multidimensional adaptive sig-
nal processing is considered to be impractical in many appli-
cations because of its computational complexity, particularly
that of multidimensional peak searches. This was the moti-
vation for introducing the multidimensional unitary ESPRIT
method used in this study. In this section, we discuss the
computational complexity of the 4D method and compare it
with the complexities of conventional methods 1 and 2 that
were discussed in the previous section.

All three methods require eigenvalue decomposition of the
correlation matrix Rxx in the unitary ESPRIT method. The
number of operations required for eigenvalue decomposition
of an n × n matrix is denoted by O(n3) [36]. For method 1,
the matrix size of Rxx is Msub1Msub2 × Msub1Msub2, and
thus n3 = (Msub1Msub2)3 = 64. Similarly, for method 2,
n3 = (Msub1Msub2Msub3)3 = 2.1 × 106, whereas for the 4D
method, n3 = (Msub1Msub2Msub3Msub4)3 = 5.7 × 107. The
number of operations required increases because of the multi-
dimensionalization involved in themultidimensional ESPRIT
algorithms. However, because of the system costs involved,
the number of antenna elements cannot be high. Addition-
ally, in real-time applications such as human monitoring in
healthcare, the number of slow-time samples must be limited
to prevent response delays. Consideration of these factors
allows the computational complexity of the 4D method to be
maintained within a practical range.

With respect to the number of multiplications, the com-
putational complexities of the Wiener filter and minimum
description length are O(M ) and O(LmaxM2

sub), respectively.
As long as Lmax and Msub are assumed to be small, the cal-
culation time for these steps remains small. The computa-
tional complexity for the multidimensional CP method was
discussed in Section III-C. Fig. 12 shows the average running
time of the three algorithms versus the number of time sam-
ples M3, where the algorithms were executed in MATLAB
running on a laptop computer: ASUS ZenBook S UX391UA
with an Intel(R) Core(TM) i7-8550U 1.80-GHz processor
and 16 GB of RAM. Note that the algorithms could run faster
if implemented in a compiled language instead of a scripting
language such as MATLAB. The computational time of the
high-dimensional ESPRIT algorithm and similar techniques
can be found in previous studies [30], [31].

V. DISCUSSION
A. SIGNIFICANCE OF SUPER-RESOLUTION IN UWB
RADAR IMAGING
The main contributions of this study are as follows: (1) 4D
unitary ESPRIT was applied for the first time to the near-field

FIGURE 12. Average running time versus M3.

UWB radar imaging of multiple moving targets; and (2) the
near-field imaging accuracy of 4D unitary ESPRIT was
compared with those of the 2D and 3D unitary ESPRIT
algorithms.

Because a human body can be modeled as a collection of
multiple scattering centers moving in close proximity, this
study’s target model can be associated with practical human
monitoring applications, including human activity classifica-
tion and human position tracking. Echoes from human body
parts cannot be separated unless a sufficiently high resolu-
tion is achieved. In this respect, super resolution techniques
(e.g., ESPRIT) are necessary to maximize the functionality of
UWB radar systems in such applications. The results of this
study suggest the potential efficacy of the 4D unitary ESPRIT
algorithm in improving the accuracy and resolution of radar
measurement in such applications.

Radar-based human monitoring (e.g., human activity clas-
sification and differentiating multiple people in a room) is
an increasingly popular application of UWB radar systems,
whose performance can be largely improved using 4D unitary
ESPRIT. Regarding the example of classifying human activ-
ity, the classification accuracy is expected to be improved
by using 4D unitary ESPRIT to improve the velocity res-
olution, which would generate a detailed time–frequency
distribution (spectrogram) and allow the accurate classifi-
cation of human activity. Regarding the other example of
differentiating two people, performance is also expected to
be improved by enhancing the spatial and velocity resolu-
tions using 4D unitary ESPRIT to separate echoes in the
spatial and frequency domains and also to distinguish the
micro-Doppler patterns of the people. The application of
the 4D unitary ESPRIT algorithm to these human monitor-
ing applications is an important research topic for future
studies.

B. NEAR- AND FAR-FIELD RADAR AND
SUPER-RESOLUTION
The use of 4D unitary ESPRIT can improve the resolution
of both near- and far-field radar measurements. However,
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high-resolution techniques in the frequency domain generally
require both a high S/N ratio and wide bandwidth, which
are difficult to achieve in far-field measurement. Far-field
radar measurement requires a relatively narrow bandwidth
to ensure a sufficient S/N ratio, which limits the use of
high-resolution techniques. Additionally, for far-field radar
measurement applications, the detectability of targets is often
more important than the resolution. By contrast, for tar-
gets in the near field, the echo S/N ratio is relatively high,
even with a wide bandwidth (e.g., UWB), which allows
for the use of high-resolution techniques for the accu-
rate measurement of multiple moving targets. Therefore,
the introduction of UWB near-field radar makes it possible
to achieve super-resolution imaging. Additionally, as men-
tioned above, near-field radar measurement has potential
applications, such as the measurement of moving human
body parts, whereas far-field radar measurement rarely con-
siders multiple targets moving independently in close prox-
imity. This discussion suggests that 4D unitary ESPRIT can
play a more important role when applied to near-field radar
measurement.

VI. CONCLUSION
In this paper, we applied the 4D unitary ESPRIT algo-
rithm to UWB radar imaging of near-field distributed targets,
which enabled the joint estimation of the Doppler velocity,
range, and DOAs of targets using MDL-based target num-
ber estimation and an improved CP method. We evaluated
and compared the imaging accuracies of the 4D, 3D, and
2D algorithms. The two low-dimensional algorithms were
based on the 2D and 3D unitary ESPRIT methods. Using
numerical simulations with three targets moving in close
proximity, we demonstrated that the 4D method improved
imaging accuracy by 15.6 and 1.87 times when compared
with the two low-dimensional algorithms. These simula-
tion results indicate the remarkable potential of the multi-
dimensional ESPRIT algorithm to achieve high-resolution
radar imaging with UWB radar while maintaining the com-
putational complexity within a practical range. The next
step of this study will be actual radar measurement using
UWB array antennas to experimentally verify the perfor-
mance of near-field imaging using the 4D unitary ESPRIT
algorithm.

APPENDIX
4D SMOOTHING
Correlation matrix Rxx after N1, N2, N3, and N4 smooth-
ing operations in each dimension and the total number of
smoothing operations N = N1 N2 N3 N4 is expressed as
follows:

Rxx =
1
N
Re

QH
Msub

N1∑
n1=1

N2∑
n2=1

N3∑
n3=1

N4∑
n4=1

R(∗)QMsub

, (40)

R(∗) = xn1,n2,n3,n4x
H
n1,n2,n3,n4 , (41)

xn1,n2,n3,n4

=



xn1,n2,n3,n4
xn1+1,n2,n3,n4

...

xn1+Msub1−1,n2,n3,n4
xn1,n2+1,n3,n4

...

xn1+Msub1−1,n2+Msub2−1,n3,n4
xn1,n2,n3+1,n4

...

xn1+Msub1−1,n2+Msub2−1,n3+Msub3−1,n4
xn1,n2,n3,n4+1

...

xn1+Msub1−1,n2+Msub2−1,n3+Msub3−1,n4+Msub4−1



,

(42)

where Msubi is expressed as Msubi = Mi − Ni + 1 for
i = 1, 2, 3, 4. The orders of M1, M2, M3, and M4 decrease
from Mi to Msubi for i = 1, 2, 3, 4 through the smooth-
ing process, and the total degree also decreases from M to
Msub = Msub1Msub2Msub3Msub4. Use of the smoothing pro-
cess is expected to suppress the correlation between signals
among the L echoes.
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