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ABSTRACT In this paper, the stabilization problem of discrete-timeMarkovian jump systems (DMJSs) with
partially mode-dependent controllers of dwell times is studied. Firstly, a kind of partially mode-dependent
controller (PMC) experiencing dwell times is proposed, whose stability problem is transformed into a similar
one about another DMJS. Secondly, by exploiting a switched quadratic Lyapunov function (SQLF), sufficient
conditions for the designed controller are given in terms of linear matrix inequalities (LMIs). Moreover, more
extensions about stabilization realized by fault-tolerant and disordered controllers are considered. Finally,
two practical examples are used to show the effectiveness and practicability of the proposed methods.

INDEX TERMS Markovian jump systems, partially mode-dependent controllers, dwell times, fault-tolerant
controllers, disordered controllers, linear matrix inequalities.

I. INTRODUCTION
In recent years, the hybrid dynamic system has become a
hot topic in various fields [1], [2]. Decision makers can
add random variables to the system according to actual
experience and statistical information. As a result, abnormal
operating conditions caused by disturbances and faults in
dynamic systems can be better coped with. In hybrid systems,
the Markov jump system (MJS) [3] is the most typical one.
It can model and analyze reasons for different changes in a
system, including the internal structure, the working node
and the related matrix parameters change suddenly due to
the influence of working environment. Up till now, it has
been widely used in social economics [4]–[7], cytogenetics
[8], [9], biomedical [10], aerospace [11] and various types of
networked control [12]–[14]. Among the theoretical research
results, stability and stabilization problems are the priorities
to be concerned, such as [15]–[18]. When the transition
rate or probability matrix is uncertain or partially unknown,
some results were obtained in [19]–[21]. These innovative
studies have not only enriched the theoretical system of the
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MJSs, but also contributed significantly to a variety of prac-
tical applications.

On the other hand, compared with open-loop systems
[22], [23], the closed-loop system has better calming effect
when output of system and disturbance emerge in prac-
tical applications. Thus, the study of closed-loop MJSs
[24]–[26] is indispensable and important. Naturally,
the design of a more compliant controller becomes a key
issue. Over the past decades, a lot of research results about
MJSs used mode-dependent controllers had been obtained
in [27]–[31]. There, the modes of controller and subsystem
should match with others at any time. To the contrary, mode-
independent controller [32] does not need any mode infor-
mation. It is an uniform controller which could stabilize any
subsystem. Since the mode of the controller is totally ignored,
it is said to be an absolute method and less conservative
than mode-dependent methods. Furthermore, there are some
existing research results for the situation where the modes of
controllers do not match the modes of systems (e.g., the study
of asynchronous controllers [33], [34]). In literature [19],
the author introduced a detector to detect the subsystems
with partial information in the modes of the system, so as
to achieve the so-called effect of mode-dependent controller.
In [28], mismatches between the modes of systems and
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the modes of controllers were described by using a hidden
Markov model. Particularly, in [35], a kind of partially mode-
dependent controller was designed by introducing Bernoulli
variables. It was found that the mode-independent controller
is instantaneous. However, in actual productions and man-
ufacturing processes, due to the aging of internal compo-
nents or structural failures, the mode of subsystem has been
unable to be real-time monitored for a certain period of time.
In this case, the mode-dependent, mode-independent and
partially mode-dependent controllers above are not suitable
to be applied. All the observations motivated us to conduct
the current research.

In this paper, the stabilization problem of DMJSs by a
partially mode-dependent controller of dwell times is stud-
ied. The main contributions of this paper are summarized
as follows: 1) The model of a PMC with dwell times is
presented, which is more suitable in practical applications;
2) Without considering its stability directly, it is analyzed
by studying another DMJS, whose energy function of each
subsystem during the dwell time is not necessarily decreased
strictly; 3) Based on the key idea of PMC, two additional
cases about controller with fault or disorder are investigated
respectively; 4) All the existing conditions of controllers are
given with LMI forms, which are convenient to be computed
and extended to other cases.
Notation: Rn is the n-dimensional Euclidean space, Rp×q

represents the real matrices with p× q dimension. Z denotes
the set of integers and N is the natural numbers set. For
Probability space (�,F ,P), � represents the sample space,
F is the σ -algebra of subsets of the sample space andP is the
probabilitymeasure onF . ‖·‖ represents the Euclidean vector
norm or spectral matrix norm. λ(·) refers to the eigenvalue
of matrix. E {·} indicates expectation of random variable.
And ∗ expresses the transpose of corresponding position in
symmetric matrices.

II. PROBLEM FORMULATION
Consider a kind of discrete-time linear MJSs on a probability
space (�,F ,P) as

x(k + 1) = Aη(k)x(k)+ Bη(k)u(k)

x(0) = x0, η(0) = η0 (1)

where x(k) ∈ Rn is the system state vector and u(k) ∈ Rp

is the control input. Aη(k) is the system matrix where Aη(k) ∈
Rn×n and Bη(k) represents input matrix where Bη(k) ∈ Rn×p.
{η(k), k ∈ Z} is a Markov chain which takes value in a
finite set N , {1, 2, . . .N }. 5 = (πij)N×N is defined
as the transition probability matrix composed of transition
probability πij which satisfies

Pr{η(k + 1) = j|η(k) = i} = πij (2)

where ∀i, j ∈ N, it has πij ≥ 0 and
∑N

j=1 πij = 1.
In addition, we define

Pr{η(k + n) = j|η(k) = i} = π (n)
ij (3)

is the n-step transition probability of Markov chain {η(k),
k ∈ Z}. By the characteristic of the Markov chain, the
operator 5(n) is so-called the n-step transition probability
matrix and it satisfies 5(n)

= 5×5× · · · ×5︸ ︷︷ ︸
n

. In order

to conveniently represent the elements in the matrix5(n), we
define 2 , (θij)N×N = 5×5× · · · ×5︸ ︷︷ ︸

n

which consists of

element θij, where θij , π
(n)
ij . And for any i, j ∈ N, it has

θij ≥ 0 and
∑N

j=1 θij = 1.

A kind of state feedback partial mode-dependent controller
is described as

u(k) =

{
Kx(k), k ∈ 01,n
Kη(k)x(k), k ∈ 02,n

(4)

where K and Kη(k) denote controller gains. 01,n ,
[l2n, l2n+1), 02,n , [l2n+1, l2n+2) and l0 = 0. Then we define
lengths of 01,n and 02,n are constants and l2n+1 − l2n = κ1,
l2n+2 − l2n+1 = κ2. A key assumption is that the values
of κ1 and κ2 are given and fixed. It means that when k ∈
01,n, the mode signal is unknown or cannot be detected. The
controller is mode-independent. When k ∈ 02,n, the mode
signal is known or can be detected. The controller is mode-
dependent. So by detecting the modal signal η(k) at time k ,
the length of dwell time can be obtained according to its value
available or not. Particularly, by re-mentioning θij , π

(n)
ij , we

further define θ [1]ij = π
(κ1)
ij and θ [2]ij = π

(κ2)
ij .

By substituting (4) into (1), it has two sub-systems which
could be written as

x(k + 1) =

{
Āη(k)x(k), k ∈ 01,n
Ãη(k)x(k), k ∈ 02,n

(5)

where Āη(k) = Aη(k)+Bη(k)K and Ãη(k) = Aη(k)+Bη(k)Kη(k).
Our aim in this paper is to study the stabilization problem

of system (5), and we assume that the value of κ1 and κ2 can
be determined by detections. One possible way is to detect the
mode of controller by applying a mode detector, while a time
instant is used to indicate whether or not the mode is detected.
However, there is another case in practical application, that is,
the value of κ1 and κ2 can not be determined by detection
because the information of system mode is not available.
If someone wants to do further research in this case, it may be
necessary to get the information of parameters firstly, which
could be solved by using the method purposed by [19], and
then one could obtain values of κ1 and κ2.
Remark 1: By summarizing a large number of existing

literatures, it is found that most state feedback controllers
of MJSs are mode-dependent ones, see, e.g., [36]–[39].
In other words, the corresponding operation mode should be
assumed to be available on time. In order to remove this ideal
assumption, a mode-independent controller [32] was usually
designed, by ignoring its mode information totally. It was
actually an absolute method. In order to bridge the above
two methods, a kind of partially mode-dependent controller
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is proposed in [35]. However, it is said that the introduced
Bernoulli variable was a traditional one, whose two states
occur instantaneously. It is quite different from PMC (4)
whose two states could last a period. Compare with these
literatures, PMC (4) is more general and suitable. Since the
above dwell times are considered, its stability analysis will
be complicated, especially the controller design will be very
difficult. For example, because of both mode-dependent and
mode-independent cases contained, how to analyse them by
using a mode-dependent Lyapunov function is the first one to
be considered; Secondly, but not the last, due to dwell times
play important roles, how to make the existence condition
with solvable forms is another difficulty to be handled.
Definition 1: The system (5) is stochastically stable, if it

holds

E {
∞∑
k=0

‖x(k)‖2|x0, η0} ≤ ∞

for any initial conditions x0 ∈ Rn and η0 ∈ N.

III. MAIN RESULTS
Theorem 1: System (5) with integers κ1 > 0, κ2 > 0 and

controller (4) is stochastically stable, if for given parameters
1 > α1 > 0 and 1 > α2 > 0, there exist matrices P1i > 0,
P2i > 0 for all i, j ∈ N, such that[

−α1I Ai + BiK
∗ −I

]
≤ 0 (6)[

−α2I Ai + BiKi
∗ −I

]
≤ 0 (7)

α
κ1
1

N∑
j=1

θ
[1]
ij P2j − P1i < 0 (8)

α
κ2
2

N∑
j=1

θ
[2]
ij P1j − P2i < 0 (9)

where P1i = ρ1iI ∈ Rn×n and P2i = ρ2iI ∈ Rn×n.
Proof: First, the stochastic stability of system (5) will

be proved. In fact, k = l2n and k = l2n+1 can be seen as
switching moments of two sub-systems. By the analysis of
switching moments, solutions of the state equation can be
obtained as

x(l2n+1) = Āη(l2n+1−1) . . . Āη(l2n)x(l2n)

x(l2n+2) = Ãη(l2n+2−1) . . . Ãη(l2n+1)x(l2n+1) (10)

For ease of notation, we will write 81η̃(l2n) = Āη(l2n+1−1) · · ·
Āη(l2n+1)Āη(l2n) and 82η̃(l2n+1) = Ãη(l2n+2−1) · · · Ãη(l2n+1+1)
Ãη(l2n+1) with η̃(l2n) = [η(l2n+1 − 1), . . . , η(l2n)] and
η̃(l2n+1) = [η(l2n+2− 1), . . . , η(l2n+1)] in what follows. The
state equation which only considers the switching moment
can be obtained by (10) as follows

X (k̄ + 1) =

{
81η̃(l2n)X (k̄), k̄ = 2n
82η̃(l2n+1)X (k̄), k̄ = 2n+ 1

(11)

It can be seen that X (2n) is actually equal to x(l2n) and
x(l2n+1) is represented by X (2n+ 1).

Then, a switched quadratic Lyapunov function (SQLF) is
introduced for (11) as follows

V (X (k̄), η(k̄), k̄) =

{
X T (k̄)P1η(k̄)X (k̄), k̄ = 2n

X T (k̄)P2η(k̄)X (k̄), k̄ = 2n+ 1
(12)

Thus, when k̄ = 2n, it can be gotten that

1V1(X (k̄), η(k̄), k̄)
= E {V (X (k̄ + 1), η(k̄ + 1), k̄ + 1|X (k̄), η(k̄), k̄)}
− V (X (k̄), η(k̄), k̄)

= E {X T (k̄ + 1)P2η(k̄+1)X (k̄ + 1)}

− X T (k̄)P1η(k̄)X (k̄)

= E {X T (k̄)8T
1η̃(l2n)

P2η(k̄+1)81η̃(l2n)X (k̄)}

− X T (k̄)P1η(k̄)X (k̄)

= X T (k̄)[E {8T
1η̃(l2n)

P2η(k̄+1)81η̃(l2n)} − P1η(k̄)]X (k̄)
< 0 (13)

which could be guaranteed by

E {(8T
1η̃(l2n)

P2η(k̄+1)81η̃(l2n)} − P1η(k̄) < 0 (14)

Further more, when k̄ = 2n+ 1, it has

1V2(X (k̄), η(k̄), k̄)
= E {V (X (k̄ + 1), η(k̄ + 1), k̄ + 1|X (k̄), η(k̄), k̄)}
− V (X (k̄), η(k̄), k̄)

= E {X T (k̄ + 1)P1η(k̄+1)X (k̄ + 1)}

− X T (k̄)P2η(k̄)X (k̄)

= E {X T (k̄)8T
2η̃(l2n+1)

P1η(k̄+1)82η̃(l2n+1)X (k̄)}

− X T (k̄)P2η(k̄)X (k̄)

= X T (k̄)[E {8T
2η̃(l2n+1)

P1η(k̄+1)82η̃(l2n+1)} − P2η(k̄)]X (k̄)
< 0 (15)

which could be guaranteed by

E {(8T
2η̃(l2n+1)

P1η(k̄+1)82η̃(l2n+1)} − P2η(k̄) < 0 (16)

Particularly, we define that ∀i ∈ N, there exists two positive
constants 1 > α1 > 0 and 1 > α2 > 0 which satisfies

‖Āi‖2 ≤ α1I , ‖Ãi‖2 ≤ α2I (17)

And it is worth mentioning that smaller values of α1 and α2
selected will lead to a greater decay rate of the state norm of
system (5).
Then, it could be gotten that

‖81η̃(l2n)‖
2
= ‖Āη(l2n+1−1) . . . Āη(l2n)‖

2

≤ ‖Āη(l2n+1−1)‖
2 . . . ‖Āη(l2n)‖

2

≤ α
κ1
1 I (18)

‖82η̃(l2n+1)‖
2
= ‖Ãη(l2n+2−1) . . . Ãη(l2n+1)
≤ ‖Ãη(l2n+2−1)‖

2 . . . ‖Ãη(l2n+1)‖
2

≤ α
κ2
2 I (19)
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So by using 3Tµ3 ≤ ‖3‖2µ where µ ≥ 0 and (18), (19).
(14) and (16) can be guaranteed by

E {P2j}‖81η̃(l2n)‖
2
− P1i ≤ α

κ1
1

N∑
j=1

θ
[1]
ij P2j − P1i < 0 (20)

and

E {P1j}‖82η̃(l2n+1)‖
2
− P2i ≤ α

κ2
2

N∑
j=1

θ
[2]
ij P1j − P2i<0 (21)

where P1i = ρ1iI ≥ 0 and P2i = ρ2iI ≥ 0.
It is worth noting that (20) and (21) can only guaran-

tee the Lyapunov functions of systems (12) are monoton-
ically decreasing at the moment of switching and it can
be gotten that limk̄→∞ V (X (k̄), k̄) = 0 which implies
limk̄→∞ ‖X (k̄)‖2 = 0. Then it is obviously that

∞∑
k̄=0

(E {V (X (k̄ + 1), η(k̄ + 1), k̄ + 1|X (k̄), η(k̄), k̄)}

− V (X (k̄), η(k̄), k̄))

= E {V (X (∞), η∞,∞)} − V (X (0), η0, 0)

≤ 0 (22)

Clearly, as X (0) = x(0), ∀k ∈ 01,n, it has

‖x(k)‖ ≤ ακ11 ‖X (2n)‖ (23)

and ∀k ∈ 02,n, it has

‖x(k)‖ ≤ ακ22 ‖X (2n+ 1)‖ (24)

It can be seen ∀k ∈ [l2n, l2n+2), one has ‖x(k)‖ ≤
max{α1, α2}(κ1+κ2)‖X (2n)‖. By defining ε̄ = max
{α1, α2}

(κ1+κ2), there exists % = ε
ε̄
> 0 such that ‖x(k)‖ < ε,

∀k = 0, 1, 2, . . . whenever ‖x(0)‖ = ‖X (0)‖ < %. Then,
it can be concluded that the system (5) is stable. As k̄ →∞,
it can be obtained

E {V (x(∞), η∞,∞|x0, η0, 0)} − V (x0, η0, 0)

≤ E {V (X (∞), η∞,∞|X (0), η0, 0)} − V (X (0), η0, 0)

≤ − ρ

∞∑
k=0

E {‖x(k)‖2|x0, η0} (25)

which implies

E {
∞∑
k=0

‖x(k)‖2|x0, η0} ≤
∞∑
k=0

E {‖x(k)‖2|x0, η0}

≤
1
ρ
V (x0, η0, 0) <∞ (26)

Then the system (5) is stochastically stable. In addition,
by (17), the controller can be calculated in terms of LMIs
(6) and (7). This completes the proof.
Remark 2: Compare with the existing partially mode-

dependent method [35], the dwell times are included and
play important roles, which could lead to less conserva-
tive results. Moreover, it also contains mode-dependent and

mode-independent cases special ones, which is analyzed by
a mode-dependent Lyapunov function. Different from the
method used in [40], a switched Lyapunov function is only
selected to system (11) instead of (5). It has the advantage
that the energy function is not required to satisfy the condition
1V = E {V (x(k + 1))} − V (x(k)) < 0 within the dwell time.
It means that only stabilizing system (11) could guarantee
system (5) stochastically stable. Then, it is less restrictive than
traditional methods.
Remark 3: It is seen from (4) that when k ∈ 02,n, the state

feedback controller is designed as u(k) = Kη(k)x(k). In other
words, it is assumed that the active mode of system (1)
is matched with the controller when k ∈ 02,n. However,
there is another situation that a mismatch η(k) between Kη(k)
and system matrices Aη(k) and Bη(k) occurs. In this case,
the method proposed in Theorem 1 cannot be applied directly.
Fortunately, it is said that the above general problem could be
studied by combining Theorem 1 and existing methods. For
example, based on a robust method [41], one remodel con-
troller (4) whose mode is a unmatched with the active mode.
Then, similar to the proof of this theorem, one could get the
corresponding results. However, some additional problems
will be encountered and should be carefully considered. For
example, how to make the obtained results with solvable
forms is a first but important problem, since both uncertainty
and partially mode-dependent property are considered.More-
over but not the last, an improved Lyapunov function should
be constructed to get less conservative results. How to select
a suitable from is also necessary to be studied.

Then, we are interested in considering two special cases
for system (4). The first special case is that there exists
the controller completely failure when k ∈ 01,n, so that
parameters in the system (4) are designed to correspond to
the form, which means

x(k + 1) =

{
Āη(k)x(k), k ∈ 01,n
Ãη(k)x(k), k ∈ 02,n

(27)

where Āη(k) = Aη(k) and Ãη(k) = Aη(k) + Bη(k)Kη(k).
Corollary 1: System (27) with integers κ1 > 0, κ2 > 0

and controller Kη(k) is stochastically stable, if for given
parameters γ1 > 0 and 1 > γ2 > 0, there exist matrices
P1i > 0 and P2i > 0 for all i, j ∈ N, such that[

−γ1I Ai
∗ q− I

]
≤ 0 (28)[

−γ2I Ai + BiKi
∗ −I

]
≤ 0 (29)

γ
κ1
1

N∑
j=1

θ
[1]
ij P2j − P1i < 0 (30)

γ
κ2
2

N∑
j=1

θ
[2]
ij P1j − P2i < 0 (31)

where P1i = ρ1iI ∈ Rn×n and P2i = ρ2iI ∈ Rn×n.
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Proof: The proof of stochastically stability of system
(27) is analogous to Theorem 1. The difference between it
and Theorem 1 is that since k ∈ 01,n, K = 0, so Āη(k) =
Aη(k). It means that81η̃(l2n) is actually a known matrix which
consists of Aη(k) when k ∈ 01,n. So the condition (6) in
Theorem 1 is not required in this case. Similar to (17), one
could define that ∀i ∈ N, there exists two positive constants
γ1 > 0 and 1 > γ2 > 0 which satisfies ‖Āi‖2 ≤
γ1I and ‖Ãi‖2 ≤ γ2I , by using the similar method as
Theorem 1. The mode-dependence controller Kη(k) can be
calculated by the LMI of condition (29). This completes the
proof.
Remark 4: It can be seen that when the eigenvalue of the

system matrix satisfies λ̄ = maxi∈NRe(λ(Ai)) > 1, the
increment of the energy function can not be guaranteed to
be less than zero during the dwell time of systems with
controllers failure. It is difficult to obtain sufficient con-
ditions for the stability of system (27) by analyzing dif-
ference equations of the Lyapunov functions at two switch
instants in the entire time domain, or the sufficient condi-
tions obtained have largely conservative. In other words, by
analyzing the reconstruction system consisting of switch-
ing instants of system (27), even if there is a case where
the energy function increment is greater than zero in the
dwell time of systems with controllers failure, the stabiliza-
tion of system can be guaranteed by the constraints of the
conditions (30) and (31).

Another special case is that the disordering between con-
trollers is taken into account and without loss of generality,
η(k) here is considered as η(k) ∈ N = {1, 2}. System (5) can
actually be written as

x(k + 1) =

{
(A1 + B1(K1 +1K1))x(k), k ∈ 01,n
(A2 + B2(K2 +1K2))x(k), k ∈ 02,n

(32)

where 1K1 = K2 − K1 and 1K2 = K1 − K2. For ease of
notation, we would write system (32) as follows and the same
representation will be used in what follows

x(k + 1) =

{
(Ā1 +1Ā1)x(k), k ∈ 01,n
(Ā2 +1Ā2)x(k), k ∈ 02,n

(33)

where Ā1 = A1 + B1K1, Ā2 = A2 + B2K2, 1Ā1 = B11K1
and 1Ā2 = B21K2. It can be seen that system (32) could
be regarded as a deterministic hybrid system because one
subsystem must switch to another subsystem at time k = l2n
and time k = l2n+1.
Theorem 2: System (33) with integers κ1 > 0, κ2 > 0 and

controllerK1,K2 is asymptotically stable, if given parameters

1 > ζ1 > 0, 1 > ζ2 > 0,
ζ 21
2 > ω1 > 0 and

ζ 22
2 >

ω2 > 0, there exist matrices P1 > 0 and P2 > 0, such
that [

−ω1I KT
2 B

T
1 − K

T
1 B

T
1

∗ −I

]
≤ 0 (34)[

−ω2I KT
1 B

T
2 − K

T
2 B

T
2

∗ −I

]
≤ 0 (35)

[
−(

ζ 21
2 − ω1)I AT1 + K

T
1 B

T
1

∗ −I

]
≤ 0 (36)[

−(
ζ 22
2 − ω2)I AT2 + K

T
2 B

T
2

∗ −I

]
≤ 0 (37)

ζ
2κ1
1 P2 − P1 < 0 (38)

ζ
2κ2
2 P1 − P2 < 0 (39)

where P1 = ρ1I ∈ Rn×n and P2 = ρ2I ∈ Rn×n.
Proof: It can be seen that due to the disordered con-

troller, system (33) has two modes during operation. Then
rebuilding the system only considers the switching moments
as follows

X (k̄ + 1) =

{
91X (k̄), k̄ = 2n
92X (k̄), k̄ = 2n+ 1

(40)

where 91 = (Ā1 + 1Ā1)κ1 and 92 = (Ā2 + 1Ā2)κ2 . For
system (40), SQLF is introduced as

V (X (k̄), k̄) =

{
X T (k̄)P1X (k̄), k̄ = 2n
X T (k̄)P2X (k̄), k̄ = 2n+ 1

(41)

Based on the iterative law of (40) and formula (41), when
k̄ = 2n, it has

1V1(X (k̄), k̄)

= X T (k̄ + 1)P2X (k̄ + 1)− X T (k̄)P1X (k̄)

= X T (k̄)9T
1 P291X (k̄)− X T (k̄)P1X (k̄)

= X T (k̄)(9T
1 P291 − P1)X (k̄) < 0 (42)

It is equivalent to

9T
1 P291 − P1 < 0 (43)

When k̄ = 2n+ 1, it has

1V2(X (k̄), k̄)

= X T (k̄ + 1)P1X (k̄ + 1)− X T (k̄)P2X (k̄)

= X T (k̄)9T
2 P192X (k̄)− X T (k̄)P2X (k̄)

= X T (k̄)(9T
2 P192 − P2)X (k̄) < 0 (44)

It is equivalent to

9T
2 P192 − P2 < 0 (45)

It is known that (43) and (45) can only guarantee the Lya-
punov functions of system (40) are monotonically decreas-
ing at the moment of switching and it can be gotten that
limk̄→∞ V (X (k̄), k̄) = 0 which implies limk̄→∞ ‖X (k̄)‖2 =
0. Clearly, as X (0) = x(0), there exists 1 > ζ1 > 0 and
1 > ζ2 > 0 that ∀k ∈ [l2n, l2n+1),

‖x(k)‖ ≤ ‖Ā1 +1Ā1‖(k−l2n)‖x(l2n)‖

≤ ζ
(k−l2n)
1 ‖x(l2n)‖

= ζ
(k−l2n)
1 ‖X (2n)‖

≤ ζ
κ1
1 ‖X (2n)‖ (46)
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∀k ∈ [l2n+1, l2n+2), it has

‖x(k)‖ ≤ ‖Ā2 +1Ā2‖(k−l2n+1)‖x(l2n+1)‖

≤ ζ
(k−l2n+1)
2 ‖x(l2n+1)‖

= ζ
(k−l2n+1)
2 ‖X (2n+ 1)‖

≤ ζ
κ2
2 ‖X (2n+ 1)‖ (47)

It can be seen ∀k ∈ [l2n, l2n+2), it has ‖x(k)‖ ≤
max{ζ1, ζ2}(κ1+κ2)‖x(l2n)‖. By defining ε̄ = max
{ζ1, ζ2}

(κ1+κ2), ∀ε > 0, there exists % = ε
ε̄
> 0 such

that ‖x(k)‖ < ε, ∀k = 0, 1, 2, . . . whenever ‖x(0)‖ =
‖X (0)‖ < %. Then, the system (33) is stable and it satisfies
limk→∞ ‖x(k)‖2 = 0. In summary, by making system (40)
asymptotically stable, it is equivalent to that the system (33)
is asymptotic stability. And it is seen that smaller the values
of ζ1 and ζ2 selected, which will lead to a greater decay rate
of the state norm of system (33).

Clearly, by using3Tµ3 ≤ ‖3‖2µ where µ ≥ 0 and (43),
it has

9T
1 P291 = ((Ā1 +1Ā1)T )κ1P2(Ā1 +1Ā1)κ1

≤ ‖Ā1 +1Ā1‖2κ1P2
≤ ζ

2κ1
1 P2 (48)

where P2 = ρ2I ≥ 0.
By substituting (48) into (43), it can be easily obtained that

(43) could be guaranteed by condition (38).
Similarly, one has

9T
2 P192 = ((Ā2 +1Ā2)T )κ2P1(Ā2 +1Ā2)κ2

≤ ‖Ā2 +1Ā2‖2κ2P1
≤ ζ

2κ2
2 P1 (49)

where P1 = ρ1I ≥ 0.
Then by substituting (49) into (45), it can be guaranteed by

condition (39) obviously.
Particularly, (48) and (49) can be guaranteed by

‖Ā1 +1Ā1‖2 ≤ ζ 21 (50)

and

‖Ā2 +1Ā2‖2 ≤ ζ 22 (51)

Then, inequality (50) is implied by

(Ā1 +1Ā1)T (Ā1 +1Ā1) ≤ ζ 21 I (52)

which can be guaranteed by

2ĀT1 Ā1 + 21ĀT11Ā1 ≤ ζ
2
1 I (53)

Here the premise is required as

1ĀT11Ā1 ≤ ω1I (54)

where 0 < ω1 <
ζ1

2

2 .
Then by Schur complement lemma, one has[

−ω1I BT11K
T
1

∗ −I

]
≤ 0 (55)

which implies condition (34).

By (53) and (54), it can be obtained that

ĀT1 Ā1 + ω1I ≤
ζ 21

2
I (56)

which implies condition (36).
Similarly, by rementioned (51), it has

(Ā2 +1Ā2)T (Ā2+1Ā2)−ζ 22 I ≤ 2ĀT2 Ā2+21Ā
T
21Ā2−ζ

2
2 I

≤ 0 (57)

Here the premise is required as

1ĀT21Ā2 ≤ ω2I (58)

where 0 < ω2 <
ζ2

2

2 .
By (58), one can obtain[

−ω2I BT21K
T
2

∗ −I

]
≤ 0 (59)

and it implies condition (35).
By (58) and (59), one has

ĀT2 Ā2 + ω2I ≤
ζ 22

2
I (60)

which implies condition (37).
Then disordered controllers can be obtained by LMIs (37),

(38), (39) and (40). This completes the proof.
Remark 5: On the one hand, compared to [41], the model

here yields a more realistic result by introducing a dwell
time. On the other hand, different from the SQLS established
by Theorem 1, the SQLS established for system (32) can
be understood as a disordered-dependent Lyapunov function.
Since this paper considers a special case with two modes,
so there are only two positive definite matrices P1 and P2. It is
worthmentioning that the results above are equally applicable
to the more general case. When the case of multiple modes
(N > 2) is considered, more complex results similar to
Theorem 2 can be obtained.
Remark 6: It can be seen that all sufficient conditions in

this paper are given in the form of LMIs. This makes it
convenient to solve and calculate. However, in the process
of obtaining these conditions, the conservatism of the system
also needs to be noticed. On the one hand, in the process of
calculation, some problems are dealt with using robust ideas,
which leads to the increase of system conservatism. On the
other hand, when calculating the norm of the transfer matrix
of the system, it can be seen in (18), (19), (48) and (49)
that the method used will lead to more conservatism with the
increase of dwell times. In addition, considering the existence
of P1i and P2i as positive definite symmetric matrices rather
than numbers, the result may be less conservative, but such
consideration is contradictory to the derivation process and
difficult to implement.
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FIGURE 1. The structure of CLSC.

IV. NUMERICAL EXAMPLE
The following examples of simulations are aimed to show the
applicability of theories presented in this paper.
Example 1: Consider a supply chain control (CLSC) sys-

tem partially cited from [42]. Its structure is shown in Fig. 1.
It is assumed here that the remanufactured products have the
same product specifications and quality as the original fin-
ished products. Let x1(k) ∈ Rn denotes the inventory levels of
available commodity warehouses and x2(k) ∈ Rn represents
recycled commodity warehouses. u1(k) ∈ Rp indicates the
manufacturing rate of the manufacturing equipment at the
time k and u2(k) ∈ Rp is the recovery rate of the used goods
at the time k .
Assumption 1: The model is based on the following

assumptions:

a) The quantity of recycled product is determined by
the manufacturer. That is, the market has a suffi-
cient number of products to satisfy the recycling
needs, and the manufacturer only needs to recycle
the quantity it needs;

b) It is a fact that the value of a commodity will decay
at the rate ρ. Here, ρ1 and ρ2 correspond to the
decay rates of available warehouses and recycled
warehouses respectively;

c) Parameters β1 and β2 denote the remanufacturing
rate and abandonment rate, where 0 ≤ β1 ≤ 1,
0 ≤ β2 ≤ 1 and 0 < β1 + β2 ≤ 1. C1
andC2 represent themaximum available warehouse
storage and the maximum recoverable warehouse
storage, respectively.

The closed-loop supply chain system considered here will use
inventory levels as state variables. When 0 < x1(k) < C1,
the closed-loop supply chain system could be written as

x1(k + 1) = (1− ρ1)x1(k)+ β1x2(k)+ u1(k) (61)

When x1(k) ≤ 0, it means that there is a shortage of supply.
One obtains

x1(k + 1) = x1(k)+ β1x2(k)+ u1(k) (62)

Similarly, when 0 < x2(k) < C2, one has

x2(k + 1) = (1−ρ2)x2(k)−β1x2(k)−β2x2(k)+u2(k) (63)

When x2(k) ≤ 0, one gets

x2(k + 1) = x2(k)+ u2(k) (64)

Combining (61) and (63), it is obtained that

x̄(k + 1) = A1x̄(k)+ B1ū(k) (65)

Considering (61) and (64), it is got that

x̄(k + 1) = A2x̄(k)+ B2ū(k) (66)

Taking into account (62) and (63), it is written to be

x̄(k + 1) = A3x̄(k)+ B3ū(k) (67)

Under (62) and (64), it is obtained that

x̄(k + 1) = A4x̄(k)+ B4ū(k) (68)

where

x̄(k) =
[
xT1 (k) xT2 (k)

]T
, ū(k) =

[
uT1 (k) uT2 (k)

]T
A1 =

[
1− ρ1 β1

0 1− ρ2 − β1 − β2

]
,

A2 =
[
1− ρ1 β1

0 1

]
, A3 =

[
1 β1
0 1−ρ2 − β1 − β2

]
,

A4 =
[
1 β1
0 1

]
and x̄(0) = x̄0. Thus, systems (65), (66), (67) and (68) can
be regarded as system (1). It is well known that the supply
chain has multiple levels and changes in real time depending
on market conditions. Since ū(k) depends on x̄(k), a state
feedback controller is considered in this paper. A key assump-
tion here is that the inventory information of the commodity
in a certain interval cannot be detected, so ū(k) is designed
as a partial mode-dependent state feedback controller and its
structure is as

ū(k) =

{
Kx̄(k), k ∈ 01,n
Kη(k)x̄(k), k ∈ 02,n

It can be seen the controller designed here is similar to (4)
and it means this kind of problem is suitable for solving the
method used in the Theorem 1 of this article.

Next, a historical data of scrap steel recycling in a domestic
steel company [43] will be combined, and an example of
a closed-loop supply chain system is given. According to
the actual situation and enterprise historical data, the model
parameters are set as follows: The decay rate of the available
commodity warehouse is ρ1 = 0.07, and the decay rate of the
recovered commodity warehouse is ρ2 = 0.09. The initial
value is set to x1(0) = 10, x2(0) = 5 (unit: 106 tons).
Remanufacturing rate β1 = 0.56 and rejection rate β2 =
0.15. Therefore, we have the following system parameters

A1 =
[
0.9300 0.5600

0 0.2000

]
, A2 =

[
0.9300 0.5600

0 1.0000

]
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A3 =
[
1.0000 0.5600

0 0.2000

]
, A4 =

[
1.0000 0.5600

0 1.0000

]
B1 =

[
2
1

]
, B2 =

[
4
1

]
, B3 = B4 =

[
1
1

]
where TRM is considered as

5 =


0.200 0.300 0.100 0.400
0.400 0.100 0.400 0.100
0.100 0.500 0.200 0.200
0.500 0.200 0.100 0.200


Then, by the characteristic of the Markov chain,

2[1]
= 53

=


0.2870 0.2750 0.1860 0.2520
0.3340 0.2370 0.2220 0.2070
0.2680 0.2930 0.1930 0.2460
0.3190 0.2540 0.1950 0.2320


and

2[2]
= 52

=


0.3700 0.2200 0.2000 0.2100
0.2100 0.3500 0.1700 0.2700
0.3400 0.2200 0.2700 0.1700
0.2900 0.2600 0.1700 0.2800


By condition (6) and (7) in Theorem 1, the mode-independent
controller gain can be gotten as

K =
[
−0.3057 −0.2615

]
and mode-dependent controller gains can be obtained as

K1 =
[
−0.3720 −0.2640

]
K2 =

[
−0.2188 −0.1906

]
K3 =

[
−0.5000 −0.3800

]
K4 =

[
−0.5000 −0.7800

]
The positive definite symmetric matrices P1j and P2j calcu-
lated are as follows

P11 =
[
16.7527 0

0 16.7527

]
P12 =

[
17.1915 0

0 17.1915

]
P13 =

[
17.8905 0

0 17.8905

]
P14 =

[
17.5226 0

0 17.5226

]
P21 =

[
15.8007 0

0 15.8007

]
P22 =

[
16.3073 0

0 16.3073

]
P23 =

[
17.1379 0

0 17.1379

]
P24 =

[
16.6830 0

0 16.6830

]
It can be seen that ρ11 = 16.7527, ρ12 = 17.1915, ρ13 =
17.8905, ρ14 = 17.5226, ρ21 = 15.8007, ρ22 = 16.3073,
ρ23 = 17.1379, ρ24 = 16.6830.
Here we assume α1 = 0.9, α2 = 0.8, κ1 = 3 and

κ2 = 2, it means that mode-independent controller acts on
k ∈ [nT , nT + 3) and mode-dependent controller acts on
k ∈ [nT +3, nT +5), where the period T = κ1+κ2 = 5. The
mode switching simulation of system (5) is shown in Fig. 2
and the state response is shown in Fig. 3 under the initial con-
dition x̄0 = [10 5]T . Meanwhile, Fig. 4 illustrates the input

FIGURE 2. Simulations of operation modes.

FIGURE 3. State response of the closed-loop system.

FIGURE 4. Control input subjects to mode-dependent and
mode-independent.

control signal u(k) where the shaded area implies the mode-
dependent controller and unshaded area implies the mode-
independent controller. As it shown in Fig. 3, the system is
stochastically stable through Theorem 1.
Example 2: Consider the the problem of disordered con-

troller for an industrial continuous-stirred tank reactor sys-
tem, where chemical species A react to form species B. Fig. 5
shows the cross-sectional diagram of continuous flow stirred-
tank reactor and Fig. 6 illustrates the physical structure of
the system, where CAi, CA, T , TC are, respectively, the input
concentration of a key reactant A, the output concentration
of chemical species A, the reaction temperature and the
cooling medium temperature. When modeling the industrial
continuous-stirred tank reactor system, since the system is in
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FIGURE 5. Cross-sectional diagram of continuous flow stirred-tank
reactor.

FIGURE 6. A continuous-stirred tank reactor model.

a network environment, in the process of data transmission,
due to the complexity of the transmission path and node con-
flicts, the phenomenon of disordering is inevitable between
the controllers. By selecting the state and input variables as
x =

[
CT
A T T

]T , u = [
T TC CT

Ai

]T . A discrete-space model
is obtained as the form of (31), where system matrix A1,
A2 and the control matrix B1, B2 are taken from the lin-
earized model of an industrial continuous-stirred tank reactor
system in [44] as

A1 =
[
1.0219 −0.0987
0.1340 0.8628

]
, B1 =

[
0.0839 0.0232
0.0761 0.4144

]
A2 =

[
0.9719 0.1013
0.0340 0.8828

]
, B2 =

[
0.0839 0.0232
0.0761 0.4144

]
By selected ω1 = 0.3, ω2 = 0.1, ζ1 = 0.8 and ζ1 = 0.6,
then the gains of disordered controllers can be obtain
by (34)-(37) as

K1 =

[
−12.5842 1.1598
2.0539 −2.3083

]

FIGURE 7. State response of system closed by a disordered controller.

FIGURE 8. Control input subjects to disordered.

K2 =

[
−12.5717 1.1040
2.0569 −2.2991

]
The positive definite symmetric matrices P1 and P2 calcu-
lated are as follows

P1 =
[
49.4187 0

0 49.4187

]
P2 =

[
39.9579 0

0 39.9579

]
It can be seen that ρ1 = 49.4187, ρ2 = 39.9579.
The initial condition is selected as x0 =

[
−0.7 0.6

]T .
Here we assume κ1 = 1 and κ2 = 2, it means that disordering
occurs in mode 1 of subsystem when k ∈ [nT , nT + 2)
and disordering occurs in mode 2 of subsystem when k ∈
[nT + 2, nT + 3), where the period T = κ1 + κ2 = 3.
Fig. 7 depicts the state evolution x(k) and Fig. 8 illustrates
the input control signal u(k) where the shaded area implies
that mode 1 of subsystem subjects to the disordered controller
and unshaded area implies that mode 2 of subsystem subjects
to the disordered controller. It can be seen from Fig. 7 that
under the constraints of Theorem 2, the systemwith controller
failure is progressively stable.

V. CONCLUSION
In this paper, the stabilization problem of discrete-time
Markovian jump systems has been realized by a partially
mode-dependent controller. More importantly, the dwell
times of such a controller are not instantaneous but two
constants. Instead of investigating the resulting closed-loop
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system directly, another DMJS has been constructed and stud-
ied by applying an SQLF. Moreover, the proposed methods
have been further extended to other stabilization problems
whose controllers are fault-tolerant and disordered. All the
conditions have been given within LMI framework. Finally,
two simulations have been used to illustrate the practicability
and applicability of the proposed methods.
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