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ABSTRACT By offloading storage and computing resources to the edge of networks, mobile edge computing
(MEC) is emerged as a promising architecture to reduce the transmission delay and bandwidth waste for
mobile multimedia services. This paper focuses on a multi-service scenario in the MEC systems, where
the MEC server can provide three multimedia services including live streaming, buffered streaming and
low latency enhanced mobile broadband applications for edge users at the same time. In order to satisfy
various quality of service (QoS) requirements for different multimedia applications, the 5G QoS model is
applied. Notably, the packets from the multimedia applications with the same or similar requirements are
mapped into the same QoS flow, and each QoS flow is processed individually. Therefore, how to effectively
schedule the limited radio resource for QoS flows is an intractable problem. To address the problem above,
a QoS evaluation model is designed, and a QoS maximization problem is formulated. Furthermore, a deep
reinforcement learning method, deep-Q-network, is adopted to make decisions to allocate radio resource
dynamically. Compared with round-robin and priority-based scheduling algorithms, the simulation results
validate that the proposed algorithm outperforms other resource scheduling algorithms for multi-service
scenario.

INDEX TERMS Deep-Q-network, deep reinforcement learning, mobile edge computing, multimedia,
quality of service.

I. INTRODUCTION
Triggered by the rapid advance of diverse smart devices,
the mobile data traffic is experiencing a tremendous growth.
Cisco’s forecasts [1] predicted that mobile data traffic will
increase sevenfold between 2017 and 2022, which will bring
significant challenges to wireless networks. Besides, with
the enhancement of 5G technologies, e.g., network slice [2],
device-to-device communication [3]–[5], edge caching [6],
Internet of things [7], [8] and so forth, many streaming
media services emerge [9], [10]. Specifically, various multi-
media applications frommassive mobile devices pose diverse
requirements (e.g., ultra-low latency, high bitrate, etc.) on
Radio Access Network (RAN).

Driven by the strict requirements of multimedia services,
mobile edge computing (MEC) [11]–[14] has emerged as
a crucial paradigm, where service environment and cloud
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computing capabilities are deployed to the edge within the
RAN. Since storage, processing capacity and computing
resource are moved closer to mobile users, MEC architecture
can bring the possibility to enable multimedia services that
require low latency and high bitrate, such as Augmented
Reality (AR)/Virtual Reality (VR) services.

Attracted by the advantage of MEC, more and more
researchers pay attention to MEC applications in recent
years. MEC architecture is introduced and applied in various
scenarios, such as edge caching [15]–[19], service deploy-
ment [20], [21], low latency data transmission [20]–[22],
video on demand (VoD) [17], [23], high bitrate multimedia
streaming [24], [25], security management [19], [26], and
other multimedia services. In addition, to figure out complex
issues in MEC systems, machine learning (ML) techniques
are adopted [19], [27], [28].

From the previous works, researchers focus on a single
service with specific quality of service (QoS) requirements.
To the best of our knowledge, there are few researches
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on multimedia multi-service in MEC system, where the
MEC server can provide multiple services with various QoS
requirements for edge users. However, the QoS flow is the
finest granularity of QoS differentiation in the 5th genera-
tion (5G) wireless systems [29], and the 5G QoS model is
employed in this paper. In other words, data packets from
various multimedia applications are mapped into different
QoS flows, and those packets are classified by their QoS
characteristics. Multimedia data packets in a QoS flow are
marked with a distinct ID. In the gNodeB (gNB), processing
resource of RAN infrastructure is allocated to each QoS flow
to satisfy its distinct QoS requirements respectively. Hence,
how to effectively allocated the limited RAN resource to
those QoS flows effectively is an intractable problem.

This paper investigates multimedia multi-service in the 5G
MEC system. Notably, the MEC server can provide three
typical services, i.e., live streaming, buffered streaming and
low latency enhanced mobile broadband (eMBB) applica-
tions. Besides, the packets scheduling mechanism and QoS
model in MEC system are analyzed. Based the QoS eval-
uation model, the resource allocation problem above can
be formulated as a multimedia multi-service QoS optimiza-
tion problem. Inspired by the success of ML in settling
complex problems, a deep reinforcement learning technique,
deep-Q-learning (DQN) [30], is employed to solve the QoS
optimization problem in MEC systems. To be more specific,
four crucial ingredients, i.e., actions, states, observations
and rewards are designed for DQN, and then a DQN based
resource allocation algorithm is proposed. Adopting DQN
technique, RAN resource is allocated dynamically to differ-
ent QoS flows in the light of system states. Besides, compared
with other resource allocationmethods including round-robin
scheduling and priority-based scheduling, the performance of
the proposed DQN based algorithm is evaluated in terms of
QoS evaluation value, packet delay, packet loss and through-
put. The simulation results validate that the proposed DQN
based algorithm can efficiently allocate RAN resource to
different QoS flows to meet diverse QoS requirements, espe-
cially in high bitrate scenarios.

The main contributions of this paper can be summarized as
follows.
• To the best of our knowledge, this paper is the first
research which focuses on the 5G QoS model [29],
where the packets from various applications are mapped
to different QoS flows with different QoS character-
istics. Notably, a multimedia multi-service scenario
including live streaming, buffered streaming and eMBB
applications is considered.

• A QoS evaluation model for multi-service is designed,
and then a multi-service QoS optimization problem is
formulated. To address the optimization problem, DQN
framework is applied to allocate RAN resource to QoS
flows dynamically.

• This paper evaluates the convergence of the proposed
DQN based algorithm. Compared with round-robin and
priority-based scheduling algorithms, the performance

of the proposed algorithm is validated in terms of aver-
age QoS, average packet delay, average packet loss ratio
and throughput.

The rest of this paper is arranged as follows. The rel-
evant researches on multimedia applications in MEC sys-
tems are reviewed in the next section. Section III presents
the QoS model of the multi-service MEC system, including
QoS flows, RAN resource mapping and packets scheduling
mechanism. Then, a multi-service QoS optimization problem
is also formulated in Section III. To solve the optimization
problem above, a DQN based dynamic resource allocation
algorithm is proposed in IV. Section V evaluates the perfor-
mance of the proposed resource allocation method. Finally,
Section VI concludes this paper.

II. RELATED WORKS
Authors in [15] designed an Edge-Boost caching algorithm
for multimedia delivery with MEC in 5G device-to-device
network. Jointly minimizing the peak population of unserved
clients and the number of replicas, the proposed caching algo-
rithm obtained better delay reduction and cache utilization.
Reference [16] studied how to minimize the traffic between
content delivery network (CDN) and network edge, and sup-
port transparently and dynamically switch between multiple
CDNs to keep QoS rates. Reference [17] solved a joint opti-
mization problem of caching and transcoding for video on
demand (VoD) services inMEC systems.MEC is also applied
to adaptive video streaming in [18], and authors explored how
to jointly maximize quality of experience (QoE) and mini-
mize backhaul traffic for device-to-device communication.

The work presented in [20] studied the deployment of
gNBs and MEC points to support low latency services, such
as ultra-reliable and low latency communications (URLLC),
AR/VR and so forth. Aiming to minimize the traffic load
caused by services forwarding, authors in [21] proposed a
decentralized algorithm to help base station make the deci-
sions of services placement and user association. Taking
into account data compression/decompression and data trans-
mission delay, [22] addressed the multimedia compression
strategy forMEC systems tominimize the end-to-end latency.

Considering the distortion rate of VoD and the coordination
among MEC servers, [23] studied how to maximize QoE
for VoD streaming in MEC. MEC is utilized in Olympic
Stadium scenario [24], which can be seen as an eMBB use
case. An NFV-based MEC is proposed to transmit ultra-high
quality multimedia streaming [25], such as 4K and 8K video.
As an application of MEC in the therapy field, [26] presented
an in-home therapy management framework for on-demand
data-sharing scenario.

The work in [19] investigated how to protect MEC sys-
tems from various attacks, and a reinforcement learning
(RL) based security solutions is given. By using MEC, [27]
achieved high recognition accuracy and low recognition
time in video surveillance systems. To optimizing offloading
decision and image compression parameter, a Q-learning
approach is utilized in [27]. Addressing the trade-off between
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FIGURE 1. Multimedia multi-service in MEC system.

energy-efficiency and processing-throughput, authors in [28]
proposed a ML based approach to make decisions (i.e.,
offloading data processing to an edge or at core). Besides,
this work also presented that MEC can be adopted for energy
conservation.

Unlike the works above, this paper considers a multi-
service scenario in MEC system. Notably, multi-service
consists of live streaming (e.g., live broadcast, interactive
gaming), buffered streaming (e.g., www, ftp, p2p file sharing,
progressive video) and low latency eMBB applications (e.g.,
AR/VR). Those services are characterized by different QoS
requirements. How to allocate the shared RAN resource to
those services are addressed in this paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, a multi-service scenario in MEC system is
introduced first. Then, the QoS flow mapping and packets
scheduling mechanism are presented. In addition, in order
to quantify the bitrate and delay characteristics of QoS
flows, the traffic model and delay model are given respec-
tively. Finally, a multi-service QoS optimization problem is
formulated.

A. MULTI-SERVICE SCENARIO IN MEC SYSTEM
As shown in Fig. 1, this paper considers a scenario where
a MEC server can provide various multimedia applica-
tions for multiple user equipments (UEs). The data packets
from multimedia applications are mapped into several QoS
flows, according to their different QoS characteristics. Then,
the data packets in different QoS flows are processed in
the gNB and delivered to UEs. In other words, the QoS

flows shared the same radio infrastructure and RAN resource.
Following a specific resource allocation scheme, the QoS
flows can be mapped to different RAN resource segments.
Therefore, how to adjust resource allocation scheme to opti-
mize the system performance is investigated.

Formally, this paper considers a scenario where M UEs
can request N different multimedia applications from the
MEC server at the network edge. Besides, the data packets
from those applications can be mapped into three QoS flows
with different QoS characteristics, and each QoS flow is
marked by an ID (QFI, QoS Flow ID) q (q ∈ 0, 1, 2).
In detail, q = 0 represents low latency eMBB applications,
q = 1 represents live streaming, and q = 2 denotes buffered
streaming.

B. QoS FLOW MAPPING AND PACKETS SCHEDULING
The association of data packets to QoS flows can be iden-
tified by QFI, priority level and other QoS characteris-
tics. Therefore, when a packet is mapped into a QoS flow,
the scheduler only focuses on its QoS characteristics. The
packet scheduler doesn’t care which application the packet
comes from and which UE to deliver. In other words,
the packets from multiple applications can be mapped to the
same QoS flow. Similarly, the packets in the same QoS flow
can be delivered to different UEs. In brief, the packets with
the same or similar QoS characteristics will be mapped to
the same QoS flow. Formally, a packet in the qth QoS flow
is denoted by ptq, where t means that the gNB receives the
packet at time slot t .
The packet scheduling mechanism is depicted in Fig. 2.

For each QoS flow q, there is a buffer Bq in the gNB. Packet
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FIGURE 2. RAN resource allocation.

FIGURE 3. RED packet dropping scheme.

processing and delivery in each buffer are independent. For
each buffer Bq, if the transmitting bitrate (i.e., service rate)µq
is lower than the arriving bitrate λq, the untreated data packets
will accumulate in the buffer, which leads to extra delay. Each
packet is marked with a delay tolerance threshold, which can
be considered as one of its QoS characteristics. If the packet
delivery delay is greater than the threshold, it will be deemed
as timeout loss by the UE. When µq < λq, packet congestion
occurs and a packet dropping scheme will be adopted. To be
more specific, if the untreated packets in the buffer are too
many to be delivered in time, some of those packets should
be dropped to ensure other packets can be served timely.
Otherwise, most of the untreated packets will be lost due to
severe congestion.

To reduce packet loss when packet congestion occurs,
random early detection (RED) algorithm [31] is employed as
a packet dropping scheme to improve average packet delay.

As shown in Fig. 3, minimum threshold thmin and maximum
threshold thmax is designed in [31] to control congestion. For
each buffer Bq, RED gateway calculates the packet queue
length Lq first. Then, the packet queue length is compared
with thmin and thmax . When Lq is less than thmin, no packets
will be dropped.When Lq is greater than thmax , every arriving
packet is dropped. When Lq is between thmin and thmax , each
arriving packets are dropped with probability Pa, where Pa
is a function of Lq, thmin and thmax . The packets dropping
processing of each buffer is independent, and the parameters
thmax , thmin and Pa of RED schemes for three buffers are the
same.

C. TRAFFIC MODEL
For various multimedia applications, the bitrates may be
different. For instance, the bitrate of 4K ultra high definition
video streaming is much higher than that of standard defini-
tion video streaming. In brief, different QoS characteristics of
multimedia applications will lead to different packets arriving
bitrate. In general, average packet arriving bitrate of low
latency eMBB flow (λ0) is higher than that of the other two
flows (λ1 and λ2). For QoS flow q, the number of arriving
packets during each intervalN t

q follows a Poisson distribution
with expected value λq = νq · λ, where νq is a bitrate factor.
The factor νq can be considered as a bitrate characteristic of
QoS flow q. To simulate the fluctuations in network traffic,
λ follows a uniform distribution ranging from lower value
λmin to value λmax .

Due to the discreteness of the radio resource in 5G net-
works, the RAN resource in the gNB is sliced into Nseg
small segments at time t , and the time interval between
each resource scheduling event is denoted as tinterval . Let
β tq,k ∈ {0, 1} denote the association between the k

th resource
segment and the qth QoS flow at time t . When β tq,k = 1,
it means that the k th resource segment is allocated to QoS
flow q. Then, the service rate µq of QoS flow q at time t can
be obtained by

µtq =
∑
k

(β tq,k · E/sp), (1)

where E is the size of each resource segment, and sp denotes
the packet size.

Hence, the packet queue length at time t can be repre-
sented as

L tq =


L t−1q + λtq − µ

t
q, L t−1q < thmin;

L t−1q + λtq · (1− Pa)− µ
t
q, thmin≤L t−1q ≤ thmax;

L t−1q − µtq, thmax < L t−1q .

(2)

D. DELAY MODEL
In this paper, the packet delay means that the total transmis-
sion time of a packet from theMEC server to UEs. The packet
delay can be defined as

dpkt = dprp + dprc + dradio, (3)
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where dprp is the propagation delay of signals in optical fiber,
dprc denotes the processing delay in the gNB, and dradio
represents the radio delay from remote radio head to UEs.
dprp can be calculated by l/c, where l is the distance between
MEC server and the gNB, and c is the propagation velocity of
signal in the fiber. For a packet pt,nq (n ∈ {0, 1, . . . ,N t

q − 1}),
the packet queue length at time t can be obtained by (2). Then,
the processing delay of the packet can be calculated by

dprc(pt,nq ) =

{
σ tq, pt,nq is served;
∞, pt,nq is dropped,

(4)

where σ tq can be obtained by

σ tq = argmin
σ

(L tq − µ
t+1
q . . .− µt+σq )2. (5)

It should be noticed that the processing delay will be infinite,
if the packet is dropped. Substituting (4) for dprc in (3), it can
be rewritten as

dpkt (pt,nq ) =

{
dprp + σ tq + dradio, pt,nq is served;
∞, pt,nq is dropped.

(6)

E. PROBLEM FORMULATION
In order to quantify the performance of multimedia multi-
service, a QoS evaluation function is designed as

Rt,nq =


τq − dpkt (pt,nq )

τq
, dpkt (pt,nq ) < τq;

0, dpkt (pt,nq ) ≥ τq,
(7)

where τq is the delay tolerance threshold of QoSflow q.When
a packet stays in the buffer too long to be served, the packet
will be dropped and the evaluation value is set to 0. To satisfy
the diverse requirements of QoS flows, the resource sched-
uler needs to map the RAN resource segments to the QoS
flows properly. Mathematically, a QoS value maximization
problem can be formulated as follows.

max
∑
t

∑
q

∑
n

Rt,nq ,

s.t.
{∑

q

∑
k

β tq,k ≤ Nseg, (8)

where the constraint means that the resource segments which
can be allocated to QoS flows are limited. During each time
slot t , there are only Nseg resource segments.

IV. DEEP-Q-NETWORK BASED
OPTIMIZATION FRAMEWORK
To address the complex problem proposed in section III.E,
DQN framework is adopted to look for resource allocation
policies. Firstly, this section gives a brief introduction over
DQN framework. Then, the key elements of DQN framework
is designed. Finally, the DQN based resource allocation algo-
rithm is proposed.

A. DEEP-Q-NETWORK
DQN algorithm is considered as a deep reinforcement learn-
ing (DRL) algorithm, which focuses on how to interact with
the environment to attain maximum cumulative reward. The
DQN algorithm is evolved from Q-learning algorithm by
applying neural network (NN). Q-learning is proposed as
a RL algorithm in [32]. In general, Q-learning is regarded
as a temporal-difference update, model-free, off-policy RL
algorithm for discrete state spaces.

In Q-learning, when RL agent chooses an action ai under
state si at iteration step i, a reward R(si, ai) will be produced
from the environment. The Q-value Q(si, ai) is an estimate
of expected long-term reward for a state-action pair (si, ai).
All the Q-values are stored in a table. Based on the Q-value
table, the agent can decide the next action according to a
sampling policy, generally ε-greedy policy. If ε-greedy policy
is adopted, the agent chooses an action with the best Q-value
with a probability of ε, or a random action with a probability
of 1 − ε. After the agent learns the reward r(ai, si), the state
will transfer to the next state si+1. Finally, the Q-value table is
updated in a temporal-difference manner. The update policy
is given as

Q(si, ai) ← Q(si, ai)

+α(R(si, ai)+γ max
ai+1

Q(si+1, ai+1)−Q(si, ai)),

(9)

where α is learning rate and γ denotes reward decay factor.
Note that the size of Q-value table will increase exponen-

tially, as the state space and action space expand. For large
state space and action space, it not only occupies vast storage
resource and also increase convergence time. To improve the
performance of Q-learning, DQN can approximate Q-values
by employing NN. The Q-function in DQN is denoted as
Q(si, ai, θ ), where θ is the weights of NN. As shown in Fig. 4,
experience replay and target network is applied in DQN to
improve learning efficiency and accelerate convergence.

• Experience Replay. The agent records state, action,
reward and next state as a transition zi= [si, ai,Ri(si, ai),
si+1]. The transitions are stored in a memory buffer.
Then, the agent selects some transitions as a mini-batch
from the memory buffer to update the weights of NN.

• Target Network. A separate target NN Q∗ is used to
make the algorithm more stable. The agent clones the
evaluationNNQ to obtain the target NN Q̂ everyC steps,
and usesQ∗ to generate target values to calculate the loss
L(θ ). The loss L(θ ) is utilized to update the weights of
the evaluation NN Q.

In the nature DQN algorithm, the evaluation NN can be
trained by function approximation. In other wards, Q-value
Q(s, a, θ ) should get closer and closer to the target value
Q∗(s, a, θ̄ ) by learning from enough iterations. The target
value can be obtained by

Q∗(s, a, θ̄ ) = R(s, a)+ γ max
a′

Q∗(s′, a′, θ̄ ). (10)
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FIGURE 4. An illustration of Deep-Q-Network.

Then, the loss function is defined as

L(θ ) = (Q∗(s, a, θ̄ )− Q(s, a, θ ))2. (11)

By minimizing L(θ ), the NN weights can be obtained by a
gradient descent approach.

B. DRL FRAMEWORK DESIGN
Generally, DQN framework can be modeled as a Markov
decision process (MDP) [33], which is a typical model for
decisionmaking problems. The aim ofMDP is to find a policy
to choose a proper action a under state s at each iteration i,
so that the agent can achieve the best accumulated reward.

The DRL framework consists of four key elements, which
are state space S, action space A, observation of each state
o(s) and reward function R(s, a).
• State space. The system state si represents the system
features including the waiting time of the packets in the
buffers, the association between packets and QoS flows,
the buffer states and so forth.

• Action space. In order to maximize the QoS value,
the agent decides how to allocate the k th resource seg-
ment at time t . Let Ai = {0, 1, 2} denotes all the avail-
able actions which can be selected by the agent at step i.
It is noticed that there are three available actions at each
step, which corresponds to three QoS flows in the gNB.
Specifically, action ai = υ(υ ∈ {0, 1, 2}) means that the
k th segment at time t is allocated to the υ th QoS flow.

• Observation. The observations are samples of the sys-
tem states for the agent to make decisions. To reduce the
complexity of NN, the agent just has to focus on two
vectors, Xi and Di, at each step. The observation at step
i is represented as

oi(si) = [Xi,Di]

= [x i0, x
i
1, x

i
2, d

i
0, d

i
1, d

i
2], (12)

where x iq is the number of untreated packets in the buffer
Bq, and d iq is the packet delay of the first untreated packet

in the buffer Bq. In brief, observation oi(si) collects the
information of eachQoSflow,which includes howmany
packets are waiting in each buffer and how long the
unprocessed packets have waited.

• Reward function. To optimize the overall QoS perfor-
mance of multimedia multi-service, a QoS evaluation
function is proposed in (7), which can evaluate the
packet delay and packet loss at the same time. When the
agent chooses an action ai under state si, it will receive a
reward from the environment. According to the reward,
the agent learns to how to allocate the k th segment at
each iteration, so that the transmitting bandwidth will be
adjusted dynamically. The reward for the action ai under
the state si can be defined as

Ri(si, ai) = η ·
∑
q

Riq +
∑
q

µiq · sp/E, (13)

where η is a weighting coefficient for the QoS evalu-
ation value,

∑
q µ

i
q · sp/E is resource utilization ratio.

The resource utilization ratio in the hybrid reward can
achieve a fast convergence.

Noted that the index t indicates the serial number of time slot,
and the index i denotes the serial number of iteration step. The
relationship between t and i is given by

i = t · Nseg + k, (14)

where k is the serial number of RAN resource segments.

C. DEEP-Q-NETWORK BASED RESOURCE
ALLOCATION ALGORITHM
The DQN based resource allocation algorithm is described
in Algorithm 1. The DRL agent can collect the information
including state, action, reward and be trained in the back-
ground. After enough iterations, the learnt NN are stored.
Then, the agent makes decisions to allocate the proper
resource segments to QoS flows dynamically.
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Algorithm 1 Deep-Q-Network Based Resource Allocation
Algorithm
1: Initialize an evaluation NNQwith weights θ , and a target

NN Q∗ with weights θ̄ , where θ̄ = θ .
2: Initialize a replay memory buffer.
3: for episode ep = 0 to Nep − 1 do
4: for iteration i = 0 to ttotal · Nsegment − 1 do
5: Receive the incoming packets.
6: Obtain the observation oi(si) of system state si.
7: Choose an action satisfying

ai = argmax
ai

Qi(si, ai, θ ) with probability ε, or ran-

domly select an action from action space A.
8: Execute the selected action, and observe the reward

Ri(si, ai).
9: Store the transition zi = [oi(si), ai,Ri(si, ai),

oi+1(si+1)] in the memory buffer.
10: Samples random mini batch of transitions from the

memory buffer as the input of NN.
11: if episode terminates at step i then
12: Set yi = R(si, ai)+ γ max

āi
Q∗(s̄i, āi, θ̄ );

13: else
14: Set yi = R(si, ai).
15: end if
16: Calculate the loss L i(θ ) = (yi − Qi(si, ai, θ ))2.
17: Update the weights θ of evaluation NN by

minimizing the loss L i(θ ) via a gradient decent algo-
rithm.

18: if i % C == 0 then
19: Update the target NN by resetting weights θ̄ = θ .
20: end if
21: end for
22: end for

V. SIMULATION RESULTS
A. SCENARIO CONFIGURATION
To evaluate the performance of the proposed DQN based
resource allocation algorithm, simulations are performed on
the Python platform. The simulation parameters are depicted
in Table 1.

This paper compares the simulation results with the fol-
lowing two resource allocation algorithms, so as to validate
the advantages of the proposed algorithm.
• Round-robin (RR) A RR scheduler just allocates the
resource segments in turn to QoS flows. In other words,
a QoS flow can’t be served in two successive scheduling
periods. Therefore, each QoS flow can be mapped to one
third of the total RAN resource.

• Priority-based (PB) As mentioned above, each QoS
flow has distinct QoS characteristics. As one of the
QoS characteristics, priority level is configured when
the packets are mapped into QoS flows [29]. Priority
level indicates the importance of a resource request.
More exactly, the QoS flow with higher priority level

TABLE 1. Simulation parameters.

shall be processed first. When all QoS requirements
has been fulfilled for the QoS flow with higher priority
level, the QoS flow with lower priority level will be
processed. According to [29], the priority order is set
to q0 > q1 > q2.

B. CONVERGENCE ANALYSIS
Fig. 5-7 display the convergence curves of the proposed DQN
based algorithm for loss L(θ ), reward R(s, a) and resource
utilization ratio, respectively.
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FIGURE 5. Loss between target values and Q-values.

FIGURE 6. Average reward for varying episodes.

As shown in Fig. 5, the loss between the target values from
target NN and the Q-values from evaluation NN declines
sharply, as the training steps increase. The loss converges
to a stable state, when the agent has been trained enough
steps. Fig. 6 illustrates the average reward of iterations in each
episode. the reward gradually increases and starts to fluctuate
when the number of episodes Nep is about 30. It is seen from
Fig. 7 that the average resource utilization ratio raises rapidly
at the beginning. When Nep is about 30, the average resource
utilization ratio in each episode is always better than 95%.
In a word, the convergence curves prove that the agent has
trained well, and is able to work as a resource scheduler in
the gNB.

It is noticed that there are some fluctuations in Fig. 6 and
Fig. 7, although the loss curve has leveled off. This is because
the max value of greedy factor ε in training phase is set to 0.9,
which means that the agent may choose a suboptimal or even
bad action with a probability of 10% at each iteration.

C. PERFORMANCE ANALYSIS
In comparison of RR and PB resource allocation algorithms,
the performance of the proposed algorithm is validated in
terms of average QoS, average packet delay, average packet

FIGURE 7. Average resource utilization ratio for varying episodes.

loss ratio and throughput. For each packet, its QoS value can
be obtained by (7), and thus the average QoS for QoS flow q
is defined as

Rav,q =
∑
t

∑
n

Rt,nq /
∑
t

N t
q. (15)

Besides, for each packet, its packet delay can be obtained by
(6). It is noticed that this paper only calculates the delay of the
packets which have been processed. Then, the average packet
delays of the processed packets in QoS flow q is defined as

dav,q =
∑
t

∑
nserv

dpkt/
∑
t

N t
q, (16)

where nserv ∈ [0,N t
serv,q− 1] and N t

serv,q is the number of the
processed packets in QoS flow q during slot t . The average
packet loss ratio is given by

ζloss =
∑
q

∑
t

(N t
drop,q + N

t
timeout,q)/

∑
t

N t
q, (17)

where N t
drop,q is the number of packets which are dropped by

RED scheme in the QoS flow q at time t , and N t
timeout,q is

the number of packets which are deemed as timeout by UEs
in the QoS flow q at time t . Furthermore, throughput can be
calculated by

B =

∑
q
∑

t (N
t
q − N

t
drop,q − N

t
timeout,q) · sp

ttotal · tinterval
. (18)

In the simulations, the minimum Poisson factor λmin varies
in a range [2, 6]. As mentioned in III.C, the arriving multime-
dia packets in each QoS flow q at each time slot t follows
a Poisson distribution with expected value λq = νq · λ.
Then, the factor λ will be selected from the set [λmin, λmax]
randomly. Therefore, as λmin increases, the average packet
arrival bitrate raises and the network congestion becomes
more and more serious.

Fig. 8 illustrates the average QoS of each resource allo-
cation schemes for data packets in different QoS flow. As for
the packets from low-latency eMBB applications, the average
QoS of RR scheduler declines gradually. When λmin = 6,
the average QoS is almost down to 0. In contrast, the average
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FIGURE 8. Average QoS values for packets in different QoS flows.

FIGURE 9. Average delays for the packets which have been served in different QoS flows.

QoS of PB and DQN based schedulers are always greater
than 0.8, although λmin keeps growing. As for the packets
from living streaming, the average QoS of RR scheduler and
PB scheduler is always about 0.985. As the increase of λmin,
the average QoS of DQN based scheduler decreases slightly.
Although λmin = 6, its average QoS is still higher than
0.96. As for the packets from buffered streaming, the average
QoS of RR and DQN based schedulers is nearly unchanged,
when λmin varies. As network congestion becomes severe,
the average QoS of PB scheduler falls.

Fig. 9 shows the average packet delays of the packets
which have been served for different QoS flows. For low-
latency eMBB applications, only the average packet delay of
RR scheduler soars to 95.7 ms, when λmin = 6. Although
λmin = 2, its average packet delay exceeds the delay toler-
ance threshold (τ0 = 10 ms). For living streaming, only the
average packet delay of DQN based scheduler rises slightly,
as the increase of λmin. Even though λmin = 6, its average
packet delay is lower than 4 ms, which is much less than
the delay tolerance threshold(τ1 = 100 ms). For buffered
streaming, only the average packet delay of PB scheduler
worsens, as λmin ascends. When λmin = 6, its average packet
delay reaches about 130 ms, which is far greater than that of
the others.

FIGURE 10. Average QoS values for all packets in the gNB.

The overall performance of the proposed DQN based algo-
rithm for multi-service scenario is also evaluated. Fig. 10
gives the average QoS for all the packets which have been
served by the gNB. According to the figure, the average QoS
of DQN based scheduler keeps higher than 0.9. In contrast,
the average QoS values of RR and PB schedulers drop grad-
ually, as λmin increases.
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FIGURE 11. Average delays for all the packets which have been served in
the gNB.

FIGURE 12. Average packet loss ratios for different resource allocation
algorithms.

Fig. 11 shows the average delay of the packets which have
been served in all three QoS flows. When λmin = 6, the aver-
age packet delay of PB scheduler is up to 44.1 ms, and that of
RR scheduler is about 33.0 ms. Unlike RR and PB schedulers,
the average packet delay of DQN based scheduler increases
slowly, and it is still lower than 2.5 ms when λmin = 6.
The average packet loss ratios are depicted in Fig. 12.

It can be seen that the average packet loss ratio of DQN based
scheduler is always 0. Besides, the average packet loss ratios
of RR and PB schedulers go up, as λmin increases. When
λmin = 6, the average packet loss ratio of PB scheduler is
up to 0.130, and that of PB scheduler is about 0.329.

Finally, the throughput curves are exhibited in Fig. 13.
As the λmin rises, the throughput of DQN based scheduler
ascends from 200 Mbps to nearly 300 Mbps, and that of PB
goes approximately from 193Mbps to 253Mbps. It is noticed
that the throughput of PB grows more slowly, when λmin ≥ 5.
As for RR scheduler, the throughput raises when λmin ≤ 4,
and drops when λmin ≥ 4. The maximum throughput of RR
is lower than 184 Mbps, when λmin = 4.
However, the following conclusions can be drawn from the

figures.

FIGURE 13. Throughputs for different resource allocation algorithms.

1) With slight degradation in the performance of live
streaming, the proposed DQN based algorithm ensures
the performance of the other two QoS flows.

2) In PB scheduling, the performance of buffered streaming
is sacrificed to keep low-latency eMBB applications
being served in time. This is because the priority level
of low-latency eMBB applications is higher than that of
the others.

3) In RR scheduling, low-latency eMBB application can’t
be served timely, especially when arriving bitrate is high.
This is because the resource are allocated equally and
its delay tolerance are lower than that of the others.
Moreover, its arriving packets number is much more
than that of the other QoS flows.

4) The proposed DQN based algorithm outperforms the
others in terms of average QoS, average packet delay,
average packet loss ratio and throughput.

VI. CONCLUSION AND FUTURE WORKS
This paper considers a multimedia multi-service scenario,
where the MEC server can push various multimedia appli-
cations to edge users. Besides, the 5G QoS model is
investigated, in which packets from different multimedia
applications can be mapped into different QoS flows, accord-
ing to their QoS requirements. However, matching the
allocated resource to QoS flows with diverse QoS charac-
teristics effectively will be the most critical challenge to
the scheduler. To deal with the challenge, a QoS evaluation
model is designed to formulate a QoSmaximization problem.
Inspired by the success of DRL technique in solving complex
problems, a DQN framework is applied to allocate resource
flexibly. Furthermore, the advantage of DQN framework in
managing QoS-aware resource allocation is validated in com-
parison of RR scheduling and PB scheduling. Simulation
results show that the DQN based algorithm achieves better
performance than other resource allocation algorithms.

In this paper, three typical services in [29] are selected.
Those services are characterized by different delay tolerances
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and bitrates. By retraining the DQN with new parameters,
the proposed resource allocation algorithm can still work for
other multimedia services. Furthermore, the radio delay is
set to 1 ms for simplification of the wireless channel model.
The researches on channel-state-aware scheduling are left for
future works.
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