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ABSTRACT Indoor positioning services have become necessary in many situations. Radio frequency (RF)
signals are suitable for being used for positioning because of their ubiquity and imperceptibility. This paper
utilizes the information from the baseband of a Bluetooth low energy (BLE) transceiver for angle estimation
and signal strength for distance estimation. The scheme constitutes a single-anchor based solution to calculate
the position of a client. It significantly reduces the cost of installation by avoiding traditional methods like
multilateration or triangulation that require three or more anchors, even in a small space. To improve the
performance, we design a fusion algorithm based on a Kalman filter to integrate measurements of the anchor
station and simplified pedestrian dead reckoning (PDR) results from the client. Experiments show that the
proposed solution estimates positions in high precision without initial user location or heading information.
The mean error of the implementation is less than 1 m and can be improved to less than 0.5 m with a precise
ranging measurement.

INDEX TERMS BLE, data fusion, indoor positioning, Karman filter, pedestrian dead reckoning (PDR),
single-anchor.

I. INTRODUCTION
Unlike global navigation satellite systems (GNSS) out-
doors [1], indoor positioning technologies cannot be widely
applied in practice. There are some basic requirements that
indoor positioning systems need to satisfy to make indoor
localization becoming a ubiquitous service: accuracy is the
most important; convenience refers to the service being easily
accessed; inexpensive means the cost must be acceptable for
most people.

Different indoor positioningmethods are being researched.
Somemake themost of existing signals indoors, such as GSM
[2], [3], geomagnetic fields [4], [5], and Wi-Fi [6]–[8]. The
signals also called ‘opportunity signals’ are not originally
for positioning, and can be exploited but cannot work pre-
cisely [9]–[11]. Special base stations with the abilities of the
Internet of Things (IoT) and positioning are preferred. These
devices can be deployed in public buildings without any
impacts. Some researchers have focused on improving Wi-Fi
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devices because of their ubiquitous distribution worldwide.
The round trip time (RTT) of 802.11mc has recently attracted
focus for its convenient and accurate ranging measurements
[12], [13]. At least 3 or 4 stations need to be observed simulta-
neously at any time. However, too many stations in a building
increase cost significantly.

A single-anchor solution that can perform the same work
is an alternative. It uses only one base station as the anchor
to provide positioning services. For medium-sized spaces,
such as exhibition rooms, only one station for positioning
is readily accepted because of its convenience of deploy-
ment and low cost. Some solutions are dedicated to antenna
design, and cannot eliminate signal strength or fingerprinting
methods [14], [15]. It increases complexity and cost. Channel
state information (CSI) from Wi-Fi devices has the potential
for angle of arrival (AoA) estimation [16]. However, the
limitations of antenna number and high cost for obtaining
measurements make it difficult for practical use. As another
signal in 2.4 GHz, BLE is widely used in IoT devices. The
low cost and simpler protocol make it suitable to reproduce
CSI-based methods [17].
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For BLE clients, IMU sensors are often contained, and
PDR algorithm can be applied. Fusion algorithms often take
advantage of data from the inertial measurement unit (IMU)
sensors [18].

This paper proposes a single-anchor solution for indoor
positioning, based on the BLE signal and IMU sensors from
the client device. The whole solution has the potential to sat-
isfy the requirements of accuracy, convenience, and low cost.
Experiments are implemented to evaluate the performance.
Tests outdoors show excellent accuracy for angle estima-
tion, and positioning results indoors indicate that the system
behaves stably with high accuracy. The main contributions of
this paper are as follows:

• We built a low-cost single-anchor system for indoor
positioning. The system uses the BLE signal and IMU
sensors for position estimation. Additional observations
can be easily embedded when needed.

• We implemented a high-resolution angle estimation
algorithm with a BLE signal. We analyzed the informa-
tion from the hardware and constructed the algorithm
input.

• We designed a Kalman filter algorithm for data fusion.
The algorithm accepts different kinds of observations,
including angle and distance estimations. Simplified
PDR results from IMU sensors are also integrated.

The paper is organized as follows. Section II reviews some
previous work. Section III describes the details of the single
station solution. The experiments and analysis of the results
are discussed in Section IV. The final Section V presents the
conclusion and future work.

II. RELATED WORK
The RF signal is one of the most important sources for
indoor positioning [19]. Useful information exposes when
the signal transmits from the station antenna to the client
antenna, or conversely. They can be translated to position-
related measurements. The wide scope from kHz to GHz of
a signal contains opportunities for use. Wi-Fi and BLE in the
2.4 GHz band are two of the most closely watched signals
because the devices are widely distributed.

For a space with a dense deployment of Wi-Fi or BLE
devices, dedicated positioning stations may not be required.
Some methods can take full advantage of environmental
characteristics. Methods such as fingerprinting [20] are eas-
ily implemented because they do not need reconstruction
or any modification of the buildings. However, a calibra-
tion phase is necessary to construct a database that must be
updated periodically. Traditional Wi-Fi fingerprinting based
on the received signal strength indicator (RSSI) can achieve
an accuracy of 2 to 5 meters, such as RADAR [21] and
Horus [22].

Station-based solutions usually modify existing devices,
such as Wi-Fi routers, or install new devices, such as
BLE beacons. The stations can be used for networking
and IoT applications, or only for positioning. The systems

are difficult to build but require little maintenance after
establishment [23].

Some stations can be used for ranging. RSSI fromWi-Fi or
BLE is usually applied. A path loss model is calibrated so that
the RSSI readings can be converted to distance related to the
station [8], [24]. RTT enhances the ranging capability of Wi-
Fi [12], [13]. The 802.11mc protocol defines amechanism for
fine timemeasurement that can distinguish the short propaga-
tion delay of the radio signal and then convert it into distance.
UWB is also a time-based technology, which provides precise
distance estimations. This kind of measurement is muchmore
stable than the strength-based calculation. With the distance
estimations either from RSSI or time-based technologies,
a multilateration method is common for position resolving
[14]. The accuracy depends on the number of stations. A sub-
meter level can be achieved with four or more stations.

For BLE stations, the coverage of the signal is smaller than
that of Wi-Fi. The iBeacon defined by Apple based on BLE,
can be used for proximity detection, which takes advantage of
the short propagation distance [25], [26]. These inexpensive
and low energy units can be placed anywhere. Additionally,
fingerprinting can be applied. The accuracy of these systems
is also related to the device density.

CSI obtained from some Wi-Fi devices is another focus.
The information contains the amplitude and phase of the
arriving signal. CSI can be used for angle estimation [16],
and then a position is calculated by a triangulation method.
The same problem is that three or more observations from
different anchor stations are required.

Some researchers have attempted to find solutions of
single-anchor stations by combining the distance and angle
measurements of Wi-Fi. Mariakakis et al. [27] uses the time
of flight (ToF) observations as a distance basis and improves
it with RSSI. PDR is integrated into the system, but AoA
estimation is not applied. The mean error is nearly 2 meters.
A simulation from Zhi-guo WU et al. [28] showed high
performance from the fusion of ToF, AoA, and PDR. Ref-
erences [14] and [15] employed a complex antenna design
to implement the single-anchor concept based on a 2.4 GHz
signal, with an average localization error of 2.32 meters and
1.69 meters, respectively. The methods were not divorced
from the signal strength and fingerprinting, and no other
sensor data were integrated.

Since the target clients are often smartphones or IoT
devices, IMU sensors are common. The PDR algorithm can
be applied [18]. As a different type of source, the advantage is
that it is a self-contained method and can be isolated from the
environment [29]. Using sensors with high performance or
mounting them to the foot [30], [31], some improvedmethods
achieve high accuracy with 1% errors of the total distance.
Despite the efforts made by researchers, this kind of method
requires basic initial conditions. The accumulated error is still
an essential problem. Fusion with data from other sensors is
a common solution.

BLE andWi-Fimeasurements are frequently used in fusion
systems [32]–[38]. Reference [34] obtained estimations from
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FIGURE 1. Single station based positioning scheme.

a traditional fingerprinting method with a Wi-Fi signal, and
a basic and simple weighted average was applied. Reference
[35] used an extended Kalman filter to integrate inertial data
and position values collected from the nodes of an external
fixed infrastructure. The system is implemented on a wear-
able platform and works well even with absolute position
observations at a low rate. The extended Kalman filter was
also applied in [36]. Additionally, Bayesian fusion and parti-
cle filter are options [37], [38]. Most fusion technology can
make the system practical sub-meter accuracy, and increase
the robustness of the system.

III. METHODOLOGY
Distance and angle are often concerned within a 2-D indoor
positioning system based on a single-anchor station. The
anchor is a base station of known position and can be treated
as the origin of a polar coordinate system. The distance
between the station and the client is as polar radius r , and
the polar angle θ represents the angle of the client to station
relative to the polar axis. With the position of the station (xs,
ys), r and θ can uniquely determine the position of the client
(xc, yc). The relation between them is expressed as[

xc
yc

]
=

[
xs
ys

]
+ r

[
cos θ
sin θ

]
(1)

Fig. 1 illustrates the positioning scheme. We use the BLE
signal to estimate the r and θ . The signal is widely applied
in advanced mobile devices, such as smartphones, wearable
devices, and many other kinds of IoT devices. Distance and
angle measurements can be obtained by analyzing the signal.
In detail, distance can be derived via received signal strength
(RSS). For angle estimation, a switched antenna array and I/Q
samples extracted from the BLE PHY layer are used. These
form the basis of the single-anchor solution.

Besides, advanced mobile devices often have considerable
computing power and contain a rich set of sensors, such as
IMU andmagnetometer. The IMU sensors, consisting of a tri-
gyroscope and a tri-accelerometer, can be used for estimating
attitude and detecting steps of pedestrians. A magnetometer
is essential for most devices to find orientation. Additionally,

various interfaces such as USB and UART are often provided
within these devices. With the interfaces, additional modules
can be easily plugged into the devices to extend the sensing
ability. All the data from internal sensors or external modules
can be processed locally by the powerful CPU of the device.

We demonstrate a single-anchor-based positioning system
that takes advantage of a typical mobile device. The perfor-
mance of the system is tested. In this section, we describe
the details of the overall system, as shown in Fig. 2. The
system can be divided into an anchor end and a client
end.

At the anchor end, the customized base station contains a
BLE transceiver equipped with an antenna array. An optional
precise ranging master can be added or removed. The antenna
array is mainly used for AoA estimation and RSS measure-
ments, and data transmission. The removable ranging mod-
ule with a capacity of high-precision distance measuring is
optional for improving performance. We have currently cho-
sen a pair of inexpensiveUWBmodules for testing, which can
be replaced with any other precise and low-cost ranging units.
Therefore, we named it an optional precise ranging (PR)
unit of the system. A pair of PR units includes a PR master
equipped in the station and a PR client in the mobile device.

For the client end, we utilize a smartphone as the platform
of computation and display. It can be replaced with any
other advanced mobile devices. A basic PDR algorithm we
call simplified PDR is realized based on the indispensable
accelerometers and gyroscopes, and the magnetometer is
used for initializing heading. An independent BLE transmit-
ter is tied to the smartphone for sending a better and faster
signal packet. The built-in BLE antenna of the smartphone
is used to receive all BLE-related measurements, including
angle αAoA and distance dRSSI . The PR client is plugged
into the phone via the USB interface. Distance measure-
ments from the module are transmitted to the host phone in
real-time.

With these absolute and relative positioning sources,
a fusion algorithm based on a Kalman filter is designed for
position estimation. Moreover, the exact heading is estimated
for output.

A. AOA ESTIMATION BASED ON BLE
AoA estimation means to determine the impinging direction
of a signal arriving at the RF receiver. There are some studies
utilizing Wi-Fi CSI for AoA estimation [16], [39]. BLE is
also 2.4 GHz signal in the ISM band, which is proven to be
an available frequency range for precise measurements [15].
Compared toWi-Fi, BLE devices aremuchmore inexpensive.

Array signal process technology is used in these systems
for finding AoA. For the technology, phases of signals arriv-
ing at different antennas are vital measurements. Unlike Wi-
Fi’s protocol, BLE does not define any quantity related to
CSI, fromwhich phase values can be obtained directly. Useful
measurements must be extracted from the original I/Q sam-
ples, which we can get from the baseband of a low-cost BLE
transceiver.

VOLUME 7, 2019 162441



F. Ye et al.: Low-Cost Single-Anchor Solution for Indoor Positioning Using BLE and Inertial Sensor Data

FIGURE 2. Details of the single based positioning solution.

FIGURE 3. A typical signal flowchart of the RF receiver.

1) PHASE MEASUREMENTS FROM THE BLE SIGNAL
For RF systems, radio signals are transmitted or received
via an antenna. Modulation and demodulation are necessary
before the signals leave or after they arrive at the antenna.

In-phase and quadrature (I/Q) modulation technology is
frequently used in these devices. I/Q signals sampled to the
baseband can be further processed by a variety of digital
methods [40]. Fig. 3 is a typical receiver signal flowchart.

BLE devices share a similar structure. Signals impinging
on the antenna are first filtered by a low-noise-amplifier
(LNA) and then demodulated into I and Q signals. Actually,
a signal with a carrier frequency fc, phase ϕ, and amplitude A
can be expressed as

A cos (2π fct + ϕ) = A cos (2π fct) cos(ϕ)

−A sin (2π fct) sin(ϕ) (2)

Let

I = A cos(ϕ), Q = A sin(ϕ) (3)

Then, the signal can be expressed as

A cos (2π fct + ϕ) = I cos (2π fct)− Q sin (2π fct) (4)

The expression shows that I/Q can determine the amplitude
and phase of the instantaneous state from a signal stream,

FIGURE 4. Relation between I/Q and signal state.

as shown in Fig. 4. A signal transmitted from an I/Q modula-
tor can be recovered with a demodulator in the receiver. With
the I/Q samples fromADC, amplitudes, and phases of arrived
signals are estimated in the baseband.

For BLE advertising packets, GFSKmodulation is applied,
which means that the receiving phase is related to the prop-
agation and modulation frequency of a symbol. Typically,
consecutive and stable I/Q samples can be obtained under a
fixed environment when transmitting a string of permanent,
consistent symbol represented by the frequency 1fm. The
receiving phase ϕr can be expressed as

ϕr = 2π1fmt + ϕp = arctan(Q/I ) (5)

where ϕp represents the phase shift caused by the propaga-
tion, and it is mainly related to the path length and processing
delay.

Assuming that consecutive and consistent symbols of an
infinite packet are transmitted, switching the currently active
antenna while I/Q sampling can obtain measurements with
useful characteristics. If the antennas are in the same place,
the samples should be the same regardless of which one is
selected. When the antennas are placed in order of some
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FIGURE 5. Switching antenna for signal receiving.

FIGURE 6. Linear fit of received phases.

space, delay appears beginning with the 2nd antenna. The
delay is caused by path extension and behaves as the phase
shift of the receiving signal. Fig. 5 is intuitive for this mech-
anism.

For M sequential samples at arbitrary antennas, the mth

sample at t(m − 1) has a phase of ϕr (m). The sym-
bol frequency 1fm demodulated at different times may be
slightly different from the theoretical modulation frequency
of 250 KHz for BLE. A linear fit method can be applied
to estimate a more precise propagation-related phase ϕpath.
It can be expressed as

(1fm, ϕpath)=argmin
(ρ,β)

M∑
m=1

(ϕr (m)−2π t(m−1)ρ−β)2 (6)

FIGURE 7. Uniform linear array of antennas.

Fig. 6 is an experimental example of phase data from 3 lin-
early distributed antennas. The transmitter and the receiver
are fixed at 5 meters apart.

With the fitting results, a relatively exact estimation of the
phase for the real condition can be obtained.

2) AOA ESTIMATION BASED ON A UNIFORM LINEAR ARRAY
With the phase information from a set of antennas, further
signal processing can be executed. There have been some
efficient methods for AoA estimation with an antenna array
system [41]. The antennas are usually arranged into the form
of a uniform linear array (ULA) or uniform circular array
(UCA).

A ULA is a normal form of antennas placed with a certain
space in a line, as shown in Fig. 7. Theoretically, two antennas
can accomplish the angle estimation, but three or more are
used in practice [42]. UCA is a form of antennas placed in
a circle. With this arrangement, the 2-D results of azimuth
and elevation can be estimated. However, this kind of form
usually requires at least six antennas [43], or more than eight
antennas for better performance. A large number of antennas
inevitably lead to an increase in the size of the receiver. Also,
2-D computation will require considerable resources.

We use ULA for the low-cost single-anchor system, and
exploit the 1-D angle measurement for fusion with ranging
and PDR results. Fig. 7 is a ULA with N antennas that are
spaced with equal distance d .
For a far-field signal with a wavelength of λ, the arrival

angle α is the same for every antenna. The difference in prop-
agation distance between two adjacent elements is d cosα.
The spatial distance produces a phase difference of φ for the
signal propagation, which can be represented as

d cosα =
λφ

2π
(7)

With a pair of phases measured from 2 different antennasm
and n, a result can be easily obtained by a simple computation

VOLUME 7, 2019 162443



F. Ye et al.: Low-Cost Single-Anchor Solution for Indoor Positioning Using BLE and Inertial Sensor Data

as

α = arccos(
ϕpath/m − ϕpath/n

m− n
∗

λ

2πd
) (8)

However, in practice, multipath and noise make the phase
measurements too complicated to make the simple relation-
ship effective.

MUSIC is a high-resolution AoA estimation algorithm
[44]. With the antenna configuration shown in Fig. 7,
the phase shift introduced at nth antenna relative to the
0th is −2π∗n∗λ∗d cosα. Usually, a complex exponential
expression is used for denoting the relationship between the
transceiver as

8(α) = e−j2π
∗n∗λ∗d cosα (9)

Then, a steering vector can be obtained by
−→a (α) =

[
1 8(α) ... 8(α)N−1

]T (10)

The received measurement matrix X constructed by sam-
pling results of different antennas can also be represented as

X =
[−→x 0 ... −→x N−1

]
= AY (11)

where −→x 0, . . . ,
−→x N−1 denote the received signal vectors

containing phase and amplitudewhich are all from I/Q values,
A is steering matrix which is comprised of−→a (α) from multi-
sources with different arriving angles of α, and Y denotes the
signal attenuations at each antenna.

With one packet received, several samples from several
symbols can be obtained. Since no significant changes occur
in the space relationship, we averaged the phases from the
symbols in one packet to form a stable and strong measure-
ment. The averaged measurement is treated as one snapshot
for the algorithm.

With the MUSIC algorithm, a diagonal covariance matrix
RXX is formed as

RXX = E(XXH ) (12)

XH indicates the conjugate transpose ofX. After obtaining
the noise subspace EN by the eigen-decomposition of RXX,
construct the spatial spectrum

P(θ) = 1
/
(aH (θ )ENEHN a(θ )) (13)

A spectrum peak represents an AoA estimation. With a
multipath effect, several top peaks are observed. The inde-
pendent peaks are separated, and only one peak represents the
real angle of the direct path. Considering that the observation
of the actual angle should be consecutive for a dynamic
test, we discard angles with significant differences with the
estimated system states.

Physically, the number of antennas must be larger than
the number of propagation paths [16]. For a typical office
scenario, ULA with no more than six antennas is acceptable
because typically, we can observe five significant paths at
most [45].

The number of snapshots is also an important parameter
for the final result. It is a balance of accuracy and real-time
performance.

B. RANGING BASED ON RSS
RSS is a general reference to the signal propagation distance.
Typically, the transmitter is distant when the signal is weak.
Many studies focus on the path loss model based on RSSI,
which is reported directly in most RF systems [8], [24]. The
model describes the relationship between the distance and
RSSI value as

d̂ = 10
(
R0−RSSI

)
/10γ (14)

where R0 is the RSSI at a 1-meter distance, an γ is a factor
related to the environment and antenna gain. With the model,
calibration also needs to be implemented in advance.

For a practical application, some measurements lead to
overwhelmingly large results with the exponential model.
The results are not applicable and should be discarded. Oth-
erwise, the filter system might break down. According to the
experimental environment, we set 15 meters as the maximum
estimation in our implementation.

C. SIMPLIFIED PEDESTRIAN DEAD RECKONING
Mobile devices contain micro-electro-mechanical systems
(MEMS) IMUs, which are often small-size and low-cost.
Many researchers are working on advanced PDR algorithms
with IMU [29]–[31], which improve accuracy by applying
complex methods to noisy data from the sensors. However,
the system based on IMUs will not return when the trajectory
deviates, and prior information is often necessary for initial-
ization.

Since PDR is rarely used individually for absolute posi-
tioning, simplifying the algorithm to save energy should be
considered for real-time applications. Thus, reconsidering
PDR is the direction of our solution. We leverage the low-
cost IMU of mobile devices to implement a simplified PDR
that can be used for fusion.

There are some key stages in the PDR algorithm, including
step detection, step length estimation, and heading estima-
tion. With the step length lS and heading θhd , the current
position (xk , yk ) can be updated from the last position (xk−1,
yk−1 ) when a step is detected,[

xk
yk

]
=

[
xk−1
yk−1

]
+ lS

[
cos(θhd )
sin(θhd )

]
(15)

Various algorithms can be used to improve the relative
accuracy of the position. They focus on estimating the adap-
tive step length with a refined model [46] or limiting the
accumulated error of heading [31].

Different from these PDRs, we consider heading variation
and step velocity for fusion. The position relationship can be
expressed in the time domain as[
xt
yt

]
=

[
xt−1
yt−1

]
+ vS∗1t

[
cos(θhdt−1 +1θhd/2)
sin(θhdt−1 +1θhd/2)

]
(16)

vS denotes the scalar velocity of the pedestrian, we use a
step length of fixed 0.7 meters so that the velocity is related to
the step interval. We simply assume that the velocity remains
constant during the gap of two steps. θhdt−1 is the heading at
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FIGURE 8. Gross error discarding.

FIGURE 9. Structure of the simplified PDR.

t−1, and it is estimated by the filter but not directly obtained
from the IMU subsystem. We use the heading variation1θhd
as an observation for updating the heading. We consider the
variation dependable for a short time.

The position output from PDR is ignored since the target
position is set as a system state which means that we use only
the algorithm to obtain some observations for fusion. They are
heading variations and step velocities. The input and output
can be described, as shown in Fig. 9.

To obtain these quantities simply, we accept a rough accu-
racy since errors from observations are common. The method
of step detection is to use the total magnitude of the tri-
accelerometer. In detail, select the peak of the magnitude
preprocessed with a low pass filter and compare the peak with
a threshold.

For the heading change, we use a quaternion update
method with tri-gyro measurements (ωx , ωy, ωz )

q̇ =
1
2


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0



q0
q1
q2
q3

 (17)

The relation between the heading angle θ and quaternion
q is given by

θ = arctan

[
2 (q0q3 + q1q2)

1− 2
(
q22 + q

2
3

) ] (18)

With the change time, which is equal to the fusion update
period 1t , the heading change observation from PDR is
obtained by

1θhd = θt − θt−1t (19)

The key in our application is that the simplified PDR
performs a simple algorithm and outputs variation values. The
values do not accumulate error or require high-performance
sensors that are only equipped in advanced and expensive
devices.

For comparison, we also utilized these intermediate quan-
tities to derive a completed PDR result.

D. INTEGRATION OF IMU SENSORS AND BLE SIGNALS
The distance and angle measurements from BLE can deter-
mine an absolute position but with significant error, espe-
cially the observation from RSSI, which is typically poor.
PDR provides fine relative observations for a short time.
A fusion scheme based on a Kalman filter is designed to inte-
grate all of these useful measurements. In addition, ranging
measurements from the optional PR module can be applied
when necessary.

We choose position (x, y), walking speed v, heading θhd ,
and heading change rate ωhd as the system states. Then,
the system state vector St is expressed as

St =
[
x y v θhd ωhd

]T (20)

Since the state transition during the period1t is not linear
as

St = St−1 +


v cos θhd
v sin θhd

0
ωhd
0

1t (21)

The linear state transition matrix Aj is derived as

Aj =


1 0 1t cos θhd −v1t sin θhd 0
0 1 1t sin θhd v1t cos θhd 0
0 0 1 0 0
0 0 0 1 1t
0 0 0 0 1

 (22)

AoA, ranging measurements, and PDR results construct
observation vector with

Z =


αAoA
d
v
ωhd

 = h(x) =


arctan( y−ysx−xs

)√
(x − xs)2 + (y− ys)2

v
ωhd

 (23)

where d can be from RSSI as dRSSI or PR as dPR, or both.
Moreover, d and αAoA can be from one or more anchor
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stations if they exist. That means the length of the observation
vector is variable, which depends on the number of observa-
tions. Also, the relationships are the same as described in (23),
respectively.

The noises of measurements are assumed as Gaussian
models. The measurement noise covariance matrix is set
based on statistics magnitude extracted from samples with
some simple experiments and is adjusted according to the
actual results.

Step velocity is derived from the step length lS and step
interval 1tstep with

v = lS/1tstep (24)

The heading change rate is the average heading change in
the last period

ωhd = 1θhd/1t (25)

The state is initialized with measurements. In detail,
an accelerometer is used to find the pitch and roll angle
under static conditions, and a magnetometer indicates the
orientation of the phone as the initial heading θhd0 . AoA and
ranging construct the initial position (x0, y0). Then, the initial
state can be expressed as

S0 =
[
x0 y0 0 θhd0 0

]T (26)

The error covariance matrix is initialized by the identity
matrix as

P0 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (27)

IV. EVALUATION AND ANALYSIS
Some experiments were implemented with customized hard-
ware to evaluate the performance of the proposed solution.

The station consisted of a low-cost commercial BLE
transceiver and a switched array of six rod antennas that
could also be replaced with inexpensive and small-size anten-
nas. Although six antennas were equipped, different con-
figurations with as few as three were tested. The antennas
were spaced at 6.2 cm, which was nearly half-wavelength,
as shown in Fig. 10. The AoA algorithm was processed in a
laptop which served as a server.

The BLE transmitter was a customized beacon equipped
with a rod antenna and was treated independently as a signal
source. It was tied to a Huawei Mate 20 smartphone. The
phone had an Android 9.0 platform with a Kirin 980 pro-
cessor. An optional UWB module was plugged into the USB
port. All measurements were converted with a regular time-
line. The built-in BLE module of the phone was used for data
exchange.

Experiments were implemented in different environments.
An outdoor implementation was for verifying the validity
of the BLE AoA algorithm and indoor for evaluation of
positioning performance.

FIGURE 10. Antenna array and test client.

FIGURE 11. Outdoor test.

A. ANGLE ESTIMATION EVALUATION
For an outdoor scene, the multipath effect was not obvious
in the open spaces. It is suitable for evaluating the angle
estimation method.

The transmitter and the stationwere placed apart from 10m
for the test, and they were at the same height of 1.5 m from
the ground, as shown in Fig. 11.

We collected data at 19 different locations which were
spaced 10◦. It required over 30 seconds, and more than
300 packets were received at each location. Phases from
6 antennas were recorded, so different configurations of
numbers of antennas could be evaluated with the MUSIC
algorithm.

For the individual angle measurement, no multipath miti-
gation efforts were made. The most obvious peak was treated
as the only estimation of AoA. Three packets as snaps were
fed into the algorithm. Then, 100 estimations were obtained
at each location. The process was applied with six antennas
and three antennas. All the results are shown in Fig. 12.

Fig. 13 shows the cumulative distribution function (CDF)
for the absolute error of the results.

It can be seen that the high-resolution AoA algorithm is
efficient over the range of -80◦ to 80◦ with six antennas. Most
of the results were close to the ground truth, so a simple
average method could be applied to obtain more precise
estimations for static measurements. Within the range of -
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FIGURE 12. AoA estimations from outdoor test.

FIGURE 13. CDF of estimations outdoors.

40◦ to 40◦, the variation in estimation error was less than
5◦. Therefore, we can conclude that the estimation results
with six antennas are precise and stable in a relatively ideal
environment.

Fewer than four antennas still worked outdoors, but the per-
formance significantly decreased. For large angles, the results
decreased more quickly than with 6 antennas. The results for
small absolute angles that were less than 50◦ were stable but
had large bias errors. We think the reason lies in the multipath
and some system errors. A configuration of fewer antennas
has lower tolerances for the calibration error.

FIGURE 14. Indoor test.

FIGURE 15. Floor plan.

For the problemswhen the angle approached±90◦ for both
6 and 3 antennas, we think it is related to the accuracy of the
phase measurement. According to equation (8), the relation-
ship of arccosine leads to a rapid change near the upper and
lower bounds. The phase difference approaches to the bounds
when the transmitter moves towards the edge, and a slight
error leads to a lager variant.

All the results show that AoA estimation based on BLE
antennas can achieve high accuracy in a relatively ideal envi-
ronment with a low multipath effect. The method can be
transferred to the indoor environment, which is more valuable
than applying in outdoor open space.

B. INDOOR EXPERIMENTS
For the short effective range of BLE, one appropriate appli-
cation of the single-anchor solution is for positioning in a
room-level indoor environment. We implemented the indoor
experiment in a typical office, as shown in Fig. 14. The floor
plan is shown in Fig. 15.

The tester held the smartphone connected with a PR client.
The client was a UWB module with an update rate of 10 Hz.
It can transfer ranging data to the phone via the USB in
real-time. The tied BLE beacon is independent of the phone.
Data with AoA-related information from the receiver array
are transmitted back to the phone via its own BLE antenna.
An Android app was developed for the test.

The antenna array was placed at a corner of the room to
make the most of the effective range, and the height was
2 meters from the ground. The relative height was approxi-
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FIGURE 16. AoA estimations indoors for static test.

mately 0.7 meters since the phone was held nearly 1.3 meters
high from the ground.

The AoA plane was treated as the same with the floor plane
because we considered that the relative height was not too
high to distort the angle estimation accuracy.

Twenty reference points around the desks were selected for
evaluation. All reference points were measured with a total
station.

For individual AoA evaluation indoors, 8 reference loca-
tions were selected for the static test. The locations contained
4 corners and 4 aisle midpoints. The tester held the phone
and beacon antenna facing the BLE antenna array with no
obstructions at these locations, each for 30 seconds. A total
of 100 estimations were obtained for each location. The
results with 6 antennas are presented in Fig. 16. Reference
values are in ascending sort order.

From the results, it is clear that angle measurements could
be limited within±70◦ with the placement of anchor stations.
The behavior of the configuration of 6 antennas indoors
was not as stable as outdoors. Some locations such as the
3rd position suffered multipath, so that all 100 estimations
deviated from the truth.

Multipaths at some locations were reflected in the MUSIC
pseudo spectrum, as shown in Fig.8 so that the correct value
could be selected by some methods. However, for the static
test, the only evidence was the height of the peak, which may
lead to a non-direct path. Despite the multipath and other
errors, the AoA estimation results were still relatively precise
measurements. As Fig. 18 shows, the overall results had an
error of approximately 4◦ in 50%, which was not as good as
outdoors but is still useful for positioning indoors.

The dynamic test was a rectangular motion of the pedes-
trian through all 20 reference locations, as shown in Fig. 15.

FIGURE 17. AoA estimations indoors for dynamic test.

FIGURE 18. CDF of AoA estimations indoors.

The tester held the phone and beacon antenna to walk around
the desks. In total, 120 points were evaluated within 6 rounds.
A button in the customized app was pushed when arriving
at the reference locations to record timestamps, which refer
to the standard from NIST [47]. With the timestamps, all
related measurements at these locations were extracted for
evaluation.

AoA estimations are presented in Fig. 17, and Fig. 18. The
results were derived in a dynamic situation, so obstructions
such as the body of the tester might appear in some cases;
6 per location and a total of 120 estimations were obtained.
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FIGURE 19. Distance measurements.

FIGURE 20. CDF of distance measurements.

Angle results with 6 antennas were precise in most loca-
tions. However, with the multipath effect and noise, ‘‘fly-
ing point’’ occurred. There was almost no difference in the
mean accuracy between static and dynamic measurements,
both with an error of approximately 4◦. The total accuracy
decreased by approximately 15◦ in 90% for the static situation
and 25◦ for the dynamic situation. The performance was
limited but could be combined with ranging results.

Ranging measurements were only evaluated dynamically,
and the results from the PR client and RSSI measurements
are shown in Fig.19 and Fig.20.

FIGURE 21. Filter effects for distance.

From the figures, it is clear that the high performance
of the PR was maintained throughout the entire test. The
largest error was approximately 0.5 meters, and the mean
error was less than 0.2 meters. The results from RSSI appeal
to common sense, which shows less error at close range and
large uncertainty at a distant range.

With pairs of AoA and PR or RSSI measurements, posi-
tions could be obtained directly. However, errors appeared
in too many locations to maintain the trajectory, which
decreased the experience.

C. POSITIONING EVALUATION
APDR constraint was suitable to make the trajectory continu-
ous and smooth. The fusion filter we designed leveraged PDR
results as observations. PR or RSSI was applied for distance
observation. The PR andRSSImeasurements were equivalent
to some degree, so it was not necessary to change the structure
of the fusion filter when PR and RSSI sources changed.

All data, including BLE, PDR, and PR, were recorded from
the same walking trajectory. Two similar filters were imple-
mented simultaneously. We evaluated fusion results from
different combinations of sources, includingAoA+PR+PDR
and AoA+RSSI+PDR.

Fig. 21 shows the raw distance measurements and filtered
results from PR and RSSI. Since 6 rounds were walked,
a similar form in the records was repeated 6 times.

The errors from PR were originally small, so the effect
of filter was not obvious. Burrs of data existed but were
controlled by the filter.

For RSSI, the ranging results were strongly filtered. The
measurements were so poor that only near and far could
be roughly distinguished. Benefiting from fusion with other
sources, the filtered results appeared to meet the trajectory.
However, a deviation compared to PR still existed.

With the multipath elimination method when fused with
PDR, AoA measurements were filtered, as shown in Fig. 22.
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FIGURE 22. Filter effects for AoA.

With the results, we observe that both PR and RSSI mea-
surements combined with PDR can be used to filter the
AoA estimations. Additionally, no high latency is introduced.
There are some differences between the filtered results from
PR and RSSI because the quality of the observations is differ-
ent. It is clear that the high precision of PR promotes overall
performance.

For PDR-related parameters, heading is initialized by the
magnetometer with a bias error of nearly 90◦. Fusion with
absolute sources corrects these biases and gives stable esti-
mations, as shown in Fig.23.

In addition to initial bias, accumulated errors were cor-
rected. It can be seen that the heading calculation result based
on gyro accumulates errors over time.

Although the filtered estimations based on RSSI were still
not as accurate as those based on PR, both estimations were
near the ground truth.

Fig. 24 shows the positions based on PDR, AoA+PR,
AoA+PR+PDR, and AoA+RSSI+PDR.

The individual PDR results were almost useless because
of their overall deviation from the true trajectory. The
results from the AoA+PR combination behaved chaoti-
cally because no continuous output from PDR was used.
With the PDR constraint, the results of the AoA+PR+PDR
and AoA+RSSI+PDR combinations were smooth and
continuous.

Fig. 25 shows the CDFs of the positioning error, which is
the Euclidean distance between the estimated position and the
reference location.

FIGURE 23. Filter effects for heading.

FIGURE 24. Position estimations.

D. IMPROVEMENT WITH MORE ANCHORS
The single anchor can provide positioning services in a room-
level area. And the structure is flexible to insert other more
anchor stations. That would increase measurements for the
system.

The angle estimates and signal strengths from different
anchors as Fig. 26 showed can be easily fed into the filter.
It can be seen that the whole estimations become smoother
with three anchors observed. Fig. 27 shows the comparison
of the CDFs with more anchors.
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FIGURE 25. CDF of position estimations.

FIGURE 26. Results of three anchors.

The observations from other one or two anchors increase
redundancy so that the system can be more robust, but the
total accuracy is not promoted too much since the sensors
maintain their own system errors. Table 1 shows the specific
value of the errors.

From Table 1 and Fig. 25, the best was based on
AoA+PR+PDR. Although the mean error of AoA+
RSSI+PDR was the highest, large errors did not occur as
frequently as with AoA+PR.

The results show that without any PR modules, using AoA
and RSSI based on the BLE array could give a mean accuracy

FIGURE 27. CDF of position estimations with multi-anchors.

TABLE 1. Comparison of errors from different combinations.

of better than 1 meter, which achieved the performance of
multi-anchor system.

From Table 1 and Fig. 27, two or more stations improve
the performance in the area where they can both cover. And
they increase the coverage since an area can provide services
in need of signals from only one single-anchor station.

V. CONCLUSION
We proposed a single-anchor solution for indoor positioning.
A prototype was implemented. The system takes advantage
of the BLE signal to measure the angle and distance. The
flexible interfaces of smartphones or other IoT devices make
it simple to access additional modules for enhancing the
performance. Experiments show that the single-anchor solu-
tion works well with a mean error of less than 1 meter in
a typical office room, and the performance can be further
improvedwith precise rangingmeasurements to replace RSSI
observations.

Evaluations outdoors indicated that the high-resolution
AoA algorithm is precise with 6 antennas and efficient with
3 antennas. The indoor implementation requires 6 antennas
for better stability. With these AoA and distance estimations,
the PDR results do not need high accuracy. Therefore, it will
not increase the computational load or require rigorous high
performance of sensors.
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Since the BLE transceiver and IMU sensors are common,
and the resolution of AoA can be reduced to a more prac-
tical level, all the process can be migrated to an embedded
platform. A station of rational dimension and a platform for
display and computation are the all components for the whole
system.

The number of antennas on the station could be decreased
for a smaller size to make it more practical. Since 3 antennas
have acceptable performance outdoors, the potential of 3 or
4 antenna configurations requires further study. The PR units
are expected to be replaced with more universe modules, such
as RTT in the newly developed smartphones or ToF from
BLE. The only connection between the ranging and angle
measuring units is the spatial position, so the station can be
customized with minimum changes when carrying different
modules.

For a practical smartphone application, the independent
BLE transmitter and its rod antenna need to be replaced with
the built-in antenna of the phone. The performance of AoA
estimation is expected to decrease since the packet rate is
lower. For an IoT device, it is not an issue. In future work,
we intend to improve the AoA accuracy of the array in a more
complex environment and reduce the effect of multipath with
fewer antennas.
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