
Received October 21, 2019, accepted October 28, 2019, date of publication November 4, 2019, date of current version
November 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2951393

Similarity Learning-Induced Symmetric
Nonnegative Matrix Factorization
for Image Clustering
WEI YAN 1, BOB ZHANG 1, (Member, IEEE), ZUYUAN YANG 2, (Member, IEEE),
AND SHENGLI XIE 2, (Fellow, IEEE)
1Department of Computer and Information Science, University of Macau, Macau 999078, China
2Guangdong Key Laboratory of IoT Information Technology, School of Automation, Guangdong University of Technology, Guangzhou 510006, China

Corresponding author: Bob Zhang (bobzhang@umac.mo)

This work was supported by the National Natural Science Foundation of China under Grant 61602540 and Grant 61722304.

ABSTRACT As a typical variation of nonnegative matrix factorization (NMF), symmetric NMF (SNMF)
is capable of exploiting information of the cluster embedded in the matrix of similarity. The traditional
SNMF-based methods for clustering first performs the techniques of the similarity learning on input data
to learn a matrix of similarity, which is subsequently factorized by SNMF or one of its variants to learn
information from the cluster. While these methods have led to satisfactory clustering results, it is suboptimal,
since they do not explicitly exploit the fact that processes of the similarity learning and the clustering are
depend on each other. In this paper, we describe a new SNMF model, termed similarity learning-induced
SNMF (SLSNMF). SLSNMF can be considered as a unified framework that jointly considers these two
processes. SLSNMF improves the clustering performance of SNMF by thoroughly exploring the mutual
reinforcement between the process of similarity learning and the process of clustering until convergence.
We incorporate a constraint into the standard SNMF model to learn the matrices of similarity and cluster
simultaneously. Meanwhile, for solving this new model, we use the strategy of alternating iterative and
derive an efficient algorithm, whose convergence is theoretically guaranteed. Experimental results over
three benchmark image data sets demonstrate that SLSNMF outperforms the state-of-the-art methods for
clustering.

INDEX TERMS Symmetric nonnegative matrix factorization (SNMF), nonnegative matrix factorization
(NMF), clustering, unsupervised learning.

I. INTRODUCTION
Clustering is a fundamental task in machine learning and
data mining. This task aims to group data into a number
of partitions. Recently, Non-negative Matrix Factorization
(NMF) [1]–[6] and Symmetric Non-negative Matrix Fac-
torization (SNMF) [7]–[9] have been applied to data clus-
tering with impressive outcomes. Specifically, NMF with
an orthogonality constraint is equivalent to the traditional
K-means clustering method, which enables it to efficiently
group linearly separable data [10]. SNMF is closely related
to spectral clustering (both of them solve the same problem
with different constraints) [11], making it effectively cluster
nonlinearly separable data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shiqing Zhang .

SNMF aims to seek two of the same non-negative matrix
factors. Mathematically, given a symmetric non-negetive
matrix X, SNMF finds the solution V such that X ≈ VVT.
In graph clustering setting,X is matrix of the similarity which
encodes the relationships between samples. The result V
serves as the matrix of the clusters. To improve performance
of SNMF for clustering, one often adds some constraints to
the basic SNMF. For example, an effective pairwise con-
strained SNMF model was proposed in [12]. Also, by con-
sidering both information of the constraint and information
of the geometrical structure, another SNMF variant was
proposed in [13].

The existing SNMF-based clustering algorithms perform
clustering in two steps. In the first step, a matrix of similarity
is obtained from the input data by using the techniques of
learning. In the second step, matrix of the cluster is learned by
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performing SNMF on the matrix of the similarity. Although
this step-wise method has achieved satisfactory results, it is
suboptimal, since this step-wise method totally ignores the
dependence between the process of similarity learning and
the process of clustering. Information of the cluster may
not transfer well to the matrix of the indicator, which will
compromise performance of clustering. Considering this dis-
advantage, it is natural to unify the SNMF-based clustering
and similarity learning optimization into a single framework,
enhancing performance of clustering. In fact, researchers
have proved that a unified framework is effective in dealing
with two dependent tasks [13]–[23]. A similar framework
of joint learning has been proposed in [13]. This framework
performs clustering and similarity learning simultaneously.
However, this method is semi-supervised, and its perfor-
mance highly depends on the amount of label information
available. In [23], Kang et al. proposed a framework LKGr.
LKGr unified the processes of graph construction and kernel
learning by the strategy of iteration, where the graph and
consensus kernel can be enhanced by each other.

In this paper, a novel regularized SNMF model, termed
similarity learning-induced SNMF (SLSNMF), is proposed
to enhance performance of SNMF in clustering. The main
contributions of this paper are twofold.

1) A new unsuperivised SNMF-based clustering method
is proposed, where the similarity learning and the clus-
tering are unified into a joint framework. By formulat-
ing a constrained problem of optimization, matrices of
the similarity and indicator are learned simultaneously,
where both of them make mutual enforcement until
convergence.

2) Based on the strategy of iterative updating, an efficient
algorithm is presented to solve the new problem of opti-
mization. This algorithm is proved to monotonically
decrease the cost of the new objective function.

The remainder of this paper will be organized as fol-
lows. We briefly present the background of NMF and
SNMF in Section 2. Section 3 provides our proposed
similarity learning-induced symmetric non-negative matrix
factorization, the updating rules, and the convergence anal-
ysis. We describe its performance in Section 4. Finally,
Section 5 concludes this paper and provides suggestions for
future work.

II. NMF AND SNMF
Given a nonnegative matrix X ∈ Rm×n

+ , NMF provides
two low-rank nonnegative factor matrices U ∈ Rm×k

+ and
V ∈ Rn×k

+ with k < min {m, n}, whose product is a well
approximation to X. Mathematically, it is formulated as

X ≈ UVT (1)

The quality of the above approximation can be measured by a
cost function based on the Frobenius norm. Then, the objec-
tive function of NMF is formulated as:

min ||X− UVT
||
2
F , s.t. U ≥ 0, V ≥ 0. (2)

where || · ||F represents Frobenius norm.

NMF and its variants offer superior results for clustering
on linearly separable data compared to others such as the
traditional clustering method K-means [24]. In a clustering
setting, the columns of U are the cluster centroids, and the
columns of VT represents the clustering assignments. Note
that the index of the largest value in each column of VT is the
clustering assignment of the corresponding sample [11].

In contrast to NMF, SNMF is effective in clustering non-
linear data. In practice, the input of SNMF is a matrix of
the similarity S ∈ Rn×n. Mathematically, SNMF conducts
a symmetric non-negative matrix factorization. Choosing
the Frobenius norm to quantify the approximation quality,
the objective function of SNMF is:

min ||S− VVT
||
2
F , s.t. V ≥ 0. (3)

where || · ||F denotes Frobenius norm. SNMF can obtain
similar or better performance than most of the nonlinear
clustering methods, including the popular spectral clustering
methods [25].

III. PROPOSED SLSNMF
A. PROBLEM FORMULATION
Typical SNMF-based clustering methods are based on two
steps. In the first step, the similarity matrix is obtained from
the input data through reconstruction-based methods. As for
the second step, the SNMF-based model is utilized to the
learned similarity matrix, resulting in a cluster assignment. In
such a stepwise manner, the dependance between these two
processes is totally ignored, and the resultant cluster indicator
matrix may not well exploit the cluster information from the
input data, resulting in a suboptimal clustering performance.
To this end, we aim to simultaneously learn the similarity and
cluster indicatormatrices in a unified framework, inwhich the
dependency between them can be well explored.

In [26], Kong et al. proposed an effective algorithm, termed
iterative locally linear embedding (ILLE), to learn the similar-
ity matrix S. The objective function of ILLE is formulated as:

O(S) = ‖X− XS‖2F + αTr(S
TS)+ β ‖S‖1

s.t. S ≥ 0, α ≥ 0, β ≥ 0. (4)

where α and β are regularization parameters. || · ||1 is the
L1-norm. The first term in (4) is the reconstruction term.
The second term penalizes the complexity of S. The third term
is applied to obtain a sparse solution [27]. Considering the
similarity matrix learnt by (4) is not symmetric, we set the
matrix S̃ to be symmetric by:

S̃ =
(S+ ST )

2

Combining the traditional SNMF model with the
above-mentioned similarity learning model, a new SNMF
model is formulated as:

O(V,S) =
∥∥̃S− VVT

∥∥2
F + ‖X− XS‖2F

+αTr(STS)+ β ‖S‖1 (5)
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In this model, the similarity matrix S̃ and clustering indicator
matrix V communicate with each other until convergence.
This shows that the dependence between the similarity learn-
ing and the clustering processes are explicitly explored.

B. ALGORITHM FOR SOLVING SLSNMF WITH
CONVERGENCE ANALYSIS
For the new model in (5), we optimize it based on the widely
used alternating update strategy, i.e., updating one factor
while keeping the other fixed. Specifically, with initialized
S and V, optimizing S while keeping V fixed, and then opti-
mizing V by keeping S fixed until convergence. Based on the
majorization-minimization technique [28], we obtained the
updating rules under which we can theoretically guarantee
the objective function to be monotonically non-increasing.

Regarding the updating rules, we introduce an essential
definition, an important lemma [29], and five propositions for
the following analysis.
Definition 1: J (h, ĥ) is an auxiliary function forO(h) if it

satisfies the following two conditions

J (h, ĥ) ≥ O(h), J (h, h) = O(h).
Lemma 1: If J is an auxiliary function ofO(h), thenO(h)

is nonincreasing under the update

ht+1 = argmin
h

J (h, ht )

where t denotes the iteration number.
Please see [29] for the proof of the above lemma.
Proposition 1: (Quadratic Upper Bound) [30]: For any

matrices S ∈ Rn×n
+ , V ∈ Rm×n

+ , and V̂ ∈ Rm×n
+ , if S = ST,

then it holds

Tr(V̂TV̂S) ≤
∑
ik

(VS)ik V̂2
ik

Vik
(6)

Proposition 2: (LinearUpper Bound) [30]: For anymatri-
ces S ∈ Rn×n

+ , V ∈ Rm×n
+ , and V̂ ∈ Rm×n

+ , it holds

Tr(STV̂) ≤
∑
ik

Sik

(
V̂2
ik + V2

ik

2Vik

)
(7)

Proposition 3: (Quadratic Lower Bound) [30]: For any
matrices S ∈ Rn×n

+ , V ∈ Rm×n
+ , and V̂ ∈ Rm×n

+ , it holds

−Tr(V̂TV̂S) ≤ −
∑
ikl

SklVikVil

(
1+ log

V̂ik V̂il

VikVil

)
(8)

Proposition 4: For any matrices V ∈ Rm×n
+ , V̂ ∈ Rm×n

+ ,
it holds [31]

Tr(V̂V̂TV̂V̂T) ≤
∑
ik

(VVVT)ik V̂4
ik

V3
ik

(9)

Proposition 5: For any matrices S ∈ Rn×n
+ , V ∈ Rm×n

+ ,
and V̂ ∈ Rm×n

+ , if S = ST, then it holds [32]

Tr(V̂SV̂)≤
1
2

∑
ik

(VTS)ik V̂2
ik

Vik
+
1
2

∑
ik

(SVT)ik V̂2
ik

Vik
(10)

Substituting S̃ = (S + ST)/2 into the objective function
in (5), we have

O(V,S) =
∥∥∥̃S− VVT

∥∥∥2
F
+ ‖X− XS‖2F

+αTr(STS)+ β ‖S‖1

=
1
2
Tr(SS+ STS)− Tr(SVVT

+ STVVT)

+Tr(VVTVVT)+ Tr(K − 2KS+ STKS)

+αTr(STS)+ βTr(ES) (11)

where K = XTX.
Initially, we obtain the updating rule for Swhile keepingV

fixed. By discarding the constant terms non-related to S, the
objective function in (11) is rewritten as

O1(S) =
1
2
Tr(SS+ STS)− Tr(SVVT

+ STVVT)

+Tr(STKS)+ αTr(STS)

+βTr(ES)− Tr(2KS) (12)

Then, we construct the following function:

J1(S, Ŝ) =
∑
ik

(0.5ST)ik Ŝ2ik
Sik

+

∑
ik

(0.5S)ik Ŝ2ik
Sik

+α
∑
ik

Sik Ŝ2ik
Sik
+ β

∑
ik

(
S2ik + Ŝ2ik
2Sik

)

+
(KS)ik Ŝ2ik

Sik
− Tr(VVTŜ)

−Tr(VVTŜT)− 2Tr(KŜ) (13)

where Ŝ ∈ Rn×n. With Propositions 1, 2, 3 and 5, we obtain:

J1(S, Ŝ) ≥ O1 (̂S), and J1 (̂S, Ŝ) = O1 (̂S)

According to Definition 1, we can verify that J1(S, Ŝ) is
the auxiliary function O1 (̂S). Also, J1(S, Ŝ) is convex with
respect to Ŝ, because each term in J1(S, Ŝ) is convex. Thus,
through setting the partial derivative of J1(S, Ŝ) with respect
to factor Ŝ to zero, that is,

∂J1(S, Ŝ)

∂Ŝ
= (−2VVT

− 2K)ik +
(ST)ik Ŝik

Sik

+
Sik Ŝik
Sik
+ β

(
Ŝik
Sik

)

+ 2α
Sik Ŝik
Sik
+ 2

(KS)ik Ŝik
Sik

= 0 (14)

we can achieve the optimal solution of Ŝ for minŜ J1(S, Ŝ) as

Ŝik = Sik
(2VVT

+ 2K)ik
(ST + (I+ 2α + 2K)S+ β)ik

(15)

Here, at the tth iteration, the solution for S is

St+1ik = Stik
(2Vt (Vt )T + 2K)ik

((St )T + (I+ 2α + 2K)St + β)ik
(16)
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To obtain the solution for V by keeping S fixed, the objec-
tive function in (11) is rewritten through discarding the con-
stant terms nonrelated to V, which results in

O2 (̂S) = Tr(VVTVVT
− SVVT

− STVVT)

Then, we construct the following function:

J2(V, V̂) =
∑
ik

(VVTV)ik V̂4
ik

V3
ik

−

∑
ik

(S+ ST)klVikVil(1+ log
V̂ik V̂il

VikVil
) (17)

where V̂ ∈ Rm×c. With Propositions 3 and 4, we conclude
that

J2(V, V̂) ≥ O2(V̂), and J2(V̂, V̂) = O2(V̂)

According to Definition 1, J2(V, V̂) is the auxiliary function
for O2(V̂), and it is convex with respect to V̂. To find the
minimum of J2(V, V̂), we have

∂J2(V, V̂)

∂V̂ik
= 4

(VVTV)ik V̂3
ik

V3
ik

− 2
(SV+ STV)ikVik

V̂ik

= 0 (18)

and the optimal V̂ in elementwise for minV̂ J2(V, V̂)

V̂ik = Vik
4

√
(SV+ STV)ik
2(VVTV)ik

(19)

Therefore, at the tth iteration, the update formula for V is

Vt+1
ik = Vt

ik
4

√√√√ (St+1Vt + (St+1)TVt )ik

2(Vt (Vt+1)TVt )ik
(20)

According to Lemma 1, under the update formulas in (16)
and (20), we obtain

O(Vt ,St+1) ≤ O1(Vt ,St ) (21)

O(Vt+1,St+1) ≤ O1(Vt ,St+1) (22)

Hence, the value of objective function O(V,S) is
non-increasing under the update rules in (16) and (20). Mean-
while, it is not difficult to verify that the value of the objective
function is larger than 0. Finally, we conclude that the conver-
gence of the proposed algorithm is theoretically guaranteed.
We summarize the algorithm in Algorithm 1.

IV. EXPERIMENTAL RESULTS
For this section, we evaluated the performances of SLSNMF
on data clustering using three benchmark image data
sets (PIE, MNIST and ORL). To show the advantages
of the proposed SLSNMF, we compared it with sev-
eral algorithms, including three recent SNMF algorithms,
i.e., NS-SymNMF [33], SymNMF [11], α−SNMF [8], and
classical K-means. Regarding the effectiveness of our joint
optimization algorithm SLSNMF, we also designed a com-
parison method, termed ‘‘disjoint SL/SNMF’’. In disjoint

Algorithm 1 Algorithm of the Proposed SLSNMF
Input:

input data X ∈ Rm×n, cluster number k , parameters α
and β, and maxIter

Output:
cluster indicator matrix VT;

1: Initialize matrices V, and S;
2: t = 1;
3: while (t < maxIter) do
4: Update V with rule (20);
5: Update S with rule (16);
6: t = t + 1;
7: end while
8: return the index of the largest value in each column of

VT as the clustering indicator;

SL/SNMF, the similarity matrix is first obtained by solv-
ing the objective function in (4), followed by performing
SNMF on the learned similarity matrix to obtain the cluster
assignment.

To evaluate the clustering performance, two standard met-
rics: the accuracy (AC) and the normalized mutual informa-
tion (NMI) [34] are applied. For these two metrics, a value
close to 1 implies a good clustering result.

The value of accuracy represents the percentage of cor-
rectly predicted labels, and is calculated by:

AC =

∑n
i=1 δ(ri,map(li))

n
(23)

where δ(a, b) takes 1 if a = b and 0 otherwise, and map(li)
is the permutation mapping function that maps each cluster
label li to the corresponding label from the data set. In our
experiments, the best map is obtained via the Kuhn-Munkres
algorithm [35].

The NMI matrix is used for measuring the similarity of
two clusters. Given two clusters C and C ′, the NMI(C,C ′)
is defined as:

NMI(C,C′) =
MI(C,C ′)

max(H(C),H(C ′))
, (24)

where H(C) and H(C ′) denote the entropies of C and C ′. The
corresponding mutual information matrix (MI) is given as:

MI(C,C ′)=
∑

ci∈C,cj ′∈C ′
p(ci, cj′) · log

p(ci, cj′)
p(ci) · p(cj′)

, (25)

where p(ci) and p(c′j) represent the probabilities that a ran-
domly selected data belongs to the clusters ci and cj, respec-
tively, and p(ci, c′j) is the joint probability that the selected
point belongs to both clusters.

For a fair comparison, we use the technique of Gaus-
sian kernel to obtain the similarity matrix for all methods.
Given the input data X, the kernel matrix K(xi, xj) is defined
as K(xi, xj) = exp(−‖xi − xj‖2/t), where t denotes the
bandwidth parameter. For the three data sets (PIE, MNIST,
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TABLE 1. AC value compariosn on PIE database.

TABLE 2. NMI value compariosn on PIE database.

and ORL), the parameter t is empirically set 0.7, 0.7, and
0.25, respectively.

A. PIE
The PIE database is composed of 2856 grayscale images of
68 individuals. There exist 42 images per subject, one per
different light or illumination conditions.

First, we verified the convergence of the proposed
SLSNMF algorithm. We conducted the experiments under
different class numbers and various parameters. It is observed
that the results are similar and all of them obtain good con-
vergence performances. Here, we give the result for the case
k = 6 in Fig. 1.

Next, we evaluated the clustering performance of
SLSNMF, and compared it to those of the classical K-means,
α-SNMF [8], SymSNMF [11], NS-SymNMF [33], and dis-
joint SL/SNMF. Fig. 2 shows the clustering performance of
these algorithms in terms of AC, with more detailed results
of AC and NMI shown in Table 1 and 2. It can be seen
that the proposed SLSNMF is superior to other clustering
methods in terms of AC and NMI. This demonstrates the
effectiveness of the proposed method. Notably, the clustering
performance of SLSNMF is higher than that of disjoint
SL/SNMFmethod, implying that the effectiveness of the joint
learning framework.

We can observe that our proposed method SLSNMF con-
sistently outperforms others. This indicates it is useful at
exploiting the mutual enhancement of similarity learning

FIGURE 1. Convergence curve of SLSNMF on the PIE database when
k = 6.

and clustering. When compared to the second best results,
i.e., average results in terms of AC and NMI for Sym-
SNMF, SLSNMF obtains 8.67 % and 2.83 % improvements,
respectively.

B. MNIST
The MNIST database contains normalized; center cropped
images of handwritten digits ranging from zero to nine of
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TABLE 3. AC value compariosn on MNIST database.

TABLE 4. NMI value compariosn on MNIST database.

FIGURE 2. Clustering performance comparison of various methods on the
PIE data set in terms of AC.

size 28 × 28 [36]. The convergence curve of SLSNMF on
the MNIST data set is shown in Fig. 3. Fig. 4 shows the AC
of the comparison methods along with SLSNMF versus the

FIGURE 3. Convergence curve of SLSNMF on the MNIST database when
k = 4.

class number, with more detailed results given in Table 3.
Furthermore, Table 4 presents the corresponding NMI of
all methods. We can observe that the average AC and NMI
results of SLSNMF are among the best when compared to
the other algorithms.

SLSNMF achieves a 2.68 % improvement in AC and
3.07 % improvement in NMI on average, compared to the
next best method (i.e., SymNMF).
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TABLE 5. AC value compariosn on ORL database.

TABLE 6. NMI value compariosn on ORL database.

FIGURE 4. Clustering performance comparison of various methods on the
MNIST data set in terms of AC.

C. ORL
The ORL database includes 40 subjects with ten gray-scale
images for each subject. All the images were resized

FIGURE 5. Convergence curve of SLSNMF on the ORL database when
k = 5.

to 32 × 32. We provide the performance of convergence
with respect to the proposed method SLSNMF in Fig 5.
Next, we show the AC of the comparison methods along
with SLSNMF versus the class number in Fig. 6. In addi-
tion, we present the comprehensive results of AC and NMI
in Table 5 and Table 6, respectively. One can observe from
the figures and tables that the proposed method outperforms
the comparison methods in terms of AC and NMI.

166386 VOLUME 7, 2019
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FIGURE 6. Clustering performance comparison of various methods on the
ORL data set in terms of AC.

When matched with the algorithm that performed sec-
ond best (NS-SymNMF), SLSNMF achieves a 3.34 %
improvement in AC, and 2.16 % improvement in NMI on
average.

D. PARAMETERS ANALYSIS
Our SLSNMF has two regularization parameters
(i.e., α and β). Their impact on SLSNMF were investigated
on the clustering performance.

Both α and β were varied in the range of {0.01, 100} on the
three data sets. The average performance is shown in Fig. 7.
In each of the experiments, 10 repetitions were conducted.
From Fig. 7, we can observe that the proposed method per-
forms well when α is selected in the range of [10, 100], where
the optimal performance is obtained over PIE and MNIST
when α is around 100 and β is around 10−2. As for the ORL
data set, SLSNMF achieved good performance when α was
100 and β was 0.1.

E. COMPUTATIONAL COMPLEXITY ANALYSIS
This subsection will conduct a computational complexity
analysis of SLSNMF. The updating rules for SLSNMF
have four arithmetic operations: (1) addition; (2) multipli-
cation; (3) division; (4) square root operation. Based on
the updating rules in (16) and (20), the arithmetic oper-
ations of each iteration are O(n2k), O(n2k), O(n2), and
O(nk), respectively. Thus, the overall computational com-
plexity for SLSNMF is O(tn2k), where t is the iteration
number.

FIGURE 7. Clustering performance of the proposed SLSNMF versus
parameters (i.e., α and β) on three data sets. (a) PIE. (b) MNIST. (c) ORL.

V. CONCLUSION AND FUTURE WORK
This paper proposed a novel constrained SNMF method,
termed SLSNMF. In contrast to classic SNMF-based
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clustering methods, which are stepwise, SLSNMF is able
to simultaneously perform similarity learning and clustering.
To this end, SLSNMF unified the similarity learning and
clustering processes into a single-constrained optimization
problem. The dependency between the similarity learning
and clustering processes is thoroughly explored so that the
resultant cluster indicator matrix can well exploit the cluster
information from the input data. To effectively solve this
problem, an alternative iterative algorithm was derived with
theoretical convergence. Experimentation using three bench-
mark image data sets showed the superiority of our method.

The proposed SLSNMF is currently a single-view learning
method. Due to the availability ofmulti-view data, it is natural
and capable of extending the proposed SLSNMF method
to a multi-view learning one [37]–[40]. Therefore, we will
consider this as part of our future work. It is also of great
interest to extend the proposed SLSNMF method to a robust
one [41]. This would offer researchers a better understanding
of the effectiveness of SLSNMF for the problem of robust
image clustering.
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