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ABSTRACT This paper focuses on the bearing estimation problem of far-field signal source via
time-difference-of-arrival (TDOA) with a synchronized array in 3-D space. It is usually assumed that the
propagation speed (PS) is perfectly known in localization. In reality, only an imperfect knowledge of PS
could be obtained. The traditional closed-form solutions without involving PS have the advantage of low
complexity, but suffer from low estimation accuracy. A measurement-division model is proposed to offer
an alternative solution without the need of the propagation speed. This speed-free model combines two
original TDOA measurement equations into a division formula, whose Cramer-Rao lower bound (CRLB)
is derived for the observed data. A typical optimization method, i.e. the Levenberg-Marquardt (LM)
algorithm is adopted to resolve the nonlinear measurement-division model, resulting in an estimation
accuracy improvement because of its iterative search behavior. The theoretical performance of this solution is
evaluated in terms of bias and covariance. Simulations are conducted to demonstrate an accuracy advantage
of the solution over the related methods.

INDEX TERMS Bearing estimation, Levenberg-Marquardt, measurement-division, propagation speed,
sensor array, speed-free, time-difference-of-arrival.

I. INTRODUCTION
Recently the source bearing estimation problem has been
of considerable interest, particularly in Internet of Things
and gunshot localization [1]. The source signal enables a
point positioning if it is a spherical wave; however, it is only
applicable to estimating the source direction if it is a plane
wave from a far-field source [2]. A far-field source is not
necessarily far away from a sensor array. Usually this source
has a very small ratio of array aperture to the distance between
array and source, such that its signal wave becomes linear
with negligible curvature and can be treated as a plane wave.
A typical case is the short baseline arraymounted on a vehicle
for determining the bearing of gunshot [3].

Direction estimation is also known as direction-of-arrival
(DOA) or angle-of-arrival estimation for plane wave in the
literature of signal processing. To estimate passively the bear-
ing of an uncooperative source, TDOA measurements are
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typically exploited, which is measured by the received signals
at different sensors of a synchronized array.

Many high resolution algorithms have long been used
for DOA estimation in frequency domain, such as MUSIC,
ESPRIT and the variants of them [4], [5]. Compressive
sensing based methods are novel DOA estimators with high
resolution, and work efficiently in 3-D space even using one
snapshot [6]. As [7] has pointed out, DOA estimators based
on spatial spectral estimation could provide a superior perfor-
mance over TDOA-based methods due to the combination of
the various sensor pairs.

In contrast to those spatial spectral beamformers,
the TDOA-based DOA estimators may not perform as well as
them in estimation accuracy, but can execute data processing
with a low computational complexity in time domain. It is
especially suited for the source with a transient and peak
signal wave. In this case, the spectral structure of signal is
often unknown, and only the arrival difference of pulse time
at different sensors can be measured.
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TDOA-based techniques mostly depend on the assumption
that the propagation speed (PS) of a source signal is given
as a constant. This hypothesis allows establishing a relation
between the range difference and the related TDOA. For
example, a known PS can work in the following scenarios:

1) The travel speed of a signal wave is fixed and not
subject to appreciable environmental influence, e.g. the PS
of electromagnetic wave in the earth’s lower atmosphere is
normally assumed to be 3 × 108 m/s, namely the speed of
light. 2) The environmental condition of signal propagation
can be controlled, such as in the acoustic indoor localization
when the room temperature is not varied and there is no strong
wind-blowing [8]. 3) The physical parameters of propagation
medium may be obtained by measurement devices, such
as meteorological parameters of field area [9], and seismic
factors of solid medium [10], then the PS is calculated using
those data. Given a PS value, the TDOA measurements can
be exploited to estimate the position or bearing of a source.

However, the PS parameter is usually non-
constant [11] [12]. Because the propagation environments are
sometimes dynamic and unpredictable, so that the assumption
of constant PS is questionable. One such scenario is gunshot
and artillery bomb localization, where a long range of acous-
tic propagation suffers from temperature, wind speed, wind
direction and humidity, as well as sound scattering generated
by forests, mountains and lakes [13]. Another representative
case is the underwater sonar localization, where the PS varies
with depth, temperature, and salinity. Third example is that
the physical characteristics of non-uniform solid medium
may exhibit a high variability, greatly influencing the propa-
gation of seismic wave.

Consequently, TDOA can be converted into range differ-
ence only when the PS parameter is perfectly known or an
accurate estimate is available [14]. Otherwise, those source
localization techniques based upon the range difference are
not applicable. In cases where the PS is unknown, uncertain,
or inexact, it is referred to as nuisance variable that is no of
direct interest [15], but needs to be taken into account with
the parameter(s) to be estimated.

The linearized least-square (LLS) in [16] is a typical speed-
free estimator in the closed-form to obtain the source bearing.
The closed-form estimator is attractive because it does not
have the divergence problem and has a low computational
complexity. Nevertheless, it would suffer from low accuracy
due to large measurement noise.

Motivated by this consideration, we propose a speed-free
and nonlinear model to improve the accuracy of bearing
estimation provided that the estimation accuracy is preferred
by users. This model adopts a divisional manner, so that
a transformed equation is established without the need for
the speed parameter. Specifically, the Levenberg-Marquardt
(LM) algorithm in nonlinear optimization is used to estimate
iteratively the source bearing for the model. The algorithm
can interpolate between the Gauss-Newton algorithm and
the method of gradient descent [17]. In practice, the bearing

estimate from LLSmay be undertaken as the first guess in the
LM algorithm for iteration.

Of course, other nonlinear optimization techniques such as
the quadratically constrained quadratic programming algo-
rithm and even intelligent computation algorithms [9] can
also be used to provide a similar estimation performance.
As a trade-off between accuracy and computation complexity,
the LM algorithm has advantages over other nonlinear opti-
mization algorithms in localization [18].

Since a large variety of electronic devices have high com-
putational capacity nowadays, iterative methods can easily
be carried out by these systems. To estimate the source
bearing as accurately as possible, iterative optimization is
favored [19]. Moreover, the proposed model and solution are
valid to a range of scenarios such as acoustic, sonic, and
vibration circumstances.

The contributions of this paper include:
1) A speed-free measurement-division (MD) model is pro-

posed for TDOA-based source bearing estimation; 2) Based
on the observed TDOA data, the Cramer-Rao lower
bound (CRLB) is derived for our speed-free model, while the
CRLB of the original measurement model with an unknown
PS is also derived; 3) An optimization solution is developed
to resolve the nonlinear MDmodel, while the theoretical bias
and covariance estimated by this solution are analyzed.

The remainder of this paper is organized as follows.
In Section II, we briefly present the TDOA-based source
bearing estimation problem. A number of estimation meth-
ods under the unknown PS are discussed in Section III.
In Section IV, the MD model is formulated, following with a
derivation of the corresponding CRLB. A solution to resolve
this model is given in Section V, and its theoretical perfor-
mance analysis is also provided. Simulation and evaluation
results are presented in SectionVI, and conclusions are drawn
in Section VII.

II. TDOA-BASED BEARING ESTIMATION PROBLEM
Consider the source bearing estimation of a plane wave
impinging on an array as illustrated in Fig. 1. The bearing
of a source signal is parameterized by γ =

[
ϕ, θ

]T, where
ϕ denotes the azimuth, θ represents the elevation, and T is
the transpose operator. Let the cap ‘∧’ over a symbol rep-
resent an evaluated or measurement value, while all vectors
and matrixes are boldfaced throughout the paper. Moreover,
we use E[∗] to represent an expectation operator.
The unity DOA vector k of a far-field source is given via a

parametrization

k =

 kx
ky
kz

 =
 cosθcosϕ
cosθsinϕ
sinθ

 (1)

where the three component kx, ky and kz are the projections
of the unity DOA onto the three coordinate axes.

If the number of array sensors is N , the spatial posi-
tion of the i-th sensor is labelled as si =

[
xi, yi, zi

]
VOLUME 7, 2019 162477
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FIGURE 1. Diagram illustrating notation of direction estimation for a
far-field signal emitter in 3-D space.

(i = 0, 1 . . .N − 1), where s0 = [0, 0, 0] is set to be the
position of the reference sensor for TDOAmeasurement. The
TDOA between the i-th sensor and the reference sensor is
denoted by τi.

The range difference cτi is determined by the inner product
of the vector si and the DOA vector, where c is the PS
parameter of the source signal. That is

τi = sik/c. (2)

If the sensor coordinates except for the reference sensor
are aggregated to form a matrix S =

[
sT1 , . . . , s

T
N−1

]T
∈

R(N−1)×3, and so is the set of all TDOAs τ̂ =[
τ̂1, . . . , τ̂N−1

]T
∈ R(N−1)×1, then traditionally the observa-

tion equation of matrix-form is written by

τ̂ =
Sk̂
c
+ n (3)

where n is the disturbance vector with component {ni}, i =
1, . . . ,N − 1, and ni denotes the TDOA measurement error
of the i-th sensor.
Assume that τ̂ is a vector of Gaussian noise variables

with zero mean and covariance matrix 6. In the case of
unknown 6, we may simply assign it to be [20]

6 = σ 2
τ (I+ 1×1T ) (4)

where σ 2
τ is the average variance of measurement noise, I is

an identity matrix, and 1 is a column vector of ones.
Given the DOA vector estimate in 3-D space, the azimuth/

elevation angle of a source is obtained by
ϕ̂ = tan−1

(
k̂y/k̂x

)
(5a)

θ̂ = tan−1
(
k̂z/
√
k̂2x + k̂2y

)
(5b)

Obviously, the angle vector γ is the parameter of interest,
and yet c is a nuisance parameter in the TDOA-based bearing
estimation problem. Note that at the same time this nuisance
parameter is a fixed unknown, but it may change at the
different measurement moment whenwe obtain another set of
TDOA measurement equations. In the presence of Gaussian

variation about the PS, both situations of known and unknown
statistical distribution of the PS have been investigated for the
time-of-arrival based localization problem in [21], but which
is beyond the scope of this paper.

It is worth mentioning that TDOA-based source bearing
estimation would be limited to a single source scenario. The
spatial spectral beamformers on the other hand can localize
more than one source, and even may distinguish between
DOAs when the number of signal sources is more than the
number of antennas by using compressive sensing [22].

III. RELAED METHODS
Some methods assume that the PS is an unknown variable
to be included into the joint estimation for localization of a
near-field source through the closed-form manner [23]–[25].
Other methods use the Taylor series least-squares combining
with the measurement of environment temperature [8], or
employ a bound of PS on a particular occasion to assist the
joint estimation [26], [27], such that they comparatively have
an accuracy advantage over the closed-form estimators.

When the PS parameter is unknown, it is easy to understand
that the joint three-variable (JTV) model in (3) can be used
for the source bearing estimation. This model simultane-
ously estimates PS, azimuth and elevation as a vector of the
three unknowns 2 = [ϕ θ c]T. The three-variable CRLB
of the JTV model is derived in Appendix A. As the true
CRLB of the original measurement model, the CRLB (2)
considers the nuisance variable c as part of the estimation
problem. The CRLB (2) does not bound E

[(
γ̂ − γ

)2] but
E
[ (
2̂−2

)2 ]
.

Evidently one feasible method to deal with the PS is adopt-
ing the JTVmodel to estimate the source bearing in our issue.
For comparison, the LM algorithm can also be used to resolve
the JTV model, whose procedure is provided for reference in
Appendix B and called as the JTV solution.

Another feasible method can be considered as an improve-
ment of JTV, which estimates the PS in advance by means
of available TDOAs together with sensor coordinates. This
scheme is to first determine the PS, and then estimate the
remaining source azimuth/elevation.

With regard to the PS estimation of far-field source, [28]
has derived an expression under the assumption that a source
is far away from the array. Here we propose to estimate the
speed parameter, deriving directly from the LLS estimation
and the constrained relation among the components of the
estimated DOA vector. Specifically, the estimate of LLS is
known as

k̂ = c(ST6−1S)
−1

ST6−1τ̂ (6)

subject to a directional quadratic constraint

k̂Tk̂ = 1. (7)

This constraint indicates that the `2-norm of the DOA esti-
mate involving PS should equal one [29]. From the standpoint
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of the DOA estimation, we can exactly determine the speed
parameter as

ĉ =
1∥∥∥(ST6−1S)−1ST6−1τ̂∥∥∥

2

. (8)

The estimation accuracy of the PS should be examined by
observing whether it is within an acceptable range or not.
If it is beyond a widely adopted bound, this estimate must
be rejected and a different solution such as the JTV solution
may be adopted.

After the PS has been estimated, the LM algorithm is then
applied to the source bearing estimation for determining the
azimuth/elevation angle. We call this approach as the propa-
gation speed-estimated (PSE) solution, the detail of which is
given in Appendix C.

One evident disadvantage of the JTV model is estimating
the PS as a redundant variable; another drawback of this
model is leading to a system matrix, which is likely to be
ill-conditioned [28].

IV. MEASUREMENT-DIVISION MODEL AND CRLB
A. MEASUREMENT-DIVISION MODEL
The intuition behind our idea is division operation of the
TDOA measurements available from an array. In doing so,
two TDOA measurement equations are combined through a
division to eliminate the PS parameter. In particular, for the
original TDOA measurement equation

s`k = c
(
τ̂` + n`

)
, ` = 1, 2, . . .N − 1. (9)

Let the J -th sensor be the benchmark for division. Divid-
ing (9) for ` = i (i 6= J) by (9) when ` = J produces

sik
sJk
=
τ̂i + ni
τ̂J + nJ

. (10)

Generally there exists
∣∣τ̂J∣∣ � nJ, so that the division can be

reasonably approximated by

sik
sJk
=
τ̂i

τ̂J
+

ni
τ̂J
. (11)

It can be reshaped by

ni =
τ̂Jsik
sJk
− τ̂i, i = 1, 2, . . . ,N − 1; i 6= J, (12)

which is rewritten in matrix-form to be

n =
τ̂JSk
sJk
− τ̂ . (13)

Such a division transform leads to a new speed-free error
equation, which can be deemed as a pseudo-measurement
equation different from the original one.When the covariance
matrix of n is given by 6, the quadratic error function w.r.t.
a hypothesized DOA is

ε (γ ) =

(
τ̂JSk
sJk
− τ̂

)T

6−1
(
τ̂JSk
sJk
− τ̂

)
. (14)

It is worth mentioning that the PS would be time-varying
or inequivalent for different assemblies of signal measure-
ments [30]. With regard to a group of TDOAs currently
measured by a short-baseline array, we can normally assume
that the time of signal propagation from source to array would
not be long. During the period of signal propagation, the PS is
basically constant in a certain space range. Thus, the same PS
of each sensor can be eliminated in the pseudo-measurement
equation by the measurement-division model.
Remark 1:To satisfy the constraint

∣∣τ̂J∣∣� nJ, a sensor with
the largest absolute TDOA value in a group of measurements
is selected as the benchmark for division. Additionally, when
estimating the bearing of a source, the MD model requires at
least four sensors to resolve, including the TDOA measure-
ment reference sensor.
Remark 2: Note that if assumption

∣∣τ̂J∣∣ � nJ does not
hold, the above model may have a small systematic bias.
Since an approximation is made for mathematical tractability,
the corresponding estimation would not be optimal, even if
we use the exhaustive grid-search technique to minimize the
error function.

B. CRLB OF MEASUREMENT-DIVISION MODEL
In the following, we simply use CRLB(γ ) to represent the
lower bound of the MD model to simplify the notation
unless ambiguity occurs. The CRLB(γ ) is related with the
speed-free equation in terms of the estimated parameters γ̂
by using the observed TDOA data and the sensor coordinates.
Based on the speed-free TDOA noise vector in (13), the esti-
mation variance of the source bearing in the CRLB(γ ) will
be different from the former two items in the conventional
CRLB (2).

In other words, the CRLB(γ ) denotes the minimum vari-
ance for any estimator that estimates the parameter vector γ
from the TDOA measurements about the MD model. A sim-
ilar CRLB has also been analyzed for the nonlinear time-of-
arrival localization to be linearized in [31], where a linearized
CRLB and the conventional CRLB from the original mea-
surement equation are compared.

As mentioned above, since τi
/
τJ = sik

/
sJk, and τ̂i = τi+

ni, we have τ̂i = τJ
sik
sJk
+ ni, where the noise-free τJ instead

of τ̂J is used for the lower bound analysis. Let fi(γ ) = τJ
sik
sJk

and [f(γ )]i = fi(γ ) (i = 1, . . . ,N − 1). Under the Gaussian
noise assumption of TDOA with |6| being the determinant
of the covariance matrix, the likelihood function of γ given
the measurement vector τ̂ is specified by

p
(
τ̂ | γ

)
=

1

(2π)
N−1
2 |6|

1
2

exp

×

{
−
1
2

[
τ̂ − f(γ )

]T
6−1

[
τ̂ − f(γ )

]}
. (15)

For an unbiased estimate γ̂ of γ , the CRLB confines the
following achievable error covariance

E
[
(γ − γ̂ )(γ − γ̂ )T

]
≥F−1(γ ) , CRLB(γ ) (16)
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where F(γ ) is the Fisher information matrix (FIM). Under the
assumption of Gaussian measurement noise and the assump-
tion that the noise covariance is independent of the parameter,
the FIM is defined by

F (γ ) =
(
∇γ f(γ )

)T
6−1∇γ f(γ ) (17)

where ∇γ f(γ ) is the Jacobian of f(γ ) w.r.t. γ . The lower
bound of the covariance matrix in terms of the unknown
vector γ is determined by

Cov (γ ) ≥ −E

[
∂2 ln

(
p
(
τ̂ | γ

))
∂γ ∂γ T

]−1

=


∂f(γ )T

∂ϕ
6−1

∂f(γ )
∂ϕ

∂f(γ )T

∂ϕ
6−1

∂f(γ )
∂θ

∂f(γ )T

∂θ
6−1

∂f(γ )
∂ϕ

∂f(γ )T

∂θ
6−1

∂f(γ )
∂θ


−1

,

(18)

whose right side is exactly the inverse of FIM represented by
F−1 (γ ). For the sake of brevity, we define{

Ai = xicosθsinϕ − yicosθcosϕ, (19a)

Bi = xisinθcosϕ+yisinθsinϕ−zicosθ (19b)

and {
AJ = xJcosθsinϕ−yJcosθcosϕ, (20a)

BJ = xJsinθcosϕ+yJsinθsinϕ−zJcosθ. (20b)

Given cτJ = sJk, i = 1, . . . ,N − 1, the negative partial
derivatives are

[
∂f (γ )
∂ϕ

]
i
=

AisJk+AJsik
csJk

, (21a)[
∂f (γ )
∂θ

]
i
=

BisJk+BJsik
csJk

. (21b)

Substituting (21) into (18) yields the CRLB. Note that the
PS exists in the CRLB expression, although it is not seen in
the MD model. When computing the CRLB, this parameter
is treated as a constant.

Analytically comparing the CRLBs under the two models
of JTV and MD is not tractable. We shall rely on numerical
evaluations for them over a number of randomly generated
geometries and the results will be presented in Section VI.

V. ESTIMATION SOLUTION AND THEORETICAL
PERFORMANCE
A. ESTIMATION SOLUTION
It seems that a linear estimator may be obtained if wemultiply
both sides with sJk to the MD formula in (11). In fact, this
multiplication leads to the following equation after substitut-
ing cτJ = sJk into the noise item

1
c

(
si −

τ̂isJ
τ̂J

)
k = ni, (22)

which would equal to zero for a noise-free measurement.
There is no linear relation between the unknown vector k
and the data vector τ̂ in the formulation. Hence, we can only

use the nonlinear optimization technique by constructing an
error cost function to realize the estimate of γ , such that the
estimation output is straightly the source bearing.

TheMDmodel is resolved by the LM algorithm as follows.
Let γ̂ v be the current estimate of v-th iteration. Define

f(v)i (γ ) = τ̂J
sik̂

sJk̂

∣∣∣∣∣
γ=γ̂ v

(23)

and {
g(v)i = f(v)i (γ )− τ̂i, i = 1, . . . ,N − 1, (24a)

g = [g1, . . . , gN−1]T. (24b)

Determine the gradient of current DOA estimate as

ai,1 =
∂f(v)i (γ )

∂ϕ

∣∣∣∣∣
γ=γ̂ v

, (25a)

ai,2 =
∂f(v)i (γ )

∂θ

∣∣∣∣∣
γ=γ̂ v

, (25b)

[A]i,j = ai,j, i = 1, . . . ,N − 1, j = 1, 2. (25c)

Symbolize λ as the nonnegative damping factor being
adjusted at each iteration, and calculate the bearing increment
vector by using

δ = (AT6
−1

A+ λI)
−1

AT6−1g. (26)

Assume that the subscript v and v+ 1 respectively represents
the vectors at the v-th and (v + 1)-th iteration, and u stands
for the correction factor, we check the new cost function
gTv+16

−1gv+1 after each iteration. If the following condition
is satisfied:

gTv+16
−1gv+1≥gTv6−1gv + u

(
AT
v6
−1gv

)T
δv, (27)

then the damping factor is increased by λv+1 = λvh, where
h is the amplification factor greater than one, and the bearing
increment vector is renewed. Otherwise, the damping factor
is decreased by λv+1 = λv/h, and then

γ̂ v+1 = γ̂ v + δv. (28)

The updated damping factor is used to modify the incre-
ment vector, and the bearing estimate is updated accordingly.
The procedure continues until the bearing increment is suf-
ficiently small. If the procedure fails to converge, we may
resort to the initial guess as an estimate to make the result
stable. According to the convention of the LM algorithm,
those factors can be chosen as follows:λ = 2, u = 0.4, and
h = 1.5. A detailed procedure of the estimation solution is
shown in Table 1.

B. THEORETICAL PERFORMANCE EVALUATION
This section will give the theoretical estimation performance
of the above solution by perturbation analysis. For the cost
function to be minimized:

ε (γ ) = nT6−1n, (29)
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TABLE 1. Source bearing estimation procedure by using the
Levenberg-Marquardt algorithm for the measurement-division model.

we expand it in the Taylor series at the current parameter
estimate γ̂ and retaining the first three terms, i.e. up to the
second-order term. Accordingly,

ε
(
γ̂ + δ

)
≈ ε

(
γ̂
)
+ (∇ε

γ̂
)Tδ +

1
2
δTH

(
γ̂
)
δ (30)

where δ is the bearing increment vector, ∇ε
γ̂
is a gradient

vector of ε(γ ) w.r.t. γ at γ̂ , and H
(
γ̂
)
is the Hessian of

the cost function. Minimization of the right-hand side of (30)
yields

δ = −H−1
(
γ̂
)
∇ε
γ̂
. (31)

If H
(
γ̂
)
is sufficiently smooth at γ̂ = γ , we can obtain [32]

H
(
γ̂
)
≈ E

[
H
(
γ̂
)]
. (32)

Let∇ε
γ be the gradient vector of ε(γ̂ ) at γ̂ = γ . We have

∇ε
γ = 2

[∑N−1

i=1

∂ni
∂ϕ

ni
∑N−1

i=1

∂ni
∂θ

ni

]T
. (33)

If the value of ni is small, then E
{∑N−1

i=1 ni
}
= 0. Therefore,

there exists E
{
∇ε
γ

}
= 0, where 0 is a zero vector. The

estimation bias is determined by

Bias
(
γ̂
)
= E

(
γ̂ − γ

)
≈ − E

[
H−1 (γ )∇ε

γ

]
= −E

[
H−1 (γ )

]
E(∇ε

γ ) = −H
−1 (γ ) · 0 = 0.

(34)

It means that our solution to minimize ε(γ ) is approx-
imately unbiased. The estimation covariance is derived

from (31) to be

Cov(δ) =H−1
(
γ̂
)
E[∇ε

γ̂
(∇ε

γ̂
)T]H−1

(
γ̂
)
. (35)

Supposing that ∇n
γ̂
stands for the gradient vector of TDOA

noises w.r.t.γ̂ , there exist the following relations in the LM
algorithm [17]: 

H
(
γ̂
)
= 2(∇n

γ̂
)T6−1∇n

γ̂
, (36a)

∇ε
γ̂
= 2(∇n

γ̂
)T6−1n, (36b)

E
(
nnT

)
= 6. (36c)

Substituting (36) into (35) and taking some algebra manipu-
lations, it is easy to obtain that

Cov(δ) =
[
(∇n

γ̂ )
T
6−1∇n

γ̂

]−1
. (37)

For fi(γ ) = τJ
sik
sJk

and [f(γ )]i = fi(γ ) (i = 1, . . . ,N − 1),
when τ̂J approximates to τJ, there exists ∇n

γ̂
= ∇γ f(γ ).

As a result, the inverse of FIM in (17) is identical to the
covariance in (37). The mean square error of lowest possible
bearing estimation equals variance if an estimator is unbiased.
Because our estimation is unbiased as suggested above, it can
be concluded that the resolving solution of the MD model
approximatively reaches the CRLB of this model.

In principle, the CRLB can be attained when the following
constraints are satisfied. These constraints are: 1) the quantity
of Hessian matrix is small, or the quantity of cost function
is small; 2) Hessian matrix is sufficiently smooth around the
true value; and 3) the final estimation error is small.We derive
the bias and covariance of the proposed solution under the
three constraints.
Remark 3: As we cannot obtain the uncorrupted τJ and

only replace it with the measurement τ̂J , an error caused
by approximation would exist. However, the estimation per-
formance of our solution would be close to CRLB in gen-
eral, which will be validated by the following simulations.
Although the proposed method is not optimal, its estimation
accuracy can still make it promising when confronted with an
unknown PS.

VI. SIMULATION EVALUATION
In this section, four simulation examples are used to evaluate
the performance of the proposed model and solution. Simu-
lation assumptions are made below.

(1) Five sensors are deployed to form an array for simu-
lation unless stated otherwise. The x-axis and y-axis coordi-
nates of sensor locations are randomly selected within a ring
of 30 m radius, while the z-axis coordinates are randomly
selected in the smaller range [-5 m, 5 m], which simulates
the typical situation of a ground-based array in practice.

(2) The TDOA measurement error is assumed as Gaussian
noise with a specific standard deviation (STD). The TDOA
STDs range from 0 ms to 3 ms, considering the propagation
of air acoustic signal in simulation. We generate the TDOA
noise variables of a group of measurement from an array,
by using multivariate normal random numbers and adopting
the simplified covariance matrix as mentioned earlier.
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(3) Each simulation is conducted over 50 000 Monte Carlo
trials. The iteration precision is set as 10−5 for those methods
with an iterative operation. The estimation result of LLS is
employed as the first guess for iteration to verify practicabil-
ity in all iterative solutions.

(4) When the geometrical relation between source bearing
and array coordinates is very unfavorable for DOA estima-
tion, such as the source is located at one end of a linear
array, the corresponding estimate would seriously deteriorate
the statistic results. We have used a measure that when the
absolute error of azimuth or elevation from the CRLB based
on the JTV model exceeds 90◦, we abandon the simulated
generated geometrical structure of source and array this time,
and replace it with another one.

(5) The estimated azimuth and elevation should usually be
within the bound [0, 2π ] and [−π/2, π/2], respectively. If the
azimuth and elevation estimate correspondingly exceeds a
multiple of 2π and π , then modulo operation is taken into
account to avoid the anomalous estimates in the rational
angular space.
Example 1: (RMSE and Computation Complexity of

Related Methods Under Random Source Bearings): The pur-
pose of this example is to examine the performance difference
among the LLS, the MD, the JTV and the PSE. We select the
four solutions to be compared in the sense that all of them
belong to a bearing estimator with an unknown PS parameter.
The LLS method proposed in [16] is closed-form; while the
MD, the JTV and the PSE are iterative solutions. The later
three methods are given in IV. A section, Appendix B and
Appendix C of this paper, respectively. The source azimuth
and elevation are uniformly taken from [15◦, 75◦] to represent
random source bearings in 3-D space. The performance eval-
uation index is root mean squared error (RMSE) of bearing
estimation. The estimation error is the difference between the
estimated and the true bearing.

The RMSEs from various random geometries are com-
puted for each solution, and the results versus TDOA STD
are shown in Fig. 2. As can be observed, the MD solution
has the best estimation performance of azimuth and elevation
comparing with the other three solutions when the PS is
unknown. The estimation accuracy of the MD solution is not
only better than the closed-form solution, i.e. the LLS, but
also superior to the other iterative solutions, i.e. the JTV and
the PSE.

Moreover, the RMSE versus signal-to-noise ratio (SNR)
is also evaluated. We define SNR as SNR = 10log( 1

2r2σ 2τ
),

where r represents the source range to the array origin [13].
As the far-field source has a large ratio of source range to
the array aperture, r is assumed to be in the bound [1000 m,
4000 m] such that the source signal can be approximately
treated as a plane wave. The SNR changes from -20 dB to
10 dB in simulation; while the range and the bearing of a
source are randomly selected within the associated bounds
for each simulation run. Given the SNR and the source range,
the TDOA STD is calculated by the SNR definition.

FIGURE 2. Angle estimation performance of the four estimators under
random source bearings and random sensor locations versus different
TDOA standard deviations. (a) Azimuth. (b) Elevation.

The other simulation parameters are determined in the
same way. Given these parameters, the azimuth/elevation
estimation is simulated under different SNRs. The perfor-
mance of the bearing estimation in terms of RMSE versus
SNR is shown in Fig. 3. It can be seen that the MD solution
achieves the best performance, similar to the performance
of RMSE versus TDOA STD. Thus, the MD solution is
preferable among the different solutions.

Perhaps one disadvantage the MD solution has over
the other solutions is the higher computation complexity.
Table 2 shows the averaged computation time of the PSE,
the JTV and the MD relative to that of the LLS. They are
obtained from running the algorithms on a Laptop using
Matlab codes and averaged over various TDOA STDs. Note
that the absolute running time of the LLS is 17.68 µs. From
the results we can observe that the time required by the MD
is longer than those required by the LLS and the PSE, but
still less than that of the JTV. Actually, the absolute time
run by a modern electronic system would be rather short for
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FIGURE 3. Angle estimation performance of the four estimators under
random source bearings and random sensor locations versus different
SNRs. (a) Azimuth. (b) Elevation.

TABLE 2. Relative averaged computation time of the four estimators
involving LLS, PSE, JTV and MD. The results are averaged over a group of
TDOA STDs identical to those in Fig. 2.

these estimators to execute when the number of array sensors
is not very large. Thus, the MD solution is preferable for a
wide range of scenarios when both accuracy and computation
efficiency are taken into account.
Example 2: (CRLB Comparison of Two Models):We com-

pare the CRLB difference between the models of MD and
JTV, denoted by MD-CRLB and JTV-CRLB respectively.
The expressions of the two CRLBs have correspondingly
been provided in IV. B section and Appendix A of the paper.
The source azimuth and elevation are individually set as 45◦

and 15◦. It represents the typical occasion of low-altitude
source generally measured by a ground-based array. For dif-
ferent TDOA STDs, the theoretical RMSE of the two models

FIGURE 4. CRLBs of azimuth/elevation between the JTV model and the
MD model versus different TDOA standard deviations.

are provided by Fig. 4. It is perceived that both of azimuth
CRLBs are identical, while the MD-CRLB is much better
than the JTV-CRLB in elevation.

We also verify the performance of the two CRLBs when
the number of array sensors is different, ranging from four
to ten. The simulation results are shown in Fig. 5, where
the TDOA STD is fixed by 1.5 ms. Similar CRLB results to
those with the fixed sensor number above can be observed,
except when the number of sensors is the minimum (i.e. four),
the JTV-CRLB has a little superiority. Overall theMD-CRLB
is superior to the JTV-CRLB.

FIGURE 5. CRLBs of azimuth/elevation between the JTV model and the
MD model versus different number of sensors.

Example 3: (Estimation Error of the MD Solution): This
example is used to observe the estimation performance of the
MD solution in comparison to theMD-CRLB. The simulation
parameters are identical to the data in Example 2. The RMSEs
of azimuth and elevation are provided in Fig. 6, and accom-
panied with the corresponding MD-CRLB. We can find from
the figure that the RMSEs of the solution are close to the
CRLBs, especially for the azimuth estimation.
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FIGURE 6. Estimation error of azimuth/elevation between the MD
solution and the CRLBs versus different TDOA standard deviations.

FIGURE 7. Estimation error of azimuth/elevation between the MD
solution and the CRLBs versus different number of sensors.

In the case of different number of array sensors, the estima-
tion errors of the MD solution are provided in Fig. 7. Similar
to the results in Fig. 6, the RMSEs in this figure almost
approach the corresponding MD-CRLBs. The example sug-
gests that the MD solution can perform well in the source
bearing estimation for various conditions.
Example 4: (Iterative Number of the MD Solution): The

iterative number reflects the running efficiency of an iter-
ative method. The example calculates the numbers of the
MD solution under random geometries when they are con-
verged. The required iterations are plotted using ‘‘boxplot’’
as illustrated in Fig. 8. The box top and bottom edge is
the 25th and 75th percentile on every box, respectively. The
box top whisker extending to the most extreme data points
represents the maximum statistical generation not considered
outliers, which are denoted by red crosses.

It is seen that the MD solution can converge after about
10 iterative steps for all TDOA STDs. The maximum number
of iterations is smaller than 30, if not considering those
outliers. These results show that the MD solution has a

FIGURE 8. Boxplot of iterative number versus different TDOA standard
deviations, where the MD solution is converged over the 50 000 randomly
generated geometries.

good convergence rate, and can run rapidly with manageable
complexity.

VII. CONCLUSION
In practice, the wave speed of a source signal is usually
unknown and varies considerably with the environment. This
paper proposed a speed-free model and the associated solu-
tion to estimate the source bearing by using the TDOA mea-
surements, with particular attention on the situations where
a precise PS is unavailable. The significance of this work
is that the source bearing estimation can still be accurately
accomplished without the knowledge of PS. This is due to
that we have reformulated the original TDOA measurement
model to exclude the speed parameter by a division formu-
lation. An iterative nonlinear solution has been developed to
obtain the estimate of source bearing based on the proposed
model. The model and solution have been evaluated by sim-
ulations. The results have demonstrated that the MD model
has a superior CRLB to the JTV model, and the MD solution
can outperform the existing methods with a practical running
efficiency.

APPENDIX A
CRLB OF JOINT THREE-VARIABLE
Define fi(2) = sik/c, and [f(2)]i = fi(2), i = 1, . . . ,
N − 1. For an unbiased estimator, the variance of the
m-th element of 2, namely 2(m) (m = 1, 2, 3), can be
bounded by the CRLB

E
[(
2̂ (m)−2(m)

)2]
≥ CRLB (2 (m)) . (A.1)

The conditional probability density function of TDOA mea-
surement errors is described as

p
(
τ̂ |2

)
=

1

(2π)
N−1
2 |6|

1
2

exp
{
−
1
2

[
τ̂ − f(2)

]T
6−1

[
τ̂ − f(2)

]}
.

(A.2)
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For the unbiased estimate 2̂ of2, the corresponding CRLB
and FIM is denoted by CRLB(2) and F(2), respectively.
When the Jacobian of f(2) w.r.t. 2 is given by ∇2f(2),
the FIM is expressed to be

F (2) = (∇2f(2))T6−1∇2f (2) . (A.3)

Then the CRLB of the unknown vector 2 is determined
by (A.4), as shown at the bottom of this page, whose right side
is F−1 (2). Them-th parameter in the CRLB of the unknown
vector2 is found by

CRLB
(
2(m)

)
=

[
F−1 (2)

]
m,m

. (A.5)

For i = 1, . . . , N − 1, the negative partial derivatives of f(2)
are derived as

[
∂f (2)

∂ϕ

]
i
=

xicosθsinϕ−yicosθcosϕ
c

, (A.6a)[
∂f (2)

∂θ

]
i
=

xisinθcosϕ + yisinθsinϕ − zicosθ
c

, (A.6b)[
∂f (2)

∂c

]
i
=

xicosθcosϕ + yicosθsinϕ + zisinθ
c2

. (A.6c)

After substituting these partial derivatives into (A.4),
the CRLB about the JTV model can be determined.

APPENDIX B
SOLUTION OF JOINT THREE-VARIABLE
In the JTV solution, the quadratic error function of a hypoth-
esized DOA and PS becomes

ε (2) =

(
Sk
c
− τ̂

)T

6−1
(
Sk
c
− τ̂

)
. (B.1)

With regard to the current variable estimate 2̂v of v-th itera-
tion, we have

f(v)i (2) =
sik̂
ĉ

∣∣∣∣∣
2=2̂v

(B.2)

and {
h(v)i = f(v)i (2)− τ̂ i, i = 1, . . . ,N − 1, (B.3a)

h = [h1, . . . , hN−1]T. (B.3b)

The gradient of current estimate is

bi,1 =
∂f(V)i (2)

∂ϕ

∣∣∣∣∣
2=2̂v

, (B.4a)

bi,2 =
∂f(v)i (2)

∂θ

∣∣∣∣∣
2=2̂v

, (B.4b)

bi,3 =
∂f(v)i (2)

∂c

∣∣∣∣∣
2=2̂v

, (B.4c)

[B]ij = bi,j, i = 1, . . . ,N − 1, j = 1, 2, 3. (B.4d)

The partial derivatives of f(2) has been given in (A.6). Then
the bearing increment vector is calculated by

δ = (BT6
−1

B+ λI)
−1

BT6−1h. (B.5)

Similarly, the condition is examined as follows

hTv+16
−1hv+1≥hTv6−1hv + u

(
BT
v6
−1hv

)T
δv. (B.6)

The other operations are identical with those of the MD
solution as mentioned above.

APPENDIX C
SOLUTION OF PROPAGATION SPEED-ESTIMATED
This solution is similar to the detail in Appendix B, except
that the PS parameter is estimated by (8) in advance. For the
current DOA estimate γ̂ v of v-th iteration, we correspond-
ingly have

f(v)i (γ ) =
sik̂
ĉ

∣∣∣∣∣
γ=γ̂ v

(C.1)

and {
h(v)i = f(v)i (γ )− τ̂i, i = 1, . . . ,N − 1, (C.2a)

h = [h1, . . . , hN−1]T. (C.2b)

We determine the gradient of current DOA estimate as

bi,1 =
∂f(v)i (γ )

∂ϕ

∣∣∣∣∣
γ=γ̂ v

, (C.3a)

bi,2 =
∂f(v)i (γ )

∂θ

∣∣∣∣∣
v=γ̂ v

, (C.3b)

[B]i,j = bi,j, i = 1, . . . ,N − 1, j = 1, 2. (C.3c)

Cov (2) ≥ −E

[
∂2 ln

(
p
(
τ̂ |2

))
∂2∂2T

]−1
=



∂f(2)T

∂ϕ
6−1

∂f(2)
∂ϕ

∂f(2)T

∂ϕ
6−1

∂f(2)
∂θ

∂f(2)T

∂ϕ
6−1

∂f(2)
∂c

∂f(2)T

∂θ
6−1

∂f(2)
∂ϕ

∂f(2)T

∂θ
6−1

∂f(2)
∂θ

∂f(2)T

∂θ
6−1

∂f(2)
∂c

∂f(2)T

∂c
6−1

∂f(2)
∂ϕ

∂f(2)T

∂c
6−1

∂f(2)
∂θ

∂f(2)T

∂c
6−1

∂f(2)
∂c



−1

(A.4)
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The remaining procedure is the same as that of the JTV
solution.
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