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ABSTRACT In this paper, we propose a novel color-texture image segmentation method based on local his-
tograms. Starting with clustering-based color quantization, we extract a sufficient number of representative
colors. For each pixel, through counting the number of pixels with each representative color within a circular
neighborhood, a local histogram is obtained. After the circular neighborhood is extended to several scales,
a local histogram with an appropriate scale is adopted as a color-texture descriptor at the corresponding pixel
for image segmentation. Further, we correct the color-texture features near boundaries and obtain a initial
segmentation by a clustering method with the color-texture descriptors. Finally, in order to obtain a better
segmentation result, we merge the over segmented regions guided by the obtained boundaries. Experiments
are performed on both synthetic and natural color-texture images, and the results show that our proposed
method performs much better compared with state-of-the-art methods on image segmentation, particularly
in textured areas.

INDEX TERMS Image segmentation, texture segmentation, local histogram, adaptive scale descriptor.

I. INTRODUCTION
Color image segmentation deals with partitioning a given
image into several visually distinct regions, so that each
region has a homogeneous texture. It is an essential step
towards content analysis and image understanding. Applica-
tions based on segmentation are numerous, and they can be
frommedical image analysis and face identification to remote
sensing.

A variety of classic color image segmentation methods
have emerged for different applications, including those
using local binary patterns (LBP) [1], Gabor filtering and
clustering [2], [3], graph cuts [4]–[6], active contours [7]–[9],
watersheds [10], [11], level sets [12], [13], region
growing [14], [15], mean shift [16], knowledge-based
approaches [17], and machine-learning based methods [18].
The processes of these segmentation methods are basically
the same, which can be summarized as the following three
steps: (1) feature extraction; (2) segmentation; and (3) post-
segmentation processing.
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Color and texture information collectively have strong
links with human perception. They are powerful visual cues
and provide useful features for the segmentation of complex
images, which exhibit significant inhomogeneities in color
and texture. Texture is different from color in that it reveals
the spatial organization and arrangement of a set of basic
elements or sequences (i.e., textons), and it has three primary
characteristics: continuous repetition of some textons, non-
random arrangements, and roughly uniform in the texture
regions.

Feature extraction is a vital step in color image segmenta-
tion. It is necessary to distinguish textures by measuring their
special properties. The special property used to represent the
texture is called texture feature. There are a wide variety of
classic methods for extracting texture features, including gray
level co-occurrence matrices (GLCM), LBP, Gabor filters,
and wavelet methods. However, most of them are designed
for gray-level image segmentation, and fail to combine the
information contained in color channels (i.e., the red, green,
and blue channels). In many practical scenarios, the color-
alone or texture-alone image information is not sufficiently
robust to accurately describe the image content. Therefore,
image segmentation based on the integration of color and
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texture information has attracted attention. For example,
in [19], the color-texture feature is extracted based on the
integration of the Gabor filters with the measurement of color
in the wavelength-Fourier domain, and it is demonstrated to
be accurate in capturing texture statistics. Yang et al. [20] pro-
pose a more involved color-texture integration strategy based
on compression-based texture merging, which extracts the
color-texture features at pixel level by stacking the intensity
values within a 7× 7 window for each band of the converted
CIELAB image. Han et al. [21] propose a graph cuts based
color-texture cosegmentation method, where a comprehen-
sive texture descriptor is designed by integrating the nonlinear
compact multi-scale structure tensor and total variation flow.

Nonetheless, there are still many difficulties in extracting
accurate color-texture features that can locally adapt to the
variations in the image content. Because features are only
observable on a certain range of scales, it is obviously not
a good solution for most of the methods that use a fixed
local window to extract features from images. For an image
with multiple types of textures, the use of non-adaptive local
windows inevitably leads to blurred regions with small-scale
textures and misses the complete information in the regions
with large-scale textures.

To solve the problems above, we design a new seg-
mentation method for color-texture images which includes
the following four aspects: proposing a more effective
color-texture descriptor, extracting local scales adaptively,
correcting the descriptors near boundaries, and merging
homogeneous or small regions. The segmentation method is
described as follows.

At first, a novel color-texture feature descriptor (we name
it local histogram descriptor and it is abbreviated as LH) is
designed, which is based on color quantization techniques
and local color histograms within circular neighborhoods.
In order to make the LH descriptors suitable for textons
of different scales, the scales of the receptive fields of the
LH descriptors are adaptively set based on the similarity
between adjacent regions. Because the LH descriptor is used
for performing statistical operations within circular neighbor-
hoods, the LH descriptors of the pixels near texture bound-
aries cannot accurately describe the pixels’ texture features.
To solve this problem,we propose a texture boundary detector
to obtain the texture boundaries, which are used to guide
the correction of the LH descriptors for pixels near texture
boundaries. And then by clustering the LH descriptors at
suitable scales using the density-based spatial clustering of
applications with noise (DBScan) [22] method, an initial
segmentation result is obtained. Although theremay be severe
over segmentations, the segmentation provides a good basis
for the subsequent operation, i.e., region merging. Based on
the mean value of the LH descriptors on each initial seg-
mentation region and obtained texture boundaries, a region
merging method for merging homogenous and small regions
is designed to obtain the final segmentation result.

Compared with previous unsupervised color-texture seg-
mentation methods, the main contributions of our method are

twofold. Firstly, a new texture feature descriptor is designed,
which can effectively and robustly handle not only complex
shapes but also multiscale textures. Secondly, due to the cou-
pling with reliable boundaries, the image segmentation can
effectively eliminate the risk of over-segmentation because
of the slow change of brightness.

The rest of the paper is organized as follows. Related
work is reviewed in Section II. In Section III, we describe
how the proposed image segmentation method is constructed.
Section IV presents quantitative comparisons of our method
with existing image segmentation methods. We conclude in
Section V.

II. RELATED WORK
Existing color-texture image segmentation algorithms can be
generally classified into three major families, i.e., contour-
based, region-based, and machine learning based approaches.

Early contour-based methods try to detect edges by con-
volving a grayscale image with edge detection operators,
such as Sobel, Roberts, Prewitt, and Canny. These detectors
tend to overemphasize small, unimportant edges which are
often caused by repeated or stochastic textures. More recent
contour-based methods take into account color and texture
information for cue combination. Martin et al. [23] define
a linear operator Pb, which provides the probability of a
boundary at each image location and orientation by the means
that the features of the local brightness, color, and texture
cues are fed into a regression classifier that predicts edge
strength. Based on the Pb detector and combined with local
and global image information, a multiscale and global gPb
contour detector is defined, and then the oriented watershed
transform and ultrametric contour map techniques are used
for converting contours to a hierarchical region tree. The edge
detection method has a good effect on image segmentation
with large contrast between regions. But it is difficult to
segment images with no clear or many boundaries, and it
is difficult to produce a closed curve or boundary. Besides,
comparing with other methods, contour-based methods are
more susceptible to noise.

Region-based methods look for the similarity among
spatially connected pixels and group them into multi-
ple homogeneous regions based on feature descriptors.
Deng and Manjunath [24] designed a fully unsupervised
color-texture segmentation method (referred to as JSEG),
which implements a multiscale region growingmethod with a
novel segmentation criterion. One weakness of JSEG is that
it has no good solution for the over-segmentation problem.
In [16], a mean-shift approach is adopted for the analysis
of a complex multimodal feature space and for delineat-
ing arbitrarily shaped clusters in the application of color
image segmentation. The technique has a small number of
parameters and is very robust. Based on the normalized
cut algorithm [25], the authors in [26] propose a spec-
tral segmentation method with multiscale graph decomposi-
tion, which provides high-quality segmentations efficiently.
Min et al. [27] proposed a level set segmentation model
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FIGURE 1. Diagram of feature extraction and fusion.

integrating intensity and texture terms for segmentation of
natural images, which can better capture intensity infor-
mation of images than the Chan-Vese model [28], and
the texture feature is extracted by the adaptive scale local
variation degree algorithm. Gao et al. [29] proposed a
factorization-based level set model for texture image segmen-
tation (referred to as FACM), which utilizes the local spectral
histogram as the texture features and establishes an energy
function based on the theory of matrix decomposition.

In addition, image segmentation based on machine learn-
ing is also a hot topic. In recent years, there are great advances
in supervised machine learning based image segmenta-
tion using deep learning methods such as U-Net [30] and
RNN [31], [32], and these methods have greatly improved
segmentation performances compared with traditional meth-
ods. Despite this, these supervised machine learning based
methods require a large number of manually annotated train-
ing samples, and obtaining such samples is still a time-
consuming task. There are also some image segmentation
methods based on unsupervised machine learning. For exam-
ple, Xu et al. [33] improved the pulse coupled neural network
model, which can only be used for grayscale images, to a
method that can be used for color images. Unsupervised
methods reduce the need for manually annotating datasets,
but these methods are not mature enough to achieve accurate
segmentation results. In addition, for both supervised and
unsupervised machine learning based image segmentation
methods, their memory usage and computational time are
always excessive during the training process.

III. PROPOSED METHOD
In this section, the proposed method for color-texture image
segmentation is introduced in detail, and it includes the fol-
lowing four parts: (1) multiscale color-texture feature extrac-
tion based on the LH descriptor, (2) scale selection of the
LH descriptor, (3) correction of the LH descriptors near
texture boundaries and initial segmentation, and (4) region
merging.

A. COLOR-TEXTURE FEATURES
Intuitively, texture is composed of locally repeating textons.
Hence a local histogram within a small region can provide
a robust mechanism for modeling the distribution of the tex-
tons. Inspired by the characteristics of local repeatability of
textures, a feature descriptor based on local color histogram
is designed. We give a definition on the descriptor as follows:

Taking each pixel as the center of a circular neighborhood
in a given color-quantized image, the number of pixels with
different intensities is counted within the circular neighbor-
hood. Then a local histogram is obtained for collecting the
occurrences of each intensity value. The obtained local his-
togram is named as the LH descriptor H (xc, yc, r) at the
central point, where (xc, yc) is the pixel coordinate of the
center point, and r is the radius of the circular neighborhood.
For a given gray-quantized image Ī (x, y)K with K gray

levels, it can be seen that the LH descriptor is a K -dimension
vector. We use HK to represent an LH descriptor with K
dimensions, and its kth element can be expressed by

h (xc, yc, r)k =
∑

(x,y)∈N (xc,yc,r)

Ī (x, y)k (1)

where N (xc, yc, r) is a circular neighborhood with center
point (xc, yc) and radius r . Ī (x, y)k is a binary image and the
value of pixel (x, y) in the image is 1 when it belongs to the
kth gray level.
Moving along the image for every pixel, all the LH descrip-

tors of the image form a hyperplane, named as an LH
image for simplicity. The LH image provides local texture
information for each pixel and its circular neighborhood for
both grayscale and color images. For a given color-quantized
image, the LH descriptor first converts the color image into
multiple separate feature channels and then processes each
channel independently. Lastly, the outputs of all the chan-
nels at each pixel are concatenated. For example, the multi-
channel LH descriptor for pixel (xc, yc) in the RGB color
space is obtained and is denoted by:

H (xc, yc, r)S,K =
[
HR,KR , HG,KG , HB,KB

]
(2)
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FIGURE 2. Feature extraction process using the LH descriptor.

K =
∑

i∈{R,G,B}

Ki (3)

where S denotes the color space, K denotes the vector dimen-
sion, and Hi,Ki (i ∈ {R,G,B}) denotes the LH descriptor
in the ith channel with Ki quantized bins. That is, the LH
descriptor can be seen as a local gray histogram within a
circular neighborhood, and is extended to exploit color infor-
mation. Then, we form the final feature vector for the input
image by concatenating all these LH descriptors as shown
in Fig. 2.

The feature extraction using the LH descriptor includes
two processes, color quantization and obtaining the local
histograms.

1) COLOR QUANTIZATION
Color histograms have been widely used to capture image
properties for various computer vision applications. However,
there are issues with the color histograms to be directly used
for texture segmentation. Firstly, the dimensionality of color
histograms is too high, and this will present a challenge com-
putationally. Furthermore, the majority of the histogram bins
would be empty, which may result in unreliable estimations
on the texture features. Besides, even in the same texture of
a natural image, there may be a small difference in lightness,
noise, etc. Thus we should classify pixels with similar colors
into one class rather than classify pixels with exactly the same
color into one class.

Hence, a color quantization technique is adopted before
obtaining color histograms. Color quantization algorithms
mainly contain two parts, i.e., palette design and pixel map-
ping. The process of palette design reduces the color com-
plexity of the original image, yet keeps a sufficient number of
representative colors. In this paper, the mean shift clustering
algorithm [34] is used in the design of color palette and pixel
mapping. After the pixels of the image are clustered in the
RGB color space by the mean shift clustering algorithm,
the cluster center obtained is the color palette, and the corre-
spondence between each pixel and its corresponding cluster
center is the pixel mapping, which is to find the closest color
from the color palette to represent the original colors of the
input image with minimum distortion.

2) LOCAL IMAGE STATISTICS
The high dimensionality problem of the traditional color his-
tograms can be alleviated by color quantization techniques.

FIGURE 3. A circular mean filtering with r = 3.5.

Now there is another issue which needs to be addressed.
That is, the color histogram of the entire image does not
include any spatial distribution of colors. Hence the shape
and texture information of the image may not have been fully
used. To overcome this problem, the local color histogram
is computed within a circular neighborhood. As expressed
in (1), for each bin of the local histogram, the counting can be
obtained by convolving a mean filtering C (r) with a binary
image, which is obtained by selecting the corresponding rep-
resentative color in the quantized image. The values for C (r)
can be obtained in two steps: (1) The values of the pixels
completely within the circular boundary are the same, and
equal to 1, which are denoted by the yellow pixels in Fig. 3.
The values of the pixels partially within the circular boundary
are estimated by an interpolation operation, and their values
are equal to the percentage of the area within the circular
boundary, which are denoted by the orange and light blue
pixels in Fig. 3. (2) All the values for C (r) are normalized
to make their summation equal to 1.

B. DESCRIPTOR SCALE SELECTION
The size of the LH descriptor is closely related to the scale
of textons. If the size of the LH descriptor is smaller than
the scale of the textons, the obtained information about the
textons is incomplete and with missing details. In addition,
a real-world image usually contains more than one types of
textons, and the scale of a texton may vary with the imaging
angle and the undulating surface of the object. For example,
Fig. 4 shows a color-texture zebra image where there is only
one kind of texton on the zebra but with different scales. The
neck area of the zebra contains large-scale textures, while
the hip and waist of the zebra contains small-scale textures.
When we obtain the LH descriptors with a single scale for
the zebra image, it can be seen intuitively that if the scale is
small, the LH descriptor is inadequate to represent the texture
information on the zebra neck, while if the scale is large,
the LH descriptor blurs the texture boundary on the hip and
waist of the zebra. Therefore, it is necessary to set an adaptive
scale for the LH descriptor in different areas of a given image.

In general, when the LH descriptor at a pixel is expanded to
a larger scale, there will be more pixels to be included in the
larger circular neighborhood. Based on their locations, these
pixels can be divided into two categories, i.e., pixels within
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FIGURE 4. Two examples of visual results obtained by an increasing scale
for the LH descriptor.

FIGURE 5. Separability between two categories of pixels. One category
which is within a circular neighborhood is denoted by a yellow region
and the other category is denoted by a blue region.

a circular neighborhood and pixels on the ring, as shown
in Fig. 5. If the two categories of pixels are homogenous, they
are inseparable; otherwise, they are separable. So, the sep-
arability can be used to find a suitable scale. In order to
obtain a quantitative measure on how separable the two cat-
egories are, a distance measure is required. In this paper, the
Bhattacharyya distance [35] is used to represent the
separability. For each pixel (x, y) in a given image,
the Bhattacharyya distance between the color-texture feature
descriptors h (x, y, ri) and h (x, y, ri+1) on adjacent scales is
calculated as follows.

BC (x, y, ri, ri+1)

= − ln

 ∑
k=1,··· ,K

√
h (x, y, ri)k · h (x, y, ri+1)k

 (4)

Fig. 6 shows how to select the scale using the Bhat-
tacharyya distance, and the red dots represent the selected
scales in a series of radii with a pre-set range. Fig. 6(b) and
Fig. 6(c) represent two different cases, i.e., pixel (169, 141)
located in a region with the same texture and pixel (230, 137)
located in a changing texture region respectively. As shown
in Fig. 6(b), with the scale of the receptive field increasing
within a certain range, the Bhattacharyya distance tends to
become smaller and finally stabilizes. The Bhattacharyya
distance is relatively small with the increasing scale, which
indicates that the textures in the receptive field are always
similar, so the largest circle is taken as the receptive field to
obtain more accurate texture description information. While
in the second case, as shown in Fig. 6(c), with the increasing

FIGURE 6. Different scales of the LH descriptors at different pixels.
(a) The locations of the two pixels in the test image. (b) The plot of the
Bhattacharyya distance at pixel (196, 141). (c) The plot of the
Bhattacharyya distance at pixel (320, 137).

scale, the Bhattacharyya distance becomes higher between
the 4th and 5th circles because on the 5th circle it detects a
new texture. So, the receptive field for pixel (230, 137) is set
at the 4th circle.

C. CORRECTION AND INITIAL SEGMENTATION
In general, the positions of pixels in a given multi-texture
image can be divided into two categories, i.e., pixels far
away from the texture edges and pixels near or on the texture
edges. For the first category of pixels, the LH descriptors can
be effectively and accurately extracted within their circular
neighbors. While for the second category of pixels, there may
be more than one types of textons within their default circular
neighbors. If the LH descriptor is directly used in image seg-
mentation, it may lead to uncertain edges in the segmentation
results. Therefore, for pixels in the second category, the LH
descriptors need to be corrected. After correction, the LH
descriptors can be used to obtain a initial segmentation result.

1) CORRECTION OF LH DESCRIPTORS
To obtain the corrected receptive fields, we first design a
texture boundary detection method, which is described as
follows.

In [23], Martin et al. define a gradient-based boundary
detector Pb which provides the posterior probability of a
boundary with orientations at each image pixel. Based on the
Pb detector, we propose a variation of the detector Pb for our
application, which is described below.

For each pixel on the color-quantized image Ī (x, y),
the circular neighborhood centered on the pixel is divided
into two half-disk gθ and hθ by a line segment at an angle θ
through this pixel. For each half-disk in the RGB color space,
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FIGURE 7. Merging of color quantized images. From left to right: original
image, quantized image, merging result guided by texture boundaries,
and merging result guided by optimized texture boundaries.

FIGURE 8. Comparison of extracted boundary results between our
method and the method in [23]. It can be seen that our boundary map
(right) is smoother in texture compared with the boundary map obtained
by the method in [23] (left).

the histograms of every color channel are obtained. The Pb
with an arbitrary orientation is described as the histogram
difference, which is computed by

G (x, y, r, θ) =
1
2

∑
k=1,··· ,K

(gθ (k)− hθ (k))2

gθ (k)+ hθ (k)
(5)

where K denotes the number of color-quantized bins, and r
denotes the radius of gθ and hθ . We use eight orientations
for θ : 0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, and 157.5◦,
and obtain a multi-orientation Pb detector by adding eight
values from the Pb detector together. To adapt to different
scales of textons, same with the LH descriptor, the Pb detec-
tor is extended to multiscales by changing the radius r of
the circular neighborhood in a given range. The multiscale
Pb detector is the result of all the responses from the Pb
detectors in a given range of radius from r1 to rn, which is
expressed by

mPb (x, y) =
∏

r=r1,··· ,rn

∑
θ

G (x, y, r, θ) (6)

where ri is the radius of the ith scale of the Pb descriptor.
We then apply the mPb detector to the color-quantized

image, and the initial texture boundaries are obtained. After
that, the gradient edges of the given image are used to elim-
inate false boundaries generated by color quantization as
shown in Fig. 7. Then, the texture boundaries are extracted
to be used at a later stage. There is a difference in (6) from
[23] in that the summation operation for the Pb detectors
with different scales is replaced by a multiplication operation
to better blur the internal structure of the texture, as shown
in Fig. 8.

After obtaining the boundary map, long boundaries are
selected from the boundary map for correcting the descrip-
tors for the pixels near boundaries because large regions
are generally enclosed by long boundaries. For each long

FIGURE 9. The receptive field of a pixel near a texture boundary: the red
dot denotes the current pixel and the red circle denotes the minimum
receptive field of the red dot. The purple circle denotes the corrected
receptive field of the current pixel. The region inside the imaginary lines
denotes B-ROM.

FIGURE 10. The effect of the correction of the LH descriptors. (a) Filtered
image without correction. (b) Filtered image with correction.

FIGURE 11. Initial segmentation results of two images with complex
textures.

boundary and its neighborhood, there is a banded region of
mixture (B-ROM), which is centered at the boundary location
with a band with the width of 2R as shown in Fig. 9. For
each pixel in B-ROM, the receptive field of its LH descriptor
is changed to a circular neighborhood that is tangent to the
contour and with a radius of R.

As shown in Fig. 10, we use the average filter instead of
the LH descriptor to intuitively observe the corrected effect of
the receptive field. After correcting the LH descriptors near
boundaries, the edges of the feature map become sharper.

2) INITIAL SEGMENTATION
We use a DBScan-based [22] approach to build local clusters
of pixels with the LH descriptors and the normalized x, y pixel
coordinates, which are expressed by multiplying the coordi-
nates by a fixed value. Indeed, the method can be initially
used in this step when we apply the method of segmenting
the image into several regions. However, to increase the
robustness of the algorithm, we perform an over segmentation
and then merge the regions. In Fig. 11, we can see the results
of initial segmentations.

D. REGION MERGING
The initial segmentation described earlier divides the image
into many small regions. Although there may be severe over
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FIGURE 12. Comparison of segmentation results on special texture
images. (a) A test image with rows differing in color and columns
differing in texture. (b) A test image synthesized from five sub-images
with different colors and textures. (c) A test image with two
irregular-shape sub-images.

segmentations, the initial segmentation provides a good basis
for region merging. In this section, we propose a fast and
efficient region merging method based on the texture bound-
aries and initial segmentation. That is, the two nearby initial
segmentation regions are determined whether to merge into
one by two merging criterions, i.e., the texture boundaries
and similarity in the mean value of the LH descriptors (mLH,
for short) between two nearby initial segmentation regions.
Texture boundaries can help avoid over segmentation because
of brightness variations. The similarity is represented by the
Bhattacharyya distance between the mLH descriptors. The
merging process is as follows: first the mLH descriptors
of each initial segmentation region are calculated; then the
mLH descriptors are used to calculated the Bhattacharyya
distance of each two nearby regions; at last, only when
the Bhattacharyya distance between the two nearby regions
is smaller than a certain threshold and there is no texture

FIGURE 13. Twenty mosaic images from the DTD database.

boundary between them, the two regions are merged into one.
In addition, the threshold is obtained from a large number of
practical experiments.

IV. EXPERIMENTS
In this section, we evaluate the performance of the proposed
method on one synthetic and two natural image databases.
The describable textures database (DTD) [36] is selected as
a synthetic image test, and the BSDS500 dataset [37] and the
Weizmann database [38] are selected as natural image tests
for practical image segmentations.

Besides, both subjective and objective evaluation meth-
ods are used in these evaluations. The subjective evalua-
tion method is to compare and analyze the segmentation
results of each segmentation method with reference to ground
truth. As for objective evaluation, we select four popular
and effective metrics [39], i.e., the probabilistic rand index
(PRI) [40], the variation of information (VoI) [41], the global
consistency error (GCE) [42], and the boundary displacement
error (BDE) [43]. PRI represents the agreement between the
obtained segmentation and the ground truth. VoI measures
the distance between two segmentations in terms of their
average conditional entropy, thereby roughly measuring the
amount of randomness in one segmentation that cannot be
explained by the other. GCEmeasures the extent to which one
segmentation can be viewed as a refinement of the other. BDE
measures the average displacement between the boundaries
of two segmented images.We should notice that PRI ranges in
[0, 1], and a larger value is better; VoI varies in [0,+∞), and
a smaller value is better; GCE ranges in [0, 1], and a smaller
value is better, and BDE varies in [0,+∞) in pixels, and a
smaller value is better. Therefore, a segmentation is better if
PRI is larger and the other three metrics are smaller when
compared with the ground truths.

Our proposed method is compared with six other classical
and advanced segmentation techniques, i.e., the unsupervised
J-images segmentation (JSEG) [24] method, the multiscale
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FIGURE 14. Visual comparison of the results obtained with the seven methods on the DTD database.

normalized cuts (MNCut) [26] method, the compression-
based texture merging (CTM) [20] method, the segmentation
by aggregating superpixels (SAS) [44] method, the contour-
guided color palettes based (CCP-LAS) [45] method, and the
factorization based active contour model for texture segmen-
tation (FACM) [29] method. The test results will be given and
analyzed in the following section.

A. PARAMETER SETTING
There are a few parameters that can be set to influence the
segmentation results for our method. Most of the parameters
can be set to fixed values. The fixed parameters used in the
LH descriptor are set as follows: The radius r shown in (1)
are from 5 to 14, and the step size for two adjacent filters
is 1. The number of segmented regions on the input image is
set to 100 to obtain an over segmentation result to maintain
segmentation details.

For the purpose of fair comparisons, the main parameter
settings for the six competing methods are given below. The
JSEGmethod has three parameters that should be set, i.e., the
color quantization threshold, the scale, and the merge thresh-
old. Just as the authors suggested, these parameters can be
set to 255, 1.0, and 0.4. The number of segmented regions

for MNCut is set appropriately according to the image con-
tent. The CTM method is a simple agglomerative clustering
algorithm derived from a lossy data compression approach,
and the texture difference threshold is set to 0.15. For the
SAS method, the affinity coefficient, the scale factor, and
the neighbor numbers of super pixels are set to 0.001, 20,
and 1 respectively. For the CCP-LAS method, we select the
spectral BW parameter as 5, as the authors used in their paper.
For the FACM method, the two balance coefficients are set
to 1 and 0.04, respectively, the integration scale is set to 20,
the number of bins of histogram is set to 12, and the initial
contour divides the image into 9 identical 3× 3 sub-images.

B. EXPERIMENT ON SYNTHETIC IMAGES
The synthetic image segmentation task is tested firstly on
some specifically designed synthetic images, which are from
the DTD database. Fig. 12 shows the comparisons of the
segmentation results among our method, benchmark JSEG,
MNCut, CTM, SAS, CCP-LAS, and FACM.

The first row of Fig. 12(a) shows a challenging synthetic
color-texture image in which the row sub-images differ in
color and the column sub-images differ in texture. The test
is set to evaluate the capability of our proposed method on
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FIGURE 15. Thirty-two test images from the Weizmann database and results from our method. The rows
a1-a4 are the original images overlaid with the boundaries of the segmentation results obtained by our
proposed segmentation method, and the rows b1-b4 are the corresponding segmentation results.

discriminating different colors and textures. It can be seen that
our proposed method and CCP-LAS can segment the image
with different colors and textures accurately. However, both
JSEG and MNCut fail in segmenting different texture areas
as shown in the other rows of the first column. Although
the other two methods, CTM and SAS, can also separate
different colors and textures, the dividing boundaries are inac-
curate. FACM can segment regions with different textures
very well, but it fails in separating different colors. The first
row of Fig. 12(b) shows a more complex image, which is
synthesized from five sub-images with different colors and
textures. On one diagonal, the three sub-images have similar
color but different textures. On the other diagonal, the three
sub-images have different colors but with the same texture.
It can be seen that, except for the CTM and FACM methods,
all other methods can distinguish the regions with the same
texture but different colors. As for the regions with the same
color but different textures, only the SAS, CCP-LAS, FACM,
and our method can segment the image correctly, and our
method performs best among these segmentation methods.
Although FACM performs well in separating regions with
different textures, it cannot distinguish colors well. The first
row of Fig. 12(c) shows a synthesis image with two irregular-
shaped sub-images, and the sub-images are with different
textures but with similar colors. It can be seen that only FACM
and our proposed method can separate the two sub-images
with different color-texture features and locate the boundaries
accurately. The segmentation results in these tests demon-
strate that our approach has a much better performance than
the other six methods, especially for distinguishing regions
with different textures but with similar colors.

TABLE 1. The average values of PRI, VoI, GCE, and BDE for the seven
algorithms on the synthetic images in Fig. 13.

Algorithm PRI VoI GCE BDE
JSEG 0.9246 0.9908 0.1148 20.9811
MNCut 0.8644 1.4405 0.2446 21.5578
CTM 0.8909 1.8960 0.1485 14.5395
SAS 0.7717 1.3052 0.1414 22.0476

CCP-LAS 0.7876 1.4361 0.1393 21.2063
FACM 0.6717 1.6854 0.1206 32.2371
Ours 0.9446 1.3756 0.0945 12.3513

Meanwhile, more synthetic color-texture images are cho-
sen from the DTD dataset for testing. Compared with the
images in Fig. 12, the color-texture features in these images
are more random, irregular, and complex, as shown in Fig. 13.
In this experiment, the numbers of segmented regions for
MNCut, SAS, CCP-LAS, and our method are all set to 4 in
rows 1-2 and 5 in rows 3-4 in Fig. 13. The parameters
for the other three methods, JESG, CTM, and FACM, are
adaptively adjusted by their algorithms. As shown in Fig. 14,
our proposedmethod performs best in the comparison results,
especially in accurately locating the region boundaries.

In addition, to objectively evaluate the segmentation results
from our proposed method compared with other methods,
the PRI, VoI, GCE, and BDE values are obtained and given
in Table 1.
As shown in Table 1, the segmentation result of our method

is the most accurate. JSEG segments well but it obtains a
bad BDE result. MNCut has a bad result in GCE because it
generates more errors. As a segmentation method based on
texture, CTM achieves a good score in BDE, but it is not able
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FIGURE 16. Comparison of segmentation results between our method
and other six methods on four real-world images with rich color-texture
information. (a) Zebra. (b) Snowshoes. (c-d) Leopard.

to segment the texture images into correct regions, so it has a
bad VoI score. SAS and CCP-LAS are based on boundaries
and they are not good at texture image segmentation. FACM
only achieves a good score in GCE becausemany of its results
are under-segmented.

As described earlier in the comparative experiments, for
the qualitative comparisons in Figs. 12-14 or the quantitative
comparisons in Table 1, our proposed method has a superior
performance compared with the other color segmentation
methods in the aspects of accuracy, robustness, and color-
texture discriminating capability.

C. EXPERIMENT ON NATURAL IMAGES
In this subsection, we validate the effectiveness of our
proposed method on two natural image datasets, i.e., the
Weizmann database and the Berkeley dataset. Both of them
include a set of real-world images with diverse, complex,
and irregular color-texture patterns. The experiments are
conducted to obtain quantitative and qualitative evaluations
on the performances of our proposed method. Meanwhile,
the JSEG, MNCut, CTM, SAS, CCP-LAS, and FACM algo-
rithms are also chosen for comparisons.

We first begin validating our proposed method on
32 color-texture images from the Weizmann dataset, and the

FIGURE 17. Comparison of segmentation results between our method
and other six methods on four real-world images with gradually changed
brightness. (a) Sky. (b) Sea. (c) Surfing. (d) Horses.

segmentation results from our method are given in Fig. 15,
which indicates that our method extracts the objects with
accurate and smooth boundaries. There are some test images
which contain rich and complex textures, such as plant, build-
ings, and animals, and there are some test images which
contain gradual brightness changes, such as the sky behind
the ferris wheel and water surrounding an island. These
experimental results show that our method is not only robust
against brightness changes, but also can discriminate regions
with rich color textures.

We next test some more complex color-texture images
from the well-known Berkeley segmentation database
(BSDS500). The images considered in this section are char-
acterized by nonuniform textures, fuzzy borders, and low
image contrast, and known color-texture segmentation meth-
ods often obtain undesirable results.

In order to demonstrate the effectiveness of our method
in handling images containing rich and complex textures,
four images (as shown in Fig. 16) are selected from
the BSDS500 database. The comparisons of our proposed
method and the other six segmentation methods are given in
Fig. 16. In Fig. 16(a), a zebra image is tested, which contains
different-scale strip textures. For instance, the texture in the
waist region is very dense, while the scale of the strip texture
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FIGURE 18. Forty-eight test images from the Berkeley segmentation database. The rows a1-a6 are original images overlaid with the
boundaries of the segmentation results obtained by our proposed segmentation method, and the rows b1-b6 are corresponding
segmentation results.

in the hip and neck regions is relatively large. Therefore,
it is very suitable to demonstrate the superior scale discrim-
inating power of our proposed method. It can be seen from
Fig. 16(a) that, benefiting from the multiscale extraction of
the LH descriptor, our method can separate the zebra as an
entire object. However, the other six segmentation methods
can only segment parts of the zebra, especially in regions
with low color contrast and fine details, e.g., the zebra fore
legs which are blurred by grass in the background. Besides,
both SAS and CCP-LAS produce over-segmentation results
on the neck of the zebra due to its relatively larger scale.
Moreover, in Fig. 16(b), our method can not only discriminate
the large-scale texture as a single area, but also preserve
more details. Hence, the two rectangular holes are separate
in the pair of snowshoes. In Fig. 16(c-d), our method can

extract camouflaged leopards as an entire object from their
surroundings. As for the other six compared methods, JSEG,
MNCut, and CTM totally fail in these tests, although SAS,
CCP-LAS, and FACM can segment parts of the leopards,
and their segmentation results appear to be seriously over-
segmented and wrongly segmented to some extent.

Another problem in image segmentation is that it is easy to
produce over-segmentation in regionswith gradually changed
brightness by many color image segmentation methods.
In Fig. 17, four images are tested, which contains rich color-
texture information, and the brightness is gradually changing
in some regions. Based on the boundary-guided region merg-
ing, our method is robust against brightness variations. For
the textures with gradually changed brightness, for example,
the sky and sea regions as shown in Fig. 17(a-c), our method
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TABLE 2. The average values of PRI, VoI, GCE, and BDE for the seven
algorithms on the Berkeley segmentation database.

Algorithm PRI VoI GCE BDE
JSEG 0.7092 2.2498 0.2700 19.8015

MNCut-20 0.7174 2.6240 0.1930 12.4682
MNCut-10 0.7607 2.3547 0.2494 13.7414

CTM 0.7220 2.3487 0.2392 18.2995
SAS-20 0.7917 2.1410 0.1955 12.4949
SAS-15 0.7884 2.0367 0.2064 12.6391
SAS-10 0.7814 1.9247 0.2141 13.7763
CCP-LAS 0.7449 1.8902 0.2025 13.2134
FACM 0.6671 1.9559 0.1898 23.0955
Ours 0.8108 1.4620 0.1330 11.4320

avoids over-segmented results because of the region merg-
ing guided by boundaries. The segmentation results from
the three comparison methods JSEG, MNCut, and CTM
appear to be over-segmented. FACM performs well as shown
in Fig. 17(b), but it appears to be under-segmented as shown
in Fig. 17(a, c). Moreover, in Fig. 17(d), only our method can
retain the horses as an entire object with accurate boundaries,
because there is uniformity brightness on the horse back.

In order to illustrate the effectiveness of our method in
handling different images, 500 images from the Berkeley
database are used for testing. Part of segmentation results are
shown in Fig. 18.
The experimental results on the Berkeley database are

given in Table 2 which shows that the proposed method
achieves a much better performance compared with the other
algorithms based on the PRI, VoI, GCE, and BDE measures.

V. CONCLUSION
In this paper, we propose a color-texture image segmentation
method. To improve the color-texture discriminating capabil-
ity, a new color-texture descriptor based on local histograms
is designed to model the color-texture distribution. Mean-
while, the color-texture descriptor can also obtain the scale
information of the textures. Afterwards, a variant of the local
multiscale probability of a boundary detector is designed
to extract texture boundaries. Then the texture boundaries
are used for region merging. A large number of qualitative
and quantitative experiment results show that our method
outperforms other methods for color-texture segmentation,
especially for images with rich color textures and gradual
brightness changes.
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[41] M.Meilǎ, ‘‘Comparing clusterings: An axiomatic view,’’ in Proc. 22nd Int.
Conf. Mach. Learn., Aug. 2005, pp. 577–584.

[42] D. Martin, C. Fowlkes, D. Tal, and J. Malik, ‘‘A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,’’ in Proc. IEEE Int. Conf.
Comput. Vis., vol. 2, Jul. 2001, pp. 416–423.

[43] J. Freixenet, X.Muñoz, D. Raba, J. Martí, and X. Cufí, ‘‘Yet another survey
on image segmentation: Region and boundary information integration,’’ in
Computer Vision—ECCV. Berlin, Germany: Springer, 2002, pp. 408–422.

[44] Z. Li, X.-M. Wu, and S.-F. Chang, ‘‘Segmentation using superpixels: A
bipartite graph partitioning approach,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 789–796.

[45] X. Fu, C.-Y. Wang, C. Chen, C. Wang, and C.-C. J. Kuo, ‘‘Robust image
segmentation using contour-guided color palettes,’’ in Proc. IEEE Int.
Conf. Comput. Vis., Dec. 2015, pp. 1618–1625.

YANG LIU received the B.S. degree (Hons.) from
the China University of Geosciences, in 2013.
He is currently pursuing the Ph.D. degree with
Jilin University. His research interests include
stereo vision, 3D reconstruction, and image
segmentation.

GUANGDA LIU received the Ph.D. degree in
optical engineering from the Changchun Institute
of Optics, Fine Mechanics and Physics, Chinese
Academy of Sciences, Changchun, China, in 2000.
He then joined Jilin University, China, where he
is currently a Professor carrying out research and
working on biomedical signal processing andmed-
ical instrument development. His current research
interests include human blood flow parame-
ters detection and hepatic functional reserves
assessment.

CHANGYING LIU received the Ph.D. degree from
the Harbin Institute of Technology, Harbin, China,
in 2006. He then joined Jilin University, China,
where he is currently a Professor carrying out
research and working on the visual measurement
of railway vehicles. His current research interests
include large-scale 3D precise visual measurement
and 3D reconstruction.

CHANGMING SUN received the Ph.D. degree in
computer vision from Imperial College London,
London, U.K. in 1992. He then joined CSIRO,
Sydney, NSW, Australia, where he is currently a
Principal Research Scientist carrying out research
and working on applied projects. His current
research interests include computer vision, image
analysis, and pattern recognition. He has served
on the program/organizing committees of various
international conferences. He is an Associate Edi-

tor of the EURASIP Journal on Image and Video Processing.

VOLUME 7, 2019 160695


