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ABSTRACT Locating Lingwu Long Jujubes is a key step for the automatic picking of the jujubes which can
lower labour costs. In this paper, a method for detecting Lingwu Long Jujubes in a natural environment
with a three-dimensional (3D) point cloud is proposed. First, the jujubes are preliminarily extracted in
two-dimensional (2D) image. Then, the points are fitted to ellipsoid by least square (LS) in the sample
consensus framework. The model scores are different when sample size is changed. The variable sample
consensus (VARSAC) is proposed to get higher score than random sample consensus (RANSAC). The
normal vector and the distance need to be calculated in score calculation of the RANSAC.However, this score
calculation method is complex and time-consuming. Thus, a new method called two-ellipsoid-bounding-
counting (TEBC) is proposed. The TEBC produces two auxiliary ellipsoids that are obtained by scaling
semiaxis of the model. The points, which is bounded by two auxiliary ellipsoids, are regarded as inliers. The
functional value of every candidate point is calculated to select the inliers. The valid ellipsoids are determined
by the prior information and the invariants. Finally, the centre, size and the attitude angle of the jujubes are
solved using eigenvalues and eigenvectors. Experiments are carried out on synthetic and real datasets. The
experimental results show that the proposed method can faster and more accurately detect jujube. The speed
of the VARSAC+TEBC is approximately 4 times faster than that of the RANSAC in the real dataset.

INDEX TERMS Ellipsoid fitting, object locating, sample size, two-ellipsoid-bounding-counting.

I. INTRODUCTION
Lingwu Long Jujubes are important economical fruits in
Ningxia, China. To improve picking efficiency and reduce
labour costs, there is an increasing demand for automatic
picking techniques. Locating the fruits in a natural environ-
ment is a key step for automatic picking. The premise of
movement of manipulator is to determine the position of
Lingwu Long Jujubes. In addition, the attitude angle and
size of the jujube are also useful information for efficient
picking. Target detection based on vision is very promis-
ing. Significant achievements have been realized using two-
dimensional (2D) image and three-dimensional (3D) point
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cloud for fruit detection. In [1], two levels of visual charac-
terizations are used for extraction according to information of
depth and color images. This method is successful at recog-
nizing green apples in a canopy foreground. Jia et al. [2] use
the K-means cluster segmentation and optimized radial basis
function (RBF) neural networks to improve the recognition
accuracy and speed of an apple picking robot. Reference [3]
presented a robotic arm that was controlled by a depth sensor.
The robotic arm can be used to pluck fruit or prune branches
using a proper microcontroller board. The detection accuracy
of a harvesting robot is guaranteed due to the development of
vision hardware. Binocular stereo vision can obtain 3D points
clouds using depth maps, but its accuracy depends on stereo
matching. A Kinect combines an infrared sensor and an
RGB camera. The RGB camera is used to obtain 2D image
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and the depth sensor is used to obtain the 3D coordinates
of points. The colour of a 2D image can be mapped to the
3D points using their mapping relation. The 3D points contain
the deep information of the objects in the real world. Thus,
the Kinect has more advantages than a general CCD camera
when applied in harvesting robots.

Statistical analysis shows that the shape of Lingwu Long
Jujubes is similar to an ellipsoid. Locating Lingwu Long
Jujubes for harvest robots is a problem of the fitting of
ellipsoidal objects in a natural environment. The fitting of
some geometric primitives, such as planes, spheres, cylin-
ders, and cones, is simple and well-developed [4]. However,
the fitting of ellipsoid is slow and difficult because of the
greater number of parameters. In fact, an ellipsoid with three
semiaxis parameters a, b, and c is a better model than a sphere
with only one radius parameter r or a cylinder, which can be
regarded as special case of an ellipsoid when one semiaxis is
infinity. Therefore, an ellipsoid is the best of the geometric
primitives to fit objects in the real world. However, the fitting
of an ellipsoid with rotation and translation is complex and
sometimes ambiguous [5]. The specific fitting methods of
ellipsoid include the least square (LS) [6], the sum of dis-
criminants method (SOD) [7], the ellipsoid-specific method
(HES) [8] and a series of variations that set different quadratic
constraints. This paper adopts the LS for the fitting of the
ellipsoid because this method is easy to implement.

The fitting method of geometric primitives can be divided
into direct fitting and indirect fitting. Direct fitting directly
fits all points, while indirect fitting often adopts the sample
consensus framework [9]. The RANSAC is a very classic
framework of sample consensus and there are many derived
algorithms. The efficiency of the RANSAC is related to
the sample size, the size of data set and the proportion of
inliers. The RANSAC is slow when the score of the final of
model is low. The non-optimal parameters are often obtained,
and the results that are obtained by the objective function
may be incorrect when degeneration occurs. According to
these limitations, [10] proposed a universal sample consensus
(USAC) framework. However, the USAC also adopts mini-
mum set sampling without considering changing the sample
size. To improve the data set, [11] proposed the progres-
sive sample consensus (PROSAC). In the PROSAC, a good
data set is selected by sorting the initial matching results.
Thus, the PROSAC can rapidly obtain the best parameter.
Reference [12] proposed the N-Adjacent points sample con-
sensus (NAPSAC) based on the fact that inliers are closer to
other inliers than outlies. The performance of the NAPSAC
is good when the proportion of inliers is low. However,
NAPSAC easily degenerates, and the performance is poor
when dealing with data sets whose points are close.

In the sample size, the RANSAC adopt the minimum set
sampling method and ignore the fact that the sample size
affects the score of the final model [13]. The proportion
of inliers is the same as the score of the model in a cer-
tain sense. Although the point cloud can be preprocessed to
improve the portion of inliers using prior information, such

as colour or size, the RANSAC may be very slow when
the portion of inliers is small. Therefore, how to obtain a
higher score is worth considering. Generally, a higher score
represents a better result [14].

In the framework of the sample consensus, the score cal-
culation, which affects the speed of the framework, is an
essential part. The score calculation methods, such as straight
line, plane, cylinder, and other simple models, are very
mature [15]. However, the score calculation of an ellipsoid
is not easy. Although RANSAC adopt the distance+normal
method to calculate the scores of many models, this method
is difficult to apply to the ellipsoid [9], [16]–[18]. The tra-
ditional method (distance+normal) that is applied in general
quadric surface fitting generally contains two parts: the dis-
tance and the normal vector. The candidate is an inlier when
satisfying the following two conditions: 1) the minimum
distance between the candidate and surface is less than a given
value, and 2) the difference between the normal vector of the
candidate and the normal vector of the corresponding point on
the surface is less than a given value. However, the minimum
distance between a candidate point and an ellipsoid is difficult
to calculate. In addition, the corresponding points of every
candidate point are difficult to confirm. The complicated
calculations may cause a slow speed.

The score calculation method is often different when the
sample consensus framework applied in different scenarios.
When fitting a line and plane, the RANSAC gives a general
solution to calculate the score [9]. For example, a candi-
date point is an inlier of a line when the distance between
the candidate and the line is less than the given threshold.
Similarly, a candidate is an inlier of a plane when the dis-
tance between the candidate and the plane is less than the
given threshold. The cylinder is slightly more complicated
because of the calculation of the normal vector. The cal-
culation of the distance between the candidate and cylin-
der is also complicated compared with that of a line and
plane. One of the most complicated models is the ellipsoid.
At present, very few previous studies address the score calcu-
lation of the ellipsoid. The distance+normal method can be
applied to the ellipsoid only when there are no demands on
the speed of the algorithm.

In this paper, we mainly study the sample consensus
framework and the score calculation of the ellipsoid in the
context of automatic picking of Lingwu Long Jujubes. The
contributions of our work are as follows. First, the similar-
ity between Lingwu Long Jujubes and the ellipsoid model
was analysed. On this basis, a solution for Locating jujubes
in a natural environment is introduced. After the literature
survey [19]–[23], we carefully consider many key details,
including multi-targets detection, occlusion problems, and
different natural lighting. Besides the position of the jujubes,
the size and attitude angle of jujubes in a camera coordinate
system for an automatic picking robot is also presented. Sec-
ond, we propose the variable sample consensus (VARSAC)
to accelerate speed of the RANSAC and obtain a best
model whose model score is higher than that of RANSAC.
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FIGURE 1. Overall process to detect Lingwu Long Jujubes in a real scene.

Meanwhile, the sufficient condition of a higher score is anal-
ysed. In VARSAC, we redesign the sample consensus frame-
work and present a new termination criterion of algorithm,
which is relatedwith the confidence level. Third, we proposed
two-ellipsoid-bounding-counting (TEBC) method, which is
simple and visual, to calculate the score of the ellipsoid
model. The result shows that the VARSAC+TEBC algorithm
has superior performance to the RANSAC+distance+normal
algorithm.

II. METHOD
In this section, a method for Locating Lingwu Long Jujubes is
proposed. First, the pixels that represent jujubes are extracted
using colour threshold. Then, the 3D points are selected using
the mapping relation. Finally, the models and the relative
parameters are solved by the VARSAC, TEBC and LS meth-
ods. The overall process, which includes 2D image segmen-
tation and 3D ellipsoid fitting, is shown in Fig. 1.

A. MODEL HYPOTHESIS OF LINGWU LONG JUJUBES
One of the prior information is that the shape of Lingwu Long
Jujubes is similar to an ellipsoid. The prior information needs
to be proven before fitting the jujubes. There is a theorem that
the shape of an object can be regarded as an ellipsoid when
the front projection is an ellipse and bottom is a circle [24].
The theorem will evaluate the similarity between the jujubes
and the ellipsoid.

The similarity is calculated using the maximum inscribed
ellipse and the maximum inscribed circle. δ describes the
level of similarity between the front projection and an ellipse.
ρ describes the similarity between the bottom and a circle.
Both can be calculated by (1) and (2). δ and ρ are normalized
to 0-1. When δ · ρ is close to 1 or 100%, the ellipsoid model
well represents the jujube. Sfp and Sel respectively denote
the areas of the front projection and the ellipse in Fig. 2(a).
are and bre respectively represent the length and width of the
rectangle in Fig. 2(b).

δ =

(
1−

∣∣Sfp − Sel ∣∣
Sfp

)
× 100% (1)

ρ =
bre
are
× 100% (2)

FIGURE 2. Shape of a Lingwu Long Jujubes. (a) image that shows the
front projection of a jujube, the minimum bounding rectangle and the
maximum inscribed ellipse. (b) image that shows the bottom of the
jujube, the minimum bounding rectangle and the maximum inscribed
circle.

FIGURE 3. The similarity between the Lingwu Long Jujubes and an
ellipsoid.

The statistical results of 50 fresh jujubes are shown
in Fig. 3. The average values of δ, ρ, and δ · ρ are 89.2%,
93.7%, and 89.2%, respectively. The results show that the
similarity is high and the ellipsoid is a goodmodel for Lingwu
Long Jujubes.

As another prior information, the general size of jujubes
also is measured. The major axis is 41 mm-46 mm, and minor
axis is 20.5 mm-23.2 mm. The size of jujubes will be used to
determine whether the model in sample consensus is valid.

B. METHOD OF DETECTING THE JUJUBES
Some background objects may be red-brown or similar to
red-brown in different natural lighting. Segmentation using
only colour cannot complete our task very well because it
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FIGURE 4. Process to detect jujubes in point clouds.

is imprecise. However, image segmentation can preliminarily
extract the jujubes from a background. 3D points are pro-
duced by depth sensors, and 2D images are produced by
CCD cameras. There is a mapping relation between the pixels
in a 2D image and 3D points [25]. The pixels, which rep-
resent the jujubes, in 2D images can be extracted from the
background using the colour threshold. Then, 3D points of the
jujubes are selected from point clouds using themapping rela-
tion. In this way, the proportion of inliers will be increased.

There are still some outliers in the image segmentation
result. In addition, some points of the jujubes may be not
on the fitted ellipsoid because of large errors. Therefore,
we considered the LS method and the sample consensus to
fit. In the sample consensus framework, the TEBC is used
to select inliers and calculate scores. The invariant theory is
used to recover the 3D information of jujubes in their natural
environment (e.g., centres, sizes and attitude angles of the
jujubes).

The multi-targets detection must be considered because
there may be multiple jujubes in the same field of view. The
time that is spent detecting the first jujube may be very large
because the proportion of the points, which belong to the
first jujube, is low. In the sampling stage, two points from
different jujubes could be sampled at the same time. Thus,
the amount of invalid iterative process increases. The pristine
RANSAC framework cannot handle multi-targets detection.
Considering these factors, we mainly use the range search
method of the K-D tree to solve the multi-targets detection
problem. An appropriate radius rs of the range search is set
to avoid sampling points of different jujubes.

The process of 3D point cloud is shown in Fig. 4. The
specific steps of our solution to detect multiple jujubes are
as follows.
Step 1. image segmentation using colour.
The original point cloud is obtained by a depth sensor.

Then, the colour threshold in the HSV space is calculated,
and the points of the jujubes are preliminarily selected by the
mapping relation.
Step 2. Range search with K-D tree.
Create a K-D tree for the point cloud and randomly sample

one point as the initial seed point. The other nearest points to

the seed point are obtained by K-D tree whose search range
is set according to the general size of the jujubes.
Step 3. Fit the model using the LS, determine the model

type and verify the model by comparing the general size of
the jujubes and the semiaxis of the model.

We can obtain the quadric surface equation using the
LS method and determine whether the model is an ellipsoid
using the invariants of the quadric surface. If this model is the
ellipsoid, the semiaxis of the ellipsoid will be calculated to
verify again. Then, the best model is determined according to
their scores, and we proceed to Step 4. Otherwise, we proceed
to Step 2.
Step 4. Extract the best ellipsoid.
The inliers in the best ellipsoid are extracted from the point

cloud. The coefficients of the general equation are known
from the returned model. The sizes, centres and attitude
angles of the jujubes are calculated using the coefficients of
the general equation.
Step 5. Detect other jujubes in the remaining points.
The remaining points will be subjected to Step 2 until the

number of the remaining points is less than the number of
inliers in the last best ellipsoid.

The principle of the ellipsoid fitting is as follows. The
quadric equation is defined as (3).

0 = a11x2 + a22y2 + a33z2 + a14x + a24y+ a34z

+a44 + a12xy+ a13xz+ a23yz (3)

The quadratic coefficient a11 must not be 0 for an ellipsoid.
Therefore, (3) can be reformed as (4) and a11 = 1.

0 = x2 + a22y2 + a33z2 + a14x + a24y+ a34z

+a44 + a12xy+ a13xz+ a23yz (4)

There are 9 parameters to be solved in (4). Thus, at least
9 points are sampled for sample consensus framework and
the error ei of the i-th sample point (xi, yi, zi) is defined
in (5).

ei = x2i + a22y
2
i + a33z

2
i + a14xi + a24yi + a34zi

+a44 + a12xiyi + a13xizi + a23yizi (5)
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The objective function of the optimizing search is
∑
e2i .

The process can be described as the solution of the lin-
ear equation Ax = v, where A, v is the known matrix
that can be obtained by the partial derivative. x denotes
the unknown parameters of quadric surface equation and
x = [a22, a33, a14, a24, a34, a44, a12, a13, a23]T .

The invariants I1, I2, I3, and I4 of the quadric surface can
be calculated by (6), (7), (8), and (9), respectively. And then,
the type of quadric surface is determined by the invariants.
A sufficient condition that a quadric surface is an ellipsoid is
that I1, I2, and I3 are greater than 0 [24].

I1 = a11 + a22 + a33 (6)

I2 =

∣∣∣∣ a11 a12/2
a12/2 a22

∣∣∣∣+ ∣∣∣∣ a11 a13/2
a13/2 a33

∣∣∣∣+ ∣∣∣∣ a22 a23/2
a23/2 a33

∣∣∣∣
(7)

I3 =

∣∣∣∣∣∣
a11 a12/2 a13/2
a12/2 a22 a23/2
a13/2 a23/2 a33

∣∣∣∣∣∣ (8)

I4 =

∣∣∣∣∣∣∣∣
a11 a12/2 a13/2 a14/2
a12/2 a22 a23/2 a24/2
a13/2 a23/2 a33 a34/2
a14/2 a24/2 a34/2 a44

∣∣∣∣∣∣∣∣ (9)

1) THE POSITION OF THE ELLIPSOID
According to spatial geometry theorem, the centre coordinate
of a quadric surface is the solution of the linear equations
in (10) [24]. a11 a12/2 a13/2

a12/2 a22 a23/2
a13/2 a23/2 a33

 xy
z

 =
−a14/2−a24/2
−a34/2

 (10)

2) THE ATTITUDE ANGEL OF THE ELLIPSOID
A3×3 is the coefficient matrix on the left side of (10), and its
characteristic roots are the solution of (11) [24].

−λ3 + I1 · λ2 − I2λ+ I3 = 0 (11)

Theremust be three characteristic roots λ1, λ2, λ3 and three
main directions v1, v2, v3. The main directions respectively
represent the direction vectors of the semiaxis of an ellipsoid.
Then, the rotation angles θx , θy, θz of an ellipsoid can be
calculated using the rotation matrix consisting of v1, v2, v3.

3) THE SIZE OF THE ELLIPSOID
The standard form of an ellipsoid is shown in (12). Thus, the
semiaxis a, b, and c can be calculated by (13) [24], [26].

λ1x2 + λ2y2 + λ3z2 + I4/I3 = 0 (12)
a2 = −λ−11 · I4/I3
b2 = −λ−12 · I4/I3
c2 = −λ−13 · I4/I3

(13)

C. SAMPLE CONSENSUS – VARIABLE SAMPLE SIZE
In this section, the reason why the variable sample size
method is better than the minimum set sampling method will

FIGURE 5. The fitting of three points using the different sample size.

FIGURE 6. The number of iterations changes with the proportion of
inliers and the sample size.

be discussed. Then, the concrete steps of the VARSAC will
be given.

The iterations k of the sample consensus can be calculated
by (14) [9].

1− p = (1− wn)k (14)

where p denotes the confidence level. n is the sample size. w
is the proportion of inliers, and it changes with n. (14) can be
reformed as (15).

k = log (1− p) /log
(
1− wn

)
(15)

p is constant and needs to be set in advance. ∂k/∂w < 0
when 0 < w < 1. ∂k/∂n > 0 when 0 < n. We desire that
k be small to get a faster algorithm. Therefore, we hope that
n is small, and w is large. Unfortunately, w changes with n,
and this change is unpredictable. For example, as shown
in Fig. 5, the data set is the three vertexes of the regular
triangle, and we want to find a best straight line using the
sample consensus for the three points. We may set a distance
threshold so that the inliers are the three vertexes (w = 1)
when n = 3. We also may set a distance threshold so that
the inliers are two of the vertexes (w = 2/3) when n = 2.
According to (15), k will be 7 when n = 2, p = 0.98 and
k will be 1 when n = 3, p = 0.98. Thus, the fitting of n = 3
is faster than the fitting of n = 2. This example proves that w
is different when the sample size n is changed. The value of
n affects w and then affects k . Thus, we want to find a higher
score by including some unequal sample sizes to accelerate
the algorithm.

For the ellipsoid fitting, Fig. 6 shows the functional rela-
tionship between k and w when the values of n are different.
k decreases as n decreases when w is constant. k decreases
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TABLE 1. VARSAC for the fitting of the ellipsoid.

when w increases when n is constant. k may increase when
we abandon minimum set sampling. At this moment, there
is an inevitable risk. The time costs of the algorithm will
increase compared with those of minimum set sampling if
the maximum of w cannot be found as soon as possible or it
is not large enough. The different sample size result in the
different score. Therefore, we try to find the maximum of
w by including some unequal sample sizes to accelerate the
algorithm.

Based on the above discussion, we proposed a novel sam-
ple consensus framework (see Table 1). The VARSAC tra-
verses n to reduce the time costs with a high probability. The
condition that the VARSAC is faster than the RANSAC will
be discussed as follows.

1− p =
(∏m

j=1

(
1− w

nj
j

))k/m
(16)

(16) can be derived from (15). The minimum set sam-
pling is adopted in the RANSAC. Thus, the VARSAC is the
RANSAC when m = 1. And then, (16) can be reformed
as (17). The actual number of iterations k of VARSAC can

be calculated by (17).

k = m× log (1− p)/log
(∏m

j=1
1− w

nj
j

)
(17)

The VARSAC has fewer iterations k than the minimum
set sampling that is adopted in the RANSAC as long as∏m

j=1

(
1− w

nj
j

)
< 1− wn11 .

k = log (1− p)/
(∑m

j=1
log

(
1− w

nj
j

)
/m
)

(18)

(17) can be reformed as (18). Both of these val-
ues have the same numerator, and k is determined by∑m

j=1 log
(
1− w

nj
j

)
/m. Formally,

∑m
j=1 log

(
1− w

nj
j

)
/m for

the VARSAC looks like the average of a group of numbers.∑m
j=1 log

(
1− w

nj
j

)
/m where m = 1 for the RANSAC looks

like the first one of this group of numbers. Then, whether the
VARSAC is faster than the RANSAC is determined by the
features of this group of numbers. log

(
1− w

nj
j

)
< 0, j =

1, 2, . . . ,m. is noticed and (19) is true statement. Then, the
sufficient condition for the VARSAC to be faster than the
RANSAC is (20).

−

∑m

j=1
log

(
1− w

nj
j

)
/m

> −log
(
1− max

{
w
nj
j , j = 1, 2, . . . ,m.

})
/m (19)

−log
(
1−max

{
w
nj
j , j = 1, 2, . . . ,m.

})
/m

> −log
(
1−wn11

)
(20)

A new function is defined in (21) to compare the two values
in (20). Then, (22) is the total differential equation of (21).

z = −log (1− t)/q (21)

1z ≈ −1/ (q× ln (10)× (t − 1))×1t

+log (1 -t)/
(
q2 × ln (10)

)
×1q (22)

where 1z = z (t2, q2) − z (t1, q1) when q1 = 1, t1 = wn11 ,

q2 = m, and t2 = max
{
w
nj
j , j = 1, 2, . . . ,m.

}
. 1z > 0

shows that the VARSAC is faster than the RANSAC.
According to (21) and (22), we find that one of the

sufficient conditions of 1z > 0 for our ellipsoid fit-
ting is that nm = {9, 10, 11, 12} and w1 < max{
wj, j = 1, 2,. . . , 4.

}
− 0.2.

D. TWO-ELLIPSOID-BOUNDING COUNTING
Currently, there are few score calculation methods for the
ellipsoid model. If we apply distance+noraml method to an
ellipsoid, we need to calculate the distance between each
candidate and the ellipsoid. The normal vectors of each candi-
date and the corresponding point in the ellipsoid also need to
be calculated. This method is complex and time-consuming
when applied to ellipsoids. In this section, we propose the
TEBC to calculate the score of the ellipsoid model.

First, two auxiliary ellipsoids, which include a large ellip-
soid and a small ellipsoid, are produced using the method of
scaling the semiaxis of the fitted ellipsoid in each iteration.
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Additionally, the auxiliary ellipsoids have the same position
and attitude with the fitted ellipsoid. The steps are as follows.

1) OBTAIN THE GENERAL EQUATIONs OF the AUXILIARY
ELLIPSOIDS USING THE FITTED ELLIPSOID
The standard equation of the fitted ellipsoid is (23).

x2

a2
+
y2

b2
+
z2

c2
= 1 (23)

The standard equations of two auxiliary ellipsoids corre-
sponding to the fitted ellipsoid are (24).

x2

(sa)2
+

y2

(sb)2
+

z2

(sc)2
= 1 (24)

where s is the scaling factor. s = 1 denotes the standard
equation of the fitted ellipsoid. s > 1 denotes the standard
equation of the large ellipsoid. 0 < s < 1 denotes the
standard equation of the small ellipsoid.

The general equation of the fitted ellipsoid is known. The
general equations of the auxiliary ellipsoids will be obtained
by the general equation of the fitted ellipsoid. The relation-
ship of the general equation between the auxiliary ellipsoids
and the fitted ellipsoid is discussed as follows.

First, we assumed that the process of the coordinate trans-
formation from the standard equation to the general equation
is the same for the three ellipsoids (the fitted ellipsoid and two
auxiliary ellipsoids). Then, the transformation is described by
the rotation matrix R and translation matrix T . The results
are different if the orders of the transformation are different.
Generally, rotation and then the translation is adopted. The
relationship of the coordinate

(
x ′, y′, z′

)
after the transforma-

tion and the coordinate (x, y, z) before the transformation is
shown in (25).  x ′y′

z′

 = R

 xy
z

+ T (25)

Then, we substitute (25) into (24) to obtain the general
equations of the three ellipsoids, as shown in (26).

f
(
x ′, y′, z′

)
= s2 (26)

Finally, we find an important detail based on (26). The
corresponding coefficients of the three ellipsoids are equal
except for the constant a44. In other words, the general
equations of the auxiliary ellipsoids can be obtained by only
changing the constant a44 of the fitted ellipsoid. In addition,
we also find following inferences according to the above dis-
cussion. i). The invariants I1, I2, and I3 of the three ellipsoids
are equal but I4 is not equal. ii). The characteristic equa-
tions and the characteristic roots λ1, λ2, and λ3 of the three
ellipsoids are the same because the characteristic equations
are only related to I1, I2, and I3.iii). According to (13), the
relationship between I ′′4 and I ′4 is shown in (27). The invariant
of the auxiliary ellipsoids can be calculated by (27).

I ′′4 = s2I ′4 (27)

where I ′′4 denotes I4 of the auxiliary ellipsoid, and I ′4 denotes
I4 of the fitted ellipsoid. The constant a44 of the two auxil-
iary ellipsoid can be calculated by I ′′4 , and then the general
equations of the auxiliary ellipsoids are obtained.

2) CALCULATE THE NUMBER OF POINTS BETWEEN THE
LARGE ELLIPSOID AND THE SMALL ELLIPSOID
An ellipsoid is a closed surface, and we can divide the points
into three kinds based on their spatial location: points on
the ellipsoid, inside points and outside points. F (x, y, z) =
f (x, y, z)−1 is defined as the general equation of an ellipsoid.
P is assumed to be a candidate. The position relationship
between the candidate and the ellipsoid is determined by the
relationship between F

(
xp, yp, zp

)
and 0.

i). P is on the ellipsoid. Thus, f
(
xp, yp, zp

)
= 1 and (28)

holds.

F
(
xp, yp, zp

)
= 0 (28)

ii). P is inside the ellipsoid. P must be on the certain small
ellipsoid. Thus, f

(
xp, yp, zp

)
= s2, where 0 < s < 1. Then,

f
(
xp, yp, zp

)
< 1, and (29) holds.

F
(
xp, yp, zp

)
< 0 (29)

iii). P is outside the ellipsoid. P must be on the certain
large ellipsoid. Thus, f

(
xp, yp, zp

)
= s2, where s > 1. Then,

f
(
xp, yp, zp

)
> 1, and (30) holds.

F
(
xp, yp, zp

)
> 0 (30)

In TEBC, a candidate is regarded as an inlier of the fitted
ellipsoid when the candidate is inside the large ellipsoid
and outside the small ellipsoid. According to (28), (29),
and (30), we can easily find the position relationship between
a candidate and the auxiliary ellipsoids, and then determine
whether a candidate is an inlier or not.

III. EXPERIMENTAL RESULTS AND DISCUSSION
Many experiments with simulation data and real dataset
have been conducted to validate the proposed method. The
simulation data are mainly used to show the process of
VARSAC+TEBC and the error of every point. The real
dataset are mainly used to test the accuracy and speed in
the natural environment. The method of direct fitting is also
included in the experiments for comparison. The sample size
of the VARSAC is set as 9, 10, 11, and 12. The sample size
of the RANSAC is set as 9 because the RANSAC adopts
the minimum set sampling method. The distance+normal
is adopted by the RANSAC while the TEBC is adopted by
the VARSAC.

The different methods are evaluated by the following crite-
ria. The model score is in the form of the proportion, and the
algorithm is fast when the score is high. RMS-s, RMS-c and
RMS-a respectively denote the accuracies of size, centre and
attitude angle.

i). Model score: 1
n

∑n
i=1

mi
totali
× 100%.

ii). RMS-s (Root mean squared error of the size):
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√√√√ 1
n

n∑
i=1

(
1
3

∑
`i∈ai,bi,ci

∣∣`∗i − `i∣∣
)2

.

iii). RMS-c (Root mean squared error of the centre):√√√√ 1
n

n∑
i=1

(
1
3

∑
`i∈cxi,cyi,czi

∣∣`∗i − `i∣∣
)2

.

iv). RMS-a (Root mean squared error of the attitude
angle):√√√√ 1

n

n∑
i=1

(
1
3

∑
`i∈θxi,θyi,θzi

∣∣`∗i − `i∣∣
)2

.

where the index i denotes the i-th fitted ellipsoid. n denotes
the number of fitted ellipsoids in the data set. mi denotes the
score of the best ellipsoid. totali denotes the total number of
points before fitting. `∗i and `i denote the ground-truth value
and the fitted value, respectively.

Some experimental parameters need to be set in advance.
The confidence level p is usually set to 0.95-0.99, and 0.95 is
adopted in our experiment to achieve faster fitting. The scal-
ing factor s is the parameter of the TEBC that includes two
values corresponding to two auxiliary ellipsoids. For conve-
nience, we just need to set a variable portion d (1± d) for
scaling factor s, such as 1 ± 0.1, 1 ± 0.2 and so on. The
variable portion d is value between 0 and 1. More points are
regarded as inliers when d is larger. The sampling radius rs is
set to avoid sampling two points from the different ellipsoids.
According to the size of jujubes, the minor semiaxis and
major semiaxis are set to verify whether the fitted ellipsoid
conforms to the prior knowledge or not. The upper limit kmax
on the number of iterations is set in advance. It will work to
avoid waste of time if the current best model not reach the
confidence level and too much time is consumed.

Throughout the experiment, the score calculation method
of the VARSAC is the TEBC and that of the RANSAC is the
distance+normal.

A. EXPERIMENTS ON SIMULATION DATA.
The first experiment was carried out on the simulation data
set. The parameter initialization for the VARSAC is shown
in Table 2. In the simulation data, there is an ellipsoid
whose equation is known and some random noise, as shown
in Fig. 7(a). The gaussian distribution errors are added in
the points on the ellipsoid. The portion of random noise
is approximately 30%, and some noise may become inliers
because it may be on the ellipsoid. The simulation data can
accurately analyse the error of every point and the errors
of the fitted parameters because there are not measuring the
errors of the real data.

Fig. 7 shows the result of the simulation data in different
stages. Fig. 7(b) shows two auxiliary ellipsoids of the TEBC
and the process of removing most of the random noise. The
point cloud in the best model is shown in Fig. 7(c) and the
final fitted ellipsoid that is drawn by the fitted equation is
shown in Fig. 7(d).

TABLE 2. Parameter initialization for the VARSAC.

FIGURE 7. The experimental data and the results. (a) Image that shows
the simulation data including an ellipsoid and random noise. (b) Image
that shows the score calculation by the TEBC. (c) Image that shows the
inliers that were obtained by the VARSAC. (d) Image that shows the final
result.

Table 3 shows the fitted parameters including the sizes,
centres and attitude angles. The attitude angles θx , θy, and
θz represent the rotation matrix in the transformation. The rel-
ative errors of attitude angles are not shown because the true
value may be 0, and 0 cannot be the denominator. The relative
error of the fitted parameters is small and the maximum is not
more than 4.55%.

We test different methods on the simulation data. The
evaluation is shown in Table 4. The time consumption of the
score calculation is stable. The average time consumption of
the TEBC method is 2 ms while that of the distance+normal
method is 5 ms. The time consumption of an iteration is 0 ms
if the samples in this iteration not support an ellipsoid.

We also analyse the error of every inlier and the error of the
i-th inlier (xi, yi, zi) is defined as F (xi, yi, zi). The Fig. 8 con-
trasts the performance of the RANSAC and VARSAC using
the known equation.

In Figs. 8(a) and 8(b), the error distributions of the dif-
ferent methods are different, and the error distribution of
the VARSAC is better than that of the RANSAC. The error
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TABLE 3. The relative parameters of the fitted ellipsoid.

TABLE 4. Evaluation of different methods using the simulation data.

FIGURE 8. The error analysis and comparison. (a) image that shows inlier
errors of the RANSAC. (b) image that shows the inlier errors of the
VARSAC. (c) image that presents the Q-Q Plot of the RANSAC. (d) image
that presents the Q-Q Plot of the VARSAC.

distribution is approximate to the normal distribution. There-
fore, the inlier error is analysed by the Q-Q Plots that are
shown in Figs. 8(c) and 8(d). The mean is 0.1239, and
the standard deviation is 0.1712 for the RANSAC. The
mean is 0.0118, and the standard deviation is 0.1254 for
the VARSAC. Compared with the RANSAC, the VARSAC
improves the error of every inliers.

B. EXPERIMENTS IN NATURAL ENVIRONMENT
The second experiment mainly includes the following parts.
First, the jujubes are extracted from the background using the
colour threshold in the 2D image. Second, the jujube, which is
similar to ellipsoid in 3D points, is detected using the sample
consensus.

The Kinect v2 can obtain more points than Kinect v1 in
bright light and is more accurate than the Kinect v1 by
approximately 20 pp at a close range (less than 4 m).
Therefore, we collected the data using the Kinect v2 in
Lingwu county, Ningxia Province. The specific parameters
are as follows: image size of 512×424, depth sensor accu-
racy of 380µm at close distance, and shooting distance
of 0.5 m-4 m [27].

1) IMAGE SEGMENTATION
The experiment to determine the threshold is performed
using the 2D images that were taken by the colour camera
of Kinect v2. The illumination in different regions changes
significantly with time, especially in this agriculture envi-
ronment [28], [29]. The images being in the HSV colour
space make it easier to distinguish jujubes from background.
H, which represents the hue of an object, is not sensitive to
the illumination [30], [31]. Therefore, H is used to conduct
image segmentation. According to the distribution statistics
of colour, the threshold of H is set to 0-36 or 252-360 in the
experiment.

Some pixels of the jujube border may be removed in image
segmentation. Thus, we use mean filter to prevent from losing
the edge pixels of the jujube in image segmentation. For
further reduce the outliers in Fig. 9(c), we set the region of
interest (ROI) based on the area of the connected region.
The connected region whose area is small will be removed,
as shown in Fig. 9(d). The final result contains few pixels
that represent the background. The proportion of inliers after
image segmentation is favourable for the sample consensus.

2) POINT CLOUD SEGMENTATION
After 2D image segmentation, the 3D points that were col-
lected by the depth sensor are selected according to the map-
ping relation between the pixels in a 2D image and 3D points.
As shown in Fig. 10(a), the original point cloud is obtained.

The parameter initialization of the algorithm is shown
in Table 5. According to the general sizes of Lingwu Long
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FIGURE 9. Image segmentation in the HSV space. (a) RGB images. (b) images after mean filtering. (c) images after image segmentation. (d) sets
ROI and removes the connected region whose area is small.

TABLE 5. Parameters initialization for VARSAC.

Jujubes, the semiaxis of the ellipsoid to be detected is limited
to 10 mm-23 mm. The sample range of the K-D tree is set
as 30 mm according to space between two jujubes. The algo-
rithm will terminate when the number of iterations reaches
the upper limit kmax .
In the experiment of the real dataset, we also apply the

multi-targets detection strategy to the RANSAC for the con-
trast experiment. In Figs. 10(b) and 10(c), two jujubes, which
distinguished by different colours, are successfully detected.
The number of the points represents the score. From Fig. 10,
we can find that the VARSAC get a higher score than the
RANSAC.

All of the single jujubes are selected to test the perfor-
mances of the different method in the real data set and we
took the averages in the evaluation.

In Table 6, the VARASAC has a higher score of approxi-
mately 77.4% compared to the 60.3% of the RANSAC. The
method is faster when its score is higher. The total time
consumption of the direct fitting is the shortest because this
method does not need to calculate the score of the model,
and it only needs one iteration. According to total time con-
sumption, our method takes approximately 588 ms while the
RANSAC takes approximately 2310 ms. The speed of the

FIGURE 10. Point cloud segmentation by the RANSAC and VARSAC.
(a) original point clouds from image segmentation. (b) segmentation by
the RANSAC. (c) segmentation by the VARSAC.

VARSAC+TEBC is approximately 4 times faster than that
of the RANSAC.

The VARSAC try to find the highest score in the different
sample sizes that includes the minimum set sampling. Mean-
while, the RANSAC only try to find the highest score in the
minimum sample set. Because the randomness of sampling,
the VARSAC has the risk of failure to obtain a higher score
than the RANSAC. So, we find that the VARSAC may be
slower than the RANSAC when the score of the final model
is not large enough. The risk of failure is low in the whole
experiment because the inliers are more likely to be sampled
when their corresponding score is higher.

In the score calculation, the average time consumption per
valid iteration (Time2) is used to evaluate the score calcula-
tion speed. TEBC is 2.5 times as fast as the distance+normal
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TABLE 6. Evaluation of different methods.

method and both the time consumption are relative sta-
ble in the real dataset. This simple calculation contributes
significantly to decreasing the total time consumption of
the VARSAC.

Just like the distance threshold of the distance+normal
method, the accuracy of the VARSAC is controlled by the
scaling factor of the TEBC. Table 6 also shows the RMSEs of
the different methods with respect to position, size, and atti-
tude angle.With respect to accuracy, our method is better than
the RANSAC and Direct fitting. Unfortunately, the RMS-a is
approximate value because the manual measurement of the
attitude angle is difficult in the real world. The accuracy
of Direct fitting is the lowest, probably because its results
contain more points with large errors. For our task of picking
Lingwu Long Jujubes, the accuracies of 1.80 mm in RMS-p,
1.21 mm in RMS-s and 0.46 rad in RMS-a are satisfactory
for automatic picking.

IV. CONCLUSION
Locating jujubes in a natural environment is a challenging
task. In this paper, the fitting of the ellipsoid is used to
locate jujubes. In the sample consensus, the score of different
sample size is different. Based on this fact, the VARSAC is
introduced to obtain a higher score than the RANSAC. On the
one hand, inliers are more likely to be sampled when the
score is high. On the other hand, the number of iterations
can be decreased. To solve the ellipsoid score calculation
problem, the TEBC is proposed. The experimental results
show that our method is more accurate and faster than the
RANSAC+distance+normal. Although the advantages of
the VARSAC are theoretically and experimentally proven,
the VARSAC has the risk of failure to obtain a higher score
than the RANSAC because of the randomness of sampling.
However, this is just a rare phenomenon in the experiment
because the inliers are more likely to be sampled when their
corresponding score is higher.

In the score calculation, we have found a better expansion
of the TEBC (not only for the ellipsoid). In the future, we will
redesign and expand the bounding count method to other
complex quadric surfaces. We will also apply our method to
other useful applications, such as 3D SLAM, image match-
ing or surface fitting.
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