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ABSTRACT Automatic detection of underwater objects by sonar images is an important and challenging
topic in applications of Autonomous Underwater Vehicle (AUV) under the complex marine environment.
A detectionmethod is proposed based onMulti-ScaleMulti-ColumnConvolutionNeural Networks (MSMC-
CNNs). Firstly, the Multi-Scale Multi-Column CNNs is used to form an encoder network for extracting
multi-scale features of the sonar image. Secondly, the bicubic linear interpolation algorithm is used as the
deconvolution process of the decoder networks to restore the sonar image size and resolution. Moreover,
a novel transfer learning manner based on progressive fine-tuning to accelerate the model training. Finally,
the proposed method is validated on the sonar image dataset and is compared with other existing detection
methods. The pixel accuracy (PA) of MSMC-CNNs for different categories sonar image is over 95%. The
experiment results show that the MSMC-CNNs model has better detection effect and more robustness to
noise.

INDEX TERMS Underwater object detection, MSMC-CNNs, bicubic linear interpolation algorithm,
deconvolution.

I. INTRODUCTION
In Europe, the United States, and China pay much attention
to marine research and have a deep foundation, and have
conducted much research on the detection and localization
of the underwater target. In China, many scientific research
institutes and universities, such as Chinese Academy of Sci-
ences (CAS), Harbin Engineering University, Institute of
Acoustics of Chinese Academy of Sciences and Northwest-
ern Polytechnic University have implemented much research
on target detection and localization. Currently, underwater
imaging technology mainly includes optical imaging and
sonar imaging [1]. Optical imaging has a better resolution,
but its resolution poor under the drowning environment and
the imaging distance is relatively close [2]. Sonar imag-
ing has the advantage of long operating distance and strong
penetration ability, which is especially suitable for underwa-
ter environment. Therefore, it is widely used in underwater
geomorphological exploration, underwater lost object search,
and mine detection [3]. However, because of the complex
and changeable characteristics of the water medium and its
boundary of the underwater acoustic channel, as well as the

The associate editor coordinating the review of this manuscript and
approving it for publication was Huawei Chen.

propagation loss and scattering of the acoustic wave itself.
As a result, the collected underwater object often has the
characteristics of the low contrast, strong speckle noise and
blurred target edge, which brings great difficulties to the
manual interpretation of underwater object [4], [5].

Accurate segmentation of the underwater object is conve-
nient for further analysis of the underwater object. Underwa-
ter object detection not only depends on the segmented target
region but also has a close relationship with seafloor noise
and the background region, so its segmentation is difficult
and complicated. The purpose of underwater object detec-
tion is to extract the target and shadow from the complex
seafloor reverberation region and retain the original edge
information of the underwater objects. Underwater object
detection algorithm divide into a supervised segmentation
method and unsupervised segmentation method. Supervised
segmentation methods include Bayesian framework and vari-
ation theory framework [6], [7]. The Bayesian framework
uses the similarity between local pixel statistics and seabed
prototype statistics to represent the conditional likelihood
function [8]. The most widely used methods in the Bayesian
are the maximum posterior method and the maximum bound-
ary method. Moreover, the maximum boundary probability
method has been proved to be more suitable for underwater
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object detection [9]. Different from the Bayesian framework,
the segmentation method based on variation theory needs
to minimize the similarity region function between texture
statistics and predefined prototype statistics in the region
of the variation model. Since most supervised segmentation
algorithms require hypothetical training classifiers, and the
structure design of the algorithm is complex, there are few
pieces of research on supervised segmentation algorithm
for underwater object [10]. The unsupervised segmentation
algorithm is more widely used than supervised segmenta-
tion algorithm. Most underwater unsupervised segmentation
algorithms need a learning stage to segment automatically,
among which Markov Random Field (MRF) method and
active contour method are widely used [11]–[15]. Generally,
since the underwater object contains a lot of seafloor reverber-
ation noise, it cannot be detected effectively by conventional
image segmentation method. Specifically, the image segmen-
tation based on MRF is a method of pixel classification
by using the spatial correlation of pixels in an image [16].
The MRF method can accurately describe the category to
which each pixel belongs and its dependence on the sur-
rounding pixel category. In order to realize accurate image
segmentation based on this method, it is necessary to clarify
the distribution characteristics of pixels in different regions.
In the segmentation method based on MRF, the most widely
used is the Hamersley-Clifford theorem, which represents
the relationship between the local features and the global
features of the underwater object through the energy function
of the physical system [17]. For example, According to the
imaging characteristics of the sonar target, Xie et al. [18]
establish the segmentation constraint condition, make use
of the small gray mean ratio of the shadow to the target
to carry on the initial segmentation, and then remove the
false target according to the width difference between the
segmented target and the shadow. This method takes into
account the dependence between adjacent pixels and has the
advantages of strong anti-noise and accurate segmentation.
The segmentation method based on active contour model
is combined with the relevant theory of partial differential
equation, the problem of underwater object detection can
classify as a minimum functional problem, and then the min-
imum functional problem is transformed into the problem of
solving a partial differential equation by variation method.
The active contour model can divide into parametric active
contour model and geometric active contour model [19]. The
parametric active contour model based on the local informa-
tion of the image, which is easily affected by noise and the
initial test curvemust be close to the edge of the target in order
to get the correct segmentation results [20]. Geometric active
contours can efficiently deal with topological changes which
are challenging to deal with by level set method [21]. Specif-
ically, Huo et al. [14] proposed a segmentation method based
on non-local speckle reduction and improved active contour
model. In the method, the non-local speckle filtering method
is used to eliminate underwater speckle noise to improve
the accuracy, and the k-means clustering method is adopted

for the initial segmentation of the underwater object. At the
same time, an edge-driven constraint is added to the region
fitting filtering model to accelerate the convergence speed
and drive the active contour to obtain the desired boundary.
Sang et al. [22] use the active contour level set method to seg-
ment the underwater object. In the process of segmentation,
there is no prior hypothesis or statistical modeling, and its
core idea is to obtain the minimum effect when the bottom
image is segmented. It is robust to underwater noise and
has excellent regularization performance. Image processing
methods based on histograms are also widely used in the
field of object detection. Lv et al. [23] proposed a novel
multi-scale object histogram distance (MOHD) to detect the
target region of the remote sensing image. The method first
calculates the frequency histogram of the image, then uses
the bin-to-bin distance to measure the target change, and uses
the Otsu algorithm to complete the target area segmentation.
Lv et al. [24] proposed a histogram trend similarity adaptive
detection method for high-resolution remote sensing image
object recognition. The method first quantitatively analyzes
the adaptive histogram trend of the target region, then uses the
improved bin-to-bin distance to detect the magnitude of the
change of the object, and uses the binary threshold method
to complete the segmentation of the image of the changed
region.

Image detection and classification methods based on deep
learning have achieved tremendous success in digital image
processing for object detection and classification. Convolu-
tional neural networks (CNNs) have widely used to solve
the problem of image processing and achieved significant
progress not only in the task of image classification but
also in semantic segmentation. Long et al. [25] proposed
an FCN (Fully Convolution Neural Networks, FCN) model
for semantic segmentation, which could be trained end-to-
end on pixel-wise prediction. Badrinarayanan et al. [26]
proposed an end-to-end SegNet semantic segmentation net-
work model. At present, the segmentation method based
on FCN and SegNet are applied to a variety of segmenta-
tion scenes, including medical image segmentation, autopi-
lot, underwater image segmentation, and satellite image seg-
mentation. Zhang et al. [27] combined with several existing
CNNs models, constructed the satellite image classification
method, and applied it to the satellite image analysis system.
Deng et al. [28] proposed a CNNs model for multi-scale
remote sensing target detection and used it for small target
recognition in remote sensing images. Ji et al. [29] propose an
underwater image restoration method based on CNNs, which
is used to complete the image restoration for many kinds of
underwater images. Moniruzzaman et al. [30] systematically
described base on deep learning underwater imagery analysis
methods in recent years. These approaches are categorized
according to the object of detection, and the features and deep
learning architectures used are highlighted. It concludes that
there is an excellent scope for automation in the analysis of
digital seabed imagery using deep learning, especially for the
detection and monitoring underwater object by sonar image.
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FIGURE 1. Architecture of FCN.

Inspired by FCN [25], SegNet [26], and U-Net [30], a novel
CNNs model, and namely MSMC-CNNs is proposed for
underwater sonar images detection. MSMC-CNNs is com-
posed of encoder and decoder, in which the multi-scale multi-
column CNNs is used as encoder structure for extracting
multi-scale information of sonar image, and the bicubic con-
volution is used as a deconvolution for the decoder struc-
ture to restore the original image size. Moreover, a novel
transfer learning manner based on progressive fine-tuning to
accelerate the training. The experimental results in the sonar
image dataset show that MSMC-CNNs are superior to other
semantic segmentation methods. The main contributions of
this paper are listed as follows,

1) We propose the MSMC-CNNs model based on an
encoder-decoder structure for sonar image recognition.

2) Using nine-point bilinear interpolation convolution as
a deconvolution operation for the decoder structure in
MSMC-CNNs, which it can restore the input image
size and resolution.

3) The transfer learning algorithm based on progressive
fine-tuning is used in the training process of the model,
which can effectively improve the training speed and
detection accuracy.

4) The method is validated and compared with the state-
of-the-art methods on the sonar image dataset.

The rest of this paper is organized as follows. In Section 2, the
related works are introduced, including FCNmodel structure,
SegNet, andU-Net. In Section 3,MSMC-CNNs are described
in detail. The experiments on the sonar image dataset are
implemented in Section 4, and the conclusion is described
in Section 5.

II. RELEVANT WORK
In this Section, the related works are introduced, including
SegNet, U-Net, and FCN structure.

A. FCN
Since the traditional CNNs divides the pixel values contained
in the image into different pixel blocks as the input of the
network, the pixel-level image segmentation task cannot be
completed. In order to solve the shortcomings of CNNs in

the field of image segmentation, Long et al. [25] proposed
the FCN model for image segmentation. The FCN is derived
from the conversion of all fully connected layers of the orig-
inal CNNs to a convolutional layer. The essential networks
commonly used for conversion include AlexNet, GoogleNet,
and VGG16. In these three basic network models, AlexNet is
relatively simple, so it is inferior in effect [31]. GoogLeNet
involves more training parameters, which makes the model
less practical [32]. Taken together, the original FCN model
was designed based on the VGG16model [33]. The FCN uses
VGG16 as the backbone networks and its structure is shown
in the Fig.1, in which Conv represents the convolutional
layer, Pool represents the max-pooling layer, and Upsam-
pling represents the up-sampling layer. In the FCN model,
it first replaces the fully convolutional layer of VGG16 with
a convolutional layer and then obtains FCN-8s, FCN-16s, and
FCN-32s by deconvolution and up-sampling operations.

B. SEGNET
CNNs can automatically extract the in-depth features of
the input images and has achieved the prominent perfor-
mance in a series of image processing tasks, such as image
classification, object detection, and segmentation. SegNet is
an end-to-end semantic segmentation model, consisting of
encoder network, decoder network, and pixel-wise classi-
fication layer, and each convolutional layer includes batch
normalization and ReLU activation functions. Its architec-
ture is shown in Fig.2, where the encoder network converts
high-dimensional vectors into low-dimensional vectors and
realizes the low-dimensional extraction of high-dimensional
features. The decoder network uses the max-pooling index
information of the corresponding feature layer saved by the
encoder down-sampling to map the low-resolution feature
map to the high-resolution featuremap and realizes the recon-
struction from low-dimensional vector to high-dimensional
vector. The reuse of the max-pooling index in the decoder
process can optimize the boundary profile, reduce the number
of parameters, and carry out end-to-end model training.

C. U-NET
The U-Net architecture is a U-shaped model with features of
an image learned at different levels through a set of convolu-
tional and max-pooling layers, as seen in Fig. 3.
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FIGURE 2. Architecture of SegNet.

FIGURE 3. Architecture of U-Net.

U-Net contains contracting network and expanding net-
work corresponding to each other to form a U-shaped struc-
ture. The contracting network is mainly used to capture the
context information in the image, and the advertised network
is symmetrical to precisely locate the part that needs to be seg-
mented in the image. The characteristic of U-Net is that the
contraction network and the expansion network are mutually
mapped. In the process of expansion, the missing boundary
information is complemented by the features of the merged
map contract layers, and the accuracy of the predicted edge
information is improved.

III. MSMC-CNNS
In the section, the MSMC-CNNs is constructed for under-
water object detection, including architecture, nine-point
bilinear interpolation algorithm, procedure, and performance
evaluation.

A. MODEL ARCHITECTURE
MSMC-CNNs is a novel encoder-decoder network struc-
ture, where the multi-scale multi-column CNNs is used to
construct the encoder structure, which can extract multi-scale

features of the sonar image, and using bicubic linear interpo-
lation as the decoder network, which can effectively recover
the lost information caused by the encoder network. The
MSMC-CNNsmodel uses theMulti-Column CNNsmodel as
the backbone structure and learns the concept of Multi-Scale
connections in the SA-CNNs model [34]. Similar to the
Multi-ColumnCNNs, whichMSMC-CNNs is also composed
of three parallel sub-convolution neural networks, each of
which has the same structure except for the size and num-
ber of convolution kernels. In the traditional CNNs model,
the pooling operation can compress the feature map and sim-
plify the network computation complexity, but it also leads to
the loss of features. Inspired by the SA-CNNs model, in each
sub-network of MSMC-CNNs, multi-scale connections are
made to the feature maps of different layers to adjust the scale
and viewing angle of the sonar image. The connected feature
map has the characteristics of multi-scale features, including
low-level features and high-level features, corresponding to
different targets in the sonar image. The overall structure of
the MSMC-CNNs is shown in Fig.4.

Each group of sub-networks has twelve convolutional lay-
ers, one deconvolution layer, four max-pooling layers, and
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FIGURE 4. Structure of MSMC-CNNs.

twomulti-scale connections. Referring to Fig.4, the following
introduce the components of MSMC-CNNs,

1) Multi-Scale Connection. The multi-scale connection
can connect feature maps of the same resolution output
from different convolutional layers on a convolution
channel. The purpose of multi-scale connection is to be
able to share the same low-level parameters and feature
maps, which can reduce the number of parameters, and
speed up the training process.

2) Convolution Layer. The convolution layer is to extract
features from the input image. Conv in Fig.4 represents
the convolution layer. The p1 in the parameter p1 ×
p2 × p3 × p4 represents the number of the convolution
layers, the p2×p3 represents the size of the convolution
kernel, and p4 represents the number of convolution
kernel channels.

3) Max-Pooling Layer. The function of Max-Pooling
layer is to reduce the channel numbers of convolution
layers. In the show of Fig.4, the MP represents the
max-pooling layers. With the exception of the pooling
layer MP4, the pooling size of the other max-pooling
layer is defined as 2×2 and the stride size is 2. In order
to connect the feature maps output by Conv4 and
Conv5 of multiple scales, MSMC-CNNs sets the pool-
ing are size of MP4 is 3×3 and the stride size to 1.

4) Deconvolution Layer. Deconv in Fig.4 represents a
deconvolution layer with a parameter form similar
to that of a convolutional layer. This method uses a
deconvolution layer to up-sampling the Conv4 and
Conv5 multi-scale connections to a quarter of the input
image resolution. Therefore, the feature map of the
Deconv output and the feature map of the Conv3 output
can be further multi-scale connection.

B. BILINEAR INTERPOLATION ALGORITHM
Traditional semantic segmentation network models such as
FCN, SegNet, and U-Net use bilinear interpolation to recover

image resolution during deconvolution. We are inspired by
Zhang et al. [35], so we used the bicubic linear interpolation
method in the MSMC-CNNs model to deconvolution and
restored the input image resolution. In the process of decon-
volution using bicubic linear interpolation, one-dimensional
interpolation is performed on the convolution layer feature
map in the vertical direction and the horizontal direction,
thereby realizing two-dimensional bicubic linear interpola-
tion. The size of the input convolution feature map is defined
as M × N , and the feature map is enlarged to size by the
linear interpolation method. The implementation steps of the
bicubic convolution interpolation method are as follows,
Step 1: Define the input image as F and the image size as

M × N .
Step 2: The input image is interpolated with the vertical

and horizontal direction.
Step 3: The interpolation image is defined as G, and the

interpolated image size as S × T .
The expression of the bicubic convolution interpolation

function is as follows,

g(x)=
ci+2−ci+1+ci

2
s2+
−ci+2 + 4ci+1 − 3ci

2
s+ci (1)

where, 
ci = f (xi)
cm = 3cm−1 − 3cm−2 + cm−3
cm+1 = 3cm − 3cm−1 + cm−2

(2)

According to Eq. (2), calculating the value of the function
at requires only calculating the values of the three sample
points. In the image processing process, the two-dimensional
bicubic convolution interpolation method can be expressed as
follows,

g(x, y) =
2∑

a=−1

2∑
b=−1

ci+a,j+bu(s1 − a)u(s2 − b) (3)

where, s1 = x
1x − i, i =

∣∣ x
1x

∣∣; s2 = y
1y − j, j =

∣∣∣ y1y ∣∣∣.
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FIGURE 5. Convolutional kernels and corresponding feature map.

The two-dimensional cubic convolution interpolation
method is similar to the one-dimensional bicubic linear inter-
polation convolution principle. Because of the third-order
approximation of g(x, y) and f (x, y), the coefficient of the
cubic term of g(x, y) is zero, so the calculation coefficient
relation of the two-dimensional cubic convolution interpola-
tion method is as follows,

ci,j = f (xi, yi)
ci+a,j−1 = 3ci+a,j − 3ci+a,j+1 + ci+a,j+2
ci+a,j+2 = 3ci+a,j+1 − 3ci+a,j + ci+a,j−1
ci−1,j+b = 3ci,j+b − 3ci+1,j+b + ci+2,j+b
ci+2,j+b = 3ci+1,j+b − 3ci,j+b + ci−1,j+b

(4)

Therefore, Eq. (3) only needs to use nine sampled pixel values
to predict the value of an interpolated pixel.

C. FEATURE EXTRACTION
In the training process of the network, the input image is
input into the first convolutional layer, and the feature maps
are extracted from several convolutional and pooling lay-
ers. The extracted maps by different convolutional kernels
are different. The shallow convolutional kernels extract the
color and contour features of the disease image; the deeper
convolutional kernels extract the texture and detail features
of the image. Convolutional kernels and feature maps can
be visualized to visually display features extracted from
different convolutional kernels, as shown in Fig.5. As seen
in Fig.5 (a), the convolutional kernels (Kernel1∼Kernel3)
displays coarser information, and the convolutional ker-
nel (Kernel4∼Kernel5) shows more detailed features of the
image, the feature maps obtained by the convolutional layer
(Conv1∼Conv3) are mainly the contour feature of the sonar
image, and the convolutional layer (Conv4∼Conv5) mainly
contains the texture features of the sonar image, which fully
reflects the convolutional nerve. With the weight sharing
technology of the network, as the number of convolutional
layers increases, the model acquires more detailed features
of the input image. It is shown that different convolutional
kernels can obtain different features of the input image during
the training process. Each convolutional kernel pays attention

FIGURE 6. Experimental steps of MSMC-CNNs based underwater object
detection method.

to different parts of the image, and can thoroughly study the
salient image regions of the respective parts of interest, which
lays a foundation for the accurate segmentation of subsequent
images. As can be seen from the Fig.5 (c), the edge of the
sonar image is highlighted by the convolutional neural net-
work. When it comes to the output of the middle layer which
is shown in Fig.5 (d), the feature map appears to be more
abstract. This is because the middle layer of a neural network
is difficult to interpret in general. In Fig.5 (e), the output
of the convolutional neural network has no noticeable sharp
edges. The edges of the sonar image gradually fade, which is
expected because themodel is supposed to paymore attention
to the object region instead of the edge of the sonar image.
In the output of the activation layer shown in Fig.5 (f) and
Fig.5 (g), which is close to the output layer, the sonar object
region becomes more concentrated.

D. SONAR IMAGE RECOGNITION PROCEDURE
The experimental procedure of the MSMC-CNNs based
underwater object detection is shown in Fig.6, which is
briefly described as follows,

Suppose S = {(Xn,Yn) , n = 1, . . . ,N } is the input
dataset, where Xn =

{
Xnij ; i = 1, . . . ,w, j = 1, ...h

}
repre-

sent the original input image with width (w) and length (h),
and Yn =

{
Y nij ; i = 1, . . . ,w, j = 1, . . . , h;Y nij ∈ {0, 1}

}
is

the real ground truth binary map for image Xn. The entire set
of network layer parameters in residual block and convolution
block are represented as wb and w. The functions of convolu-
tion block compute outputs yi by yi = F(xi,wi), in which F
represent the layer type of batch normalization layer, ReLU
nonlinearity activation function, andmatrixmultiplication for
convolution.

Suppose there are S output results in the network, 2
is the entire parameters of network layer. Each result is
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FIGURE 7. Examples of the side underwater objects.

FIGURE 8. Image preprocessing of underwater.

assigned with a classifier, and the corresponding weights
can be defined as (θ (1), . . . , θ (N )). CNNs optimize network
parameters by calculating the loss value during the training
process. In the training process of MSMC-CNNs, loss func-
tion is defined as follows,

Loss(2)=−
1
n

[
n∑
i=1

(αyi=1|X;2)+(1−α)(1−yi)

× logP(yi=0|X;2))
]
+ λR(2) (5)

where n represent the number of training samples in each
batch and α corresponds to the ratio of background pixels
over all the pixels. The LogP(yi = 0|X;2) represent calcu-
lated using sigmoid functions on the activation value at pixel
i, R is the regularization term, and λ is the hyper-parameters
of regularization. In the process of the model training, the
gradient descent algorithm is used to optimize the objec-
tive function. The objective function of MSMC-CNNs is
defined by L(2, θ (m)) = βloss(θ ), in which (β1, β2, . . . , βm)
some hyper parameters are introduced for loss function from
the output. The objective function below is minimized by
(2, θ (m)) = argmin(L(2, θ (m))), which is the stochastic
gradient descent (SGD).

E. EVALUATION INDICATION
Four evaluationmetrics are adopted to quantify the segmenta-
tion performance: Pixel-classification Accuracy (PA) which
is the average of the prediction accuracy over all categories,
Mean Accuracy (MA), Mean Intersection over Union (MIU),
and Frequency Weighted Intersection over Union (FWIU),
are computed as follows,

PA =
∑

i
nii/

∑
i
tii (6)

MA = 1/ncl
∑

i
nii/

∑
i
ti (7)

MIU = 1/ncl
∑

i
nii/(ti +

∑
j
nji − nii) (8)

FWIU = (
∑

k
tk )−1

∑
i
tinii/(ti +

∑
j
nji − nii) (9)

where ncl is the number of categories of image pixels to be
divided, i is the correct pixel class corresponding to a pixel, j
is the pixel class to which a pixel is misclassified, ti is the total
number of pixels of category i in the standard segmentation
result, and nii is the segmentation quantity of pixels in the
result that are correctly labeled as category i, and nji is the
number of pixels in the segmentation result that the pixel book
belongs to category i but is misclassified into category j.

IV. EXPERIMENTS AND ANALYSIS
To validate theMSMC-CNNs based underwater object detec-
tion method, a lot of experiments are conducted on the side
underwater object dataset, and compared with three state-
of-art methods, i.e., FCN, SegNet and U-Net. Taking into
account the memory constraints of the server, the model using
trained in batch training. Each of the 650 images is input into
the model as a batch. The training of all data in the dataset
requires 35 batches. The model parameters are updated by
the algorithms of gradient descent and back propagation.
All experiments are conducted with Intel Xeon E5-2643v3
@3.40GHz CPU, 64GB RAM, NVidia Quadro M4000 GPU,
8GB of video memory, by CUDA Toolkit 9.0, CUDNNV7.0,
Python 3.5.2, Tensorflow-GPU 1.8.0, Windows 7 64bit oper-
ating system.

A. DATA COLLECTION AND PREPROCESSING
The sonar images of underwater objects were collected by
dual-frequency side-scan sonar (Shark-S450D) in Qingdao,
China. Some examples are shown in Fig.7. The bilinear
interpolation method is used to enhance the image of the
underwater object, and the results are displayed in Fig. 8.

For MSMC-CNNs training, it is essential to label the train-
ing image to establish the benchmark of detection results. The
label image used to train the weight parameters of the model
and obtain the optimal training results. We used Label-Me is
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FIGURE 9. The sonar images of underwater and corresponding labeled
images.

an image annotation tool developed by MIT to label images
manually. The labeled images are shown in Fig.9, where the
red represents the detection targets in the underwater that are
airplane and shipwreck, while the black is the background.

In order to speed up the training time, each original image
is cut with the size of 15000 × 8000. Then, 70% of the
images are randomly selected as the training dataset and
the rest as test dataset. In the training set, about 20% of
all images are randomly selected as the validation dataset.
Finally, the dataset consisted of 4120 training images, 932
validation images, and 1125 testing images.

B. MSMC-CNNS TRAINING PROCESS
Since the training of CNNs needs to be carried out on large
data sets, but due to environmental and equipment con-
straints, it is impossible to collect massive sonar data. If the
network model is trained directly on the sonar image dataset,
will result in the network model over-fitting. Therefore, in the
process of MSMC-CNNs training, the feature extraction abil-
ity learned on the Image-Net dataset needs to be transfer-
ence to the sonar dataset as a priori knowledge. However,
the similarity between sonar image and the original image
is low, and it is difficult for CNNs to accurately summarize
sonar image features through the learned feature knowledge,
resulting in weak segmentation effect of the network model.
Therefore, the pre-training network needs to be retrained on
the sonar dataset, so that the network adaptively adjusts the
network parameters for the target samples, and improves the
feature extraction ability of the network model. In the feature
extraction process of CNNs, shallow convolutional layers are
used to extract low-level features such as color, edge, and
shape of the input image. As the number of network layers
increases, the network model can extract high-level features
such as image hierarchies and textures. From low-level fea-
tures to high-level features, CNNs have a feature-specific
transition to the feature extraction process of images, while
the traditional transference learning strategy does not fur-
ther explore the relationship between feature gradation and
sample data size and feature similarity. In order to improve the

training efficiency of MSMC-CNNs, we propose a progres-
sive fine-tuning strategy based on migration learning. The
progressive fine-tuning strategy is shown in Fig. 10.

As shown in Fig.10, the steps of the progressive fine-tuning
strategy are as follows,
Step 1: Only the new convolution layer with random ini-

tialization is trained.
Step 2: On the basis of the network nonlinear feature

classifier, the convolution layer is released layer by layer, and
the trainable layer is fine-tuned until the entire network is
trained.
Step 3: Quantitatively analyze the change in the loss value

after fine-tuning the layers, and then determine the sufficient
depth of the fine-tuning.

The initial learning rate of the network model is set to
0.001, the regular term coefficient is set to 0.001, and the
number of iterations is set to 1000. The training effect of the
two training models of the new learning and transfer learning
is compared in the weed dataset. The effect of the different
training methods is shown in Fig.11.

Using the transfer learning method to train the network
model can effectively improve the training speed and recog-
nition accuracy of the model. It can be seen from Fig.11 that
in the new learning training mode, the initial recognition
accuracy of the model is only 0.65. When the number of
iterations reaches 500, the recognition accuracy reaches 0.86,
but the model has a convergence trend. After the iterative
training is completed, the model recognition accuracy is
only 0.91, which indicates that the model has a weak train-
ing effect. When using transfer learning to train the model,
the initial learning rate of the model reached 0.73, which
has the ability to identify weed images. During the first
500 iterations, themodel converges rapidly.When the number
of iterations reaches 500, the accuracy of model recognition
is the same as the accuracy of 1000 iterations in the new
learning mode, indicating that transfer learning can save the
model training times. After completing the iterative training,
the model recognition accuracy rate reached 0.92, which is
much improved in the recognition accuracy compared with
the new learning mode.

C. VISUALIZATION OF THE MSMC-CNNS
In the underwater object detection, each training original
sonar image is first manually labeled, where the target part
of the image is marked as the foreground, and the rest of the
image is marked as the background. Then the convolution
layers are used to extract the labeled image, the pooling layers
are used to down-sample the convolution feature maps, and
finally, the activation layer is utilized to enhance the feature
expression ability. The decoder includes up-sampling, convo-
lution, and deconvolution. The up-sampling is used to recover
the feature information loss caused by the pooling layers,
and the deconvolution layers of decoder network are used to
extract the in-depth semantic features of the feature map after
the convolution layers are used to extract the significant area
of the feature maps. After encoder and decoder, the SoftMax
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FIGURE 10. Progressive fine-tuning strategy.

FIGURE 11. Comparison of two training methods.

TABLE 1. The detection results of the different methods.

classifier is used to classify each pixel of the image, and
outputs the detection result, as shown in Fig. 12.

D. DETECTION RESULTS
The proposed method is compared with FCN, SegNet, and U-
Net. The detection images of the underwater object are shown
in Fig.13. The detection results in term of PA, MA, MIU, and
FWIU by Eqs. (6) to (9) are listed in Tab.1. From Fig.13 and
Tab.1, it can be seen that the performance ofMS-SegNet is the
best, and its PA is over 95%, SegNet is better than U-Net and
FCN. FCN can segment the contour region of the underwater
object, but the effect of image detail detection is imperfect.
U-Net is better than FCN, because its copy and concatenate
operation can restore the detail features of the input images,
so the detection effect is better, and its PA value is more than
93%.

To further validate the performance of the proposed
method, Fig.14 is the detection results of four networks versus
the number of the iteration. From Fig.14, it is found that
the convergence speed of the proposed method is fast in the
process of training, and the training effect of the model is best
under the condition of the same number of iterations. This

is because the global average pooling layer is used in the
design of MSMC-CNNs structure, which not only reduces
the training parameters of the model but also speeds up the
training speed. The convergence speed of FCN is the slowest
and fluctuates significantly in the process of training, which
not only restores the image resolution but also increases the
parameter computation and training time of the model. The
training process of U-Net and SegNet is similar because they
have the same structure and are composed of the encoder
network and decoder network. At the same time, the image
resolution is restored by pooling index, but due to the direct
and straightforward use of the superposition of the convolu-
tion layer and pooling layer. As a result, there were different
amplitudes of shock in the process of training.

The calculation efficiency of the model is evaluated using
the memory space, the number of parameters, training time,
and testing time. Tab.2 compares the operational efficiencies
of the four network models. In the comparison of training
time and test time, MSMC-CNNs training time and testing
time are theminimum values of four networkmodels, indicat-
ing that the network model is more efficient. In the compar-
ison of the number of parameters, the parameter quantity of
MSMC-CNNs reaches 32,178,225. Since the global average
pooling layer is used in MSMC-CNNs, the parameter calcu-
lation is minimal compared to the existing network model.
Although there are many numbers of calculation parameters
in MSMC-CNNs, the parameter quantity is significantly
reduced compared with four network models. Because the
MSMC-CNNs construct in a multi-scale manner, so MSMC-
CNNs occupy less memory space.

Due to the influence of the seafloor environment, such as
underwater acoustic channel, hydrological medium, and elec-
tromagnetic wave transmission, the imaging characteristics
of sensor, high noise and weak boundaries are commonly
detected in the sensor images of detection target, in which
the speckle noise has the most considerable influence on the
detection of sonar image. The first row is a sonar test sample
with five different peak signal-to-noise ratios (PSNR).

Correspondingly, the effectiveness of the method is proved
by analyzing the experimental results. FCN, SegNet, and

VOLUME 7, 2019 160763



Z. Wang, S. Zhang: Sonar Image Detection Based on MSMC-CNNs

FIGURE 12. Visualization of the underwater object detection process.

TABLE 2. Comparison of different architectures performance.

FIGURE 13. The detection results of the different methods.

U-Net were tested in the same sonar image data set. Fig.15(a)
shows four evaluation parameters (PA,MA,MIU, and FWIU)
at five additive noise levels. Fig 15(b) shows Comparison of
five multiplicative noise levels, where the X coordinates is
PSNR. We can see the following trends,

1) MSMC-CNNs have high stability for additive noise
and multiplicative noise in the process of sonar image
segmentation. The four evaluation indexes (PA, MA,
MIU, and FWIU) have a small fluctuation range with

FIGURE 14. Training process for different network models.

increasing signal-to-noise ratio, and the segmentation
accuracy is the highest.

2) When the PSNR is less than 40 in Fig.15(a), all
four indicators of U-Net have a significant downward
trend, which indicates that U-Net is not as stable as
MSMC-CNNs when additive noise is relatively high.

3) In Fig.15(a), FCN and SegNet are sensitive to addi-
tive noise, especially when the PSNR is less than 35.
A comparison of the four evaluation indicators (PA,
MA, MIU, and FWIU) shows that they are not as good
asMSMC-CNNs andU-Net. Although these twometh-
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FIGURE 15. Comparison of different segmentation model with multiplicative noise and additive noise.

FIGURE 16. Four image segmentation standard value under five additive noise and multiplicative levels.

ods seem to have similar performance to the U-Net and
MSMC-CNNs in the PA indicator, this phenomenon
should be related to the defect of the PA indicator.

4) In Fig.15(b), although the overall performance of FCN
and SegNet is not as good as MSMC-CNNs, FCN and
SegNet have high stability and tolerance to multiplica-
tive noise. When PSRN is higher than 35, the PA of
FCN and SegNet is significantly reduced.

In summary, the four parameters of additive and multi-
plicative noise (PA, MA, MIU, and FWIU) in Fig.16(a)
and Fig.16(b) are compared to the FCN, SegNet, and
U-Net semantic segmentation algorithms. Tab.3 shows the
comparison of segmentation accuracy (PA, MA, MIU, and
FWIU average) and run time (GPU times) using the same test

dataset. MSMC-CNNs not only outperform other semantic
segmentation models in terms of four evaluation indicators
but also have an advantage in terms of runtime.

In the detection of underwater images, the change in image
quality has a greater impact on the detection results [37]. The
sonar image is a kind of underwater image, and its image
quality also has interference with the detection result. In order
to analyze the effect of MSMC-CNNs on different quality
sonar images, it is used to detect sonar image of different pixel
sizes (PS), and the experimental results are as follows,

It can be seen from Fig.17 and Tab.4. As the image
quality decreases, the detection accuracy of MCMS-CNNs
also decreases, indicating that the quality of sonar images
has an effect on the detection effect of MSMC-CNNs.
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FIGURE 17. Detection result of the different quality sonar image.

TABLE 3. Comparison of the four segmentation methods.

TABLE 4. Detection results of the different quality sonar image.

TABLE 5. Mean and variance of PA and MA based on K-fold
cross-validation.

However, its PA value is maintained above 90%, indicating
that MSMC-CNNs are less affected by changes in sonar
image quality.

K-fold cross-validation can effectively avoid over-fitting
and under-fitting. Therefore, we randomly divide the sonar
image data set into K groups to verify the effectiveness of
the training model. K-fold cross-validation uses each subset
of the data set as a test set and the remaining K-1 sets as a
training dataset. In the K-fold cross-validation, we use the
mean and variance of PA and MA to verify the performance
of the model. The mean and variance of PA and MA for the
network model for K = 3, 5, 7, and 9 are shown in Tab.5.
When K is increased to 7, the mean and variance of PA and
MA tend to be stable. Here, K is set to 7 in consideration of
statistical stability and calculation cost. Therefore, the ratio
of the test set to the training set is 1:6, the total dataset
has 4200 samples, the test dataset has 600 samples, and the
training dataset contains 3600 samples.

From Figs.13 to 16, Tab.2 to Tab.4, it can be seen that
the proposed method outperformers the other networks.
MSMC-CNNs can accurately detect the whole area of

underwater objects. It can not only detect the contour area
of the underwater object but also completely detect the edge
details of the underwater object. SegNet and U-Net can also
completely detect the target area of the underwater object, and
the detection effect on the small area is better, but when there
are shadows in the image, they cannot divide the shadows
and target, resulting in moremiss detection. The above results
validate that the proposed method is feasible for underwater
object detection by the sonar image.

V. CONCLUSION
Accurate detection of the underwater sonar image is an essen-
tial and challenging task. In this paper, we proposed novel
neural network MSMC-CNNs for detection of underwater
sonar image. MSMC-CNNs consist of encoder network and
decoder network. To enhance the feature extraction capability
of the encoder network, the multi-scale multi-column CNNs
architecture is used to extract the features of sonar image.
Since the encoder network decomposes the detailed features
of the sonar image, the bicubic linear interpolation algorithm
is used in the decoder network to restore the size and resolu-
tion of the image. Since there are few samples of the sonar
image dataset, we propose a progressive fine-tuning transfer
learning method to training MSMC-CNNs, which can effec-
tively improve the training efficiency of the model. At the
same time for verify the effectiveness of the proposed method
that MSMC-CNNs are used to detect sonar images with
different PSNR noises, and results show that MSMC-CNNs
have strong robustness. In future work, wewill concentrate on
how to reduce its number of iterations and shorten its running
time. In addition, we will consider how to compress network
model parameters and apply them to the practical application
of underwater portable devices.
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