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ABSTRACT Apparent density mapping is a technique to obtain lateral density distribution of subsurface
layer by inverting gravity anomaly. In general, the subsurface layer can be divided into vertical, juxtaposed
prisms in Cartesian coordinates. However, for continental and global scales, the curvature of the earth should
be taken into account, and the subsurface layer should be divided into Tesseroids in spherical coordinates
instead of rectangular prisms. In this paper, we present a modified Gauss-Legendre algorithm to forward
the gravity anomaly generated by an arbitrary Tesseroid, and the precision can be improved vastly when
the observation points in the near surface of the Tesseroid. The shell tests show that the relative maximum
error can be controlled in 0.0009343% when the Gauss-Legendre nodes are set as (4, 4) in the longitude
and latitude directions and the subdivision parameter W is set as 1.5. Then, an apparent density mapping
approach is presented in spherical coordinates to minimize the difference between the observed gravity
anomalies and calculated gravity anomalies. The synthetic model verified the feasibility and precision of our
approach. In real application, we have obtained the crustal apparent density distribution of Chinese mainland
with 0.25◦×0.25◦ in longitude and latitude directions. The crustal apparent distribution of Chinese mainland
is generally low in the western region and high in eastern region varying from 2.45-2.81 g/cm3 and closely
related to lithologic units and geological boundaries.

INDEX TERMS Gravity inversion, apparent density mapping, spherical coordinates, Chinese mainland.

I. INTRODUCTION
The gravity method is a popular tool for geologic map-
ping and tectonic studies for decades [1]–[6]. Density, as an
essential parameter of gravity inversion, is closely related
to types of rocks and tectonic evolution. Apparent density
mapping [2]–[6] is a technique to estimate the spatial distribu-
tion of the density of the subsurface layer from the observed
gravity data. Unlike the true density measured directly on
a limited number of rock specimens, apparent density is an
average of the rock density of a certain depth below each
observed station. This technique is beneficial to identifying
lithologic units and delineating geological boundaries.

In Cartesian coordinates, the technique of apparent density
mapping usually divides the subsurface layer, whose top and
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bottom surfaces are assumed to be horizontal or variable
depth, into a grid of vertical, juxtaposed prisms in both
horizontal directions. Then, the density of each prism can
be derived from gravity anomalies by using the mapping
algorithm. Many frequency-domain algorithms of apparent
density mapping have been utilized for decades, mainly
including frequency-domain deconvolution [1], [2], terracing
operator [7], Walsh transform [3], Wiener filter and Green’s
equivalent layer principles [4], entropic regularization [5],
and wavenumber-domain iterative approach [6]. Although
the frequency-domain algorithms are fast and convenient,
they require that the observation surface is flat without topo-
graphical variation, which is not generally the case in real
word. Meanwhile, the curvature of the earth should be taken
into account for continental and global scales [8]–[10], and
it is obviously unavailable to use the mapping algorithms
above in Cartesian coordinates. In this paper, the principle of
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FIGURE 1. (a) The geometry of a Tesseroid in geographical boundary lines with longitudes (λ1, λ2) and latitudes (ϕ1, ϕ2), and
(b) the 3-D display of a Tesseroid in spherical coordinates.

apparent density mapping in spherical coordinates is similar
to that in Cartesian coordinates. The Tesseroid (Figure 1),
which is an elementary unit in the spherical coordinates [10]
is used instead of rectangular prism.

In general, there has no analytical solution to calcu-
late gravity effects of a Tesseroid and the integral formula
can only be solved numerically. The forward algorithm
of the Tesseroid has been extensively discussed in recent
decades [8], [9], [11]–[20]. The most widely used methods
to calculate the gravity effect of a Tesseroid are Taylor-series
expansion and Gauss-Legendre quadrature(GLQ).

The accuracy of Taylor series expansion is related to
the order of expansion, and the more order means higher
precision [14]–[16]. However, the formula of Taylor series
expansion is cumbersome and complex. The GLQ is the
approximate volume integral by a weighted sum of the effect
of point massed and the precision can be determined by
the total point numbers of the three different integral inter-
vals [18]–[20]. Meanwhile, lots of remarkable methods [8],
[9], [18], [21] have been applied to improve the precision
of gravity effect generated by a Tesseroid. Ku proposed an
empirical criterion that the distance between point masses
should not be greater than the distance to the computer point
to improve the precision of the GLQ integration [21]. Based
on the criterion of Ku, Li et al. subdivided the Tesseroid
into smaller ones by recursive function instead of increasing
the number of point masses of per Tesseroid [18]. Uieda
et al. proposed a modified adaptive algorithm to guarantee
the precision the GLQ integration. A stack-based algorithm
is used to instead of recursion, and the precision of the GLQ
integration and computation time can be controlled by a scalar
value [9]. In addition, Gravity inversion methods in spherical
coordinates have been applied to satellite gravity data on
moon for recent years [22]–[24], which are unsuitable for the
surface gravity data due to poor numerical precision when
the observation points in the near surface of the Tesseroid.

Hence, the new algorithm is still needed to improve the
precision when the computation points in the near surface of
the Tesseroid.

In this paper, we present an apparent density mapping
approach for the surface gravity data of the earth in spherical
coordinates, and the top and bottom of subsurface layer can
be constant or variable. First, we improved a modified algo-
rithm called 2-GLQ to forward the gravitational acceleration
generated by a Tesseriod. Secondly, we present a modified
adaptive subdivision algorithm to guarantee the precision
of 2-GLQ when the computation points in the near surface
of the Tesseroid. Thirdly, a forward algorithm is available to
calculate the gravity anomalies of observed points generated
by a subsurface density layer, which can be divided into a
series of Tesseriods. Then, we propose an inversion approach
to calculate the density distribution of the subsurface layer.
Finally, the test of the synthetic data verified the feasibility
and precision of our approach. The results of crustal apparent
density distribution of Chinese mainland are closely related
to regional lithologic units and geological boundaries.

II. METHDOLOGY
A. FORWARD CALCULATION OF GRAVITY ANOMALY
CAUSED BY A TESSEROID
1) THE MODIFIED GLQ ALGORITHM
The Tesseroid first introduced by Anderson can be defined as
a basic spherical unit with six parameters: the geographical
boundary lines with longitudes (λ1, λ2) and latitudes (ϕ1, ϕ2),
and constant spherical radii (r2, r1) (see Figure1) [10].
Assume that the Tesseroid has a homogeneous mass-

density, the gravitational potential V of point P generated by
the Tesseroid can be expressed as:

V (r, ϕ, λ) = Gρ

λ2∫
λ1

ϕ2∫
ϕ1

r2∫
r1

r′2 cosϕ′

l
dr′dϕ′dλ′, (1)
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l =
√
r ′2 + r2 − 2rr ′ cosψ, (2)

cosψ = sinϕ′ sinϕ + cosϕ cosϕ′ cos
(
λ− λ′

)
. (3)

where G is the Newtonian gravitational constant, r, ϕ, λ and
r ′, ϕ′, λ′ are the computation point P and integration point Q
in spherical coordinates. l is the Euclidean distance between
pointQ andP, andψ is the angle between the position vectors
of points Q and P as spherical distance.

Then, the gravitational acceleration, by the reduction of the
gravitational potential, results from [14], then we can get

g (r, ϕ, λ) = −
∂V (r, λ, ϕ)

∂r

= Gρ

λ2∫
λ1

ϕ2∫
ϕ1

r2∫
r1

r′2 (r− r’ cosψ) cosϕ′

l3
dr′dϕ′dλ′,

(4)

The equation (4) can be simplified to double integral by
reduce the r ′ [14], [25]. Then, we can get

g (r, ϕ, λ) =
Gρ
r

λ2∫
λ1

ϕ2∫
ϕ1

cosϕ′
[
r ′3

l
− l

(
r′ + 3r cosψ

)
− r2(3 cos2 ψ − 1)

× ln
(
l + r ′ − r cosψ

)]∣∣r ′=r2
r ′=r1

dϕ′dλ′. (5)

The equation (5) can be evaluated numerically and
expressed as the generalized double integral obviously.∫ ϕ2

ϕ′=ϕ1

∫ λ2

λ′=λ1

f
(
r, λ, ϕ, λ′, ϕ′, r1, r2

)
dϕ′dλ′, (6)

Based on the theories of [15], [19], [26], [27],The least-
squares numerical solution of Eq. (6) can be expressed by
Gauss-Legendre quadrature decomposition∫ ϕ2

ϕ′=ϕ1

∫ λ2

λ′=λ1

f
(
r, λ, ϕ, λ′, ϕ′, r1, r2

)
dϕ′dλ′

= A
J∑

nj=1

I∑
ni=1

ωniωnjf
(
r, λ, ϕ, λ̂′ni, ϕ̂

′
nj, r1, r2

)
, (7)

λ̂′ni =
λni(λ2 − λ1)+ (λ2 + λ1)

2
,

ϕ̂′nj =
ϕnj(ϕ2 − ϕ1)+ (ϕ2 + ϕ1)

2
. (8)

where A = (λ2 − λ1) (ϕ2 − ϕ1)
/
4, I and J are the num-

bers of Gaussian-Legendre nodes in longitude and latitude
directions, respectively. ωni, ωnj are the n-th Gauss-Legendre
coefficients. λni, ϕnj are the n-th Gaussian-Legendre node in
interval [−1, 1], and λ̂′ni, ϕ̂

′
nj are the real Gaussian-Legendre

node coordinates within the Tesseroid. The function f can
be calculated with I × J optimal points. The precision of
the solution can be affected by many parameters, such as
the numbers of the nodes, the size of the Tesseroid and the
distance between the Tesseroid and the observation point [9],
[18]–[20]. Our modified GLQ algorithm (2-GLQ) is

FIGURE 2. (a) Adaptive modified criteria of the Tesseroid for the
computation point P, and Lλ, Lϕ, Lr are the ‘‘side lengths’’ of longitude,
latitude and radius, respectively. (b) The subdivision of the Tesseroid
(a) into 8 smaller Tesseroid units in spherical coordinates when W is
unavailable for (15).

described by generalized double integral. Assume that I, J,
K are the Gauss-Legendre nodes in longitude, latitude and
radius directions, respectively. The total point number for
GLQ is I × J × K. As for the 2-GLQ, there is an integral
analytic solution to the direction of the radius, which means
the total weighted point number of 2-GLQ is I × J. The
number of weighted point has been reduced by K times and
the computation time can be improved greatly.

2) ADAPTIVE CRITERIA OF A TESSEROID
To improve the precision when the computation points in
the near surface of the Tesseroid, we implement a modified
adaptive recursive algorithm, which has combined the advan-
tages of recursive function [18] and adaptive stack based
algorithm [9]. Assume that the range of the Tesseroid
to be calculated is [λk , λk+1], [ϕk , ϕk+1], [rk , rk+1] in
longitude, latitude and radius directions, respectively
(Figure 2a).Instead of the smallest distance, the distance
between the geometric center of the Tesseroid (rm, λm, ϕm)
and the computation point P (r, λ, ϕ) (Figure 2a) can be
followed as:

d =
√
r2 + r2m − 2rrm cosψm, (9)

cosψm = sinϕ sinϕm + cosϕ cosϕm cos (λ− λm) . (10)

Meanwhile, the ‘‘side lengths’’ of three different dimen-
sions [18] in spherical coordinates can be defined as:

Lλ = rk+1 arccos
(
sin2 ϕm + cos2 ϕm cos (λk+1 − λk)

)
,

(11)

Lϕ = rk+1 arccos (sinϕk+1 sinϕk + cosϕk+1 cosϕk) ,

(12)

Lr = rk+1 − rk , (13)

Lmax = max
(
Lr,Lλ,Lϕ

)
. (14)

where, Lλ is arc-distance along the middle latitude of the
top surface of the Tesseroid, and Lϕ is arc-distance along
the longitude of the top surface of the Tesseroid. Lmax is the
largest ‘‘side lengths’’ of the Lr,Lλ,Lϕ .

The following formula is used to decide whether a
Tesseroid should be subdivided. That is

W ≤
d

Lmax
. (15)
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FIGURE 3. A subsurface density layer consists of a grid of juxtaposed
Tesseroid units in spherical coordinates with constant top and bottom
surfaces. 1λ,1ϕ are mesh intervals in longitude and latitude directions,
1r is the thickness of the layer, P(m,n) is a computation point of
observation surface in spherical coordinates, ρij is the density of the
Tesseroid numbered (i, j) in longitude and latitude directions.

Here, W is a positive scalar, which can be called distance-
size radio [9]. The workflow to calculate gravitational accel-
eration of the computation point P by a Tesseroid is defined
below:
Step01:Assume thatW is given, the related parameters of d

and Lmax can be calculated by (9) and (14). Then, we can
check that if (15) is available, the gravitational acceleration
of point P generated by the Tesseroid can be calculated by (5)
and (7) directly.
Step02: If (15) is unavailable, the Tesseroid should be

subdivided into 8 new smaller Tesseroid units by the middle
points of three different dimensions ( Figure 2b).
Step03: As for the 8 new smaller Tesseroid units, repeat

step01 and step02 until all Tesseroid units are available
for (15) or sizes of the Tesseroid reach the given threshold.
It is the recursive function of our algorithm, and the gravita-
tional acceleration of the computation point by a Tesseroid is
the accumulation of all the subdivided Tesseroid units.

B. GRAVITY MODELING OF A DENSITY LAYER IN
SPHERICAL COORDINATES
Considering a 3D subsurface density layer, whose top and
bottom surfaces are constant or variable in spherical coordi-
nates, we divide the layer into a gird of M and N segments
with equal mesh interval of1λ,1ϕ in longitude and latitude
directions. The total Tesseroid unit number of the layer is
Ntess = M × N.For the convenience of display, the top and
bottom surfaces of the layer, and the observation surface are
assummed to be constant in Figure 3.

The density of each Tesseroid is constant, which means
only lateral difference of the spatial density distribution is
available. The gravity anomaly of computation point Pmn can
be described as a summation of each Tesseroid unit

gPmn =
N∑
j=1

M∑
i=1

g(ρ(i,j)), i ∈ M , j ∈ N . (16)

where, gPmn is the gravity anomaly of the computation
point Pmn, g

(
ρ(i,j)

)
is the forward gravity anomaly of the

Tesseroid numbered (i, j) in longitude and latitude directions.

C. APPARENT DENSITY MAPPING IN SPHERICAL
COORDINATES
Cordell and Henderson propose a space-domain, iterative
approach to calculate the depth of the subsurface layer inter-
face effectively [28]. We improved the algorithm for apparent
density mapping. Assume that the subsurface layer is divided
into M, N segments along the longitude, latitude directions
with an equal mesh interval of 1λ,1ϕ. φk,(i,j) is the density
of the Tesseroid numbered (i, j)in the longitude, latitude
directions at the kth iteration. Obviously, φk,(i,j) is a matrix
ofM ×N (i ∈ M , j ∈ N .). The theoretical algorithm to obtain
the density of each Tesseroid can be described as

lim
k→∞

φk,(i,j) = φ(i,j), i ∈ M , j ∈ N . (17)

The procedure of the apparent density mapping to seek the
density of each Tesseroid is the follow steps:
Step01: Assume that the top and bottom interfaces of the

layer are known in spherical coordinates, the observed gravity
anomaly at each point is being generated by an infinite slab,
and the observed gravity anomaly is known as a matrix gobs(q)
with total number q. The initial density of each Tesseroid can
be calculated as

φ0,(i,j) = ωgobs(q), i ∈ M , j ∈ N . (18)

where, ω = 1
/(

2πG1h(i,j)
)
, G is the Newtonian gravi-

tational constant, 1h(i,j) is the thickness of the Tesseroid
numbered (i, j) in the longitude, latitude directions.
Step02: To estimate next modification of the density of

each Tesseroid cell, the gravity anomaly matrix gcal,0,q can be
calculated from density matrix φ0,(i,j) by (16). The deviation
of gravity anomaly is δg1 = gobs(q) − gcal,0,q, and the new
modified density of each Tesseroid φ1,(i,j) can be generated
as:

φ1,(i,j) = φ0,(i,j) + ωδg1, i ∈ M , j ∈ N . (19)

Similarly, for kth iteration, the deviation of gravity
anomaly is δgk = gobs(q) − gcal,k−1,q, and the modified
density of each Tesseroid cell φk,(i,j) can be defined as

φk,(i,j) = φk−1,(i,j) + ωδgk, i ∈ M , j ∈ N . (20)

Step03: Renew the gravity anomaly matrix gcal,k,q
at kth iteration of the density model matrix φk,(i,j)
by (16), and then renew the deviation of gravity anomaly
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FIGURE 4. The flow diagram of the apparent density mapping in spherical
coordinates.

δgk+1 = gobs(q) − gcal,k,q. We can obtain the density of each
Tesseroid cell φk+1,(i,j) by (20).
Step04: Calculate the root mean square (RMS) between the

observed gravity anomaly gobs(q) and the calculated gravity
anomaly gcal,k,q for the kth iteration. This is

RMS =

√√√√ q∑
i=1

(
gobs(q) − gcal,k

)2/
q. (21)

The target of the iteration is to minimize RMS.
Step05:Repeat the steps above until RMS reach a specified

tolerance or the iteration number reaches the given threshold.
When the iteration stops, theφk,(i,j) is considered as the appar-
ent density distribution of the subsurface layer in spherical
coordinates. In terms of the density in our approach is the
density contrast, the final apparent density can be obtained
by adding a background density constant, such as 2.67g/cm3.

III. THE SYNTHETIC DATA TESTS
A. PRECISION EVALUATION ON THE SPHERICAL SHELL
In general, the precision can be affected by many parameters,
such as W, size of the Tesseroid, and Gauss-Legendre nodes.
We create a homogenous spherical shell, which has analytical
solutions to calculate the gravitational acceleration [29], [30]
and can be perfectly subdivided into Tesseroids as well. The
true gravitational acceleration of computation point P caused

by the spherical shell can be written as:

gp =
4
3
Gρ

1

R2
p

{
R3
2 − R3

1, Rp ≥ R2

0, Rp ≤ R1.
(22)

where, G is the Newtonian gravitational constant, and Rp is
the geocentric distance from the center of the sphere to the
computation point P. Assume that the thickness of the spheri-
cal shell is 30km with the radii of the outer and inner surfaces
(R2 = 6371km R1 = 6341km), and the constant density
of the spherical shell is ρ = 2.67 g/cm3. The precision is
very high when Rp is much bigger then R2 [9]. In this paper,
we pay more attention to the precision of the computation
point P when it is located in the near surface of the spherical
shell. The computation point P is supposed at the top of
the spherical shell (R2 = Rp) with longitude and latitude
(120◦E, 45◦ N), the precision caused by different values of
the Rp and latitude will be discussed later. Then, the true grav-
itational acceleration of the computation point P generated by
the spherical shell is 6682.232575mGal based on (22).

Figure 5 shows the errors between the shell effect and com-
puted Tesseroid of the values of the distance size radio (W)
varying from 1 to 2 with 0.1 intervals. We choose the W is
bigger than 1 to make sure that the distance between point
masses is not greater than the distance to the computation
point [21]. Furthermore, the shell can be divided into different
sizes of the Tesseroids, such as 2◦ × 2◦, 1◦ × 1◦, 30′ × 30′,
15′ × 15′. (a),(b),(c),(d) are the results with(a): I = 3, J = 3
(b): I = 4, J = 4 (c): I = 5, J = 5 (d): I = 6, J = 6.
I and J are the Gauss-Legendre nodes in longitude and lati-
tude directions, respectively. In general, the precision will be
improvedwith bigger Gauss-Legendre nodes and smaller size
of divided Tesseroids when the computation point P at the top
of the shell.

Subsequently, we test the absolute errors between the shell
effect and computed Tesseroid of different values of the Rp
and latitude with constant Tesseroid grid size 1◦ × 1◦ and
constant W = 1.5. Figure 6a shows the errors of different
values of Rp. Height in lateral axis means the distance of
the computation point P above the shell (Height = Rp-R2).
The range of the Height varies from 0 to 2km with 0.1km
intervals. Specifically, when the computation point p is at the
top of the shell (Height = 0), it is a singular problem and has
been mentioned by scholars [31]–[35]. The precision of our
algorithm has been improved vastly when the computation
point P in the near surface of the shell (Figure 6a). Figure 6b
shows the errors of different values of latitude varying from
−90 to 90with 10 intervals of the Height= 0. The precision is
symmetrical with respect to equator. Although the errors have
some shake along the latitude, the precision can be improved
with more Gauss-Legendre nodes.

The precision of our approach to calculate the gravi-
tational acceleration generated by Tesseroid is better than
Uieda at al. [9], especially when the computation point P in
the near surface of the model. Theoretically, the maximum
absolute error can be controlled within 0.063mGal when
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FIGURE 5. show the errors between the shell effect and computed Tesseroid of the values of the distance size radio (W) varying from 1 to
2 with 0.1 intervals. We choose the W is bigger than 1 to make sure that the distance between point masses is not greater than the
distance to the computer point. Furthermore, the shell can be divided into different sizes of the Tesseroids, such as 2◦ × 2◦, 1◦ × 1◦,
30′ × 30′ , 15′ × 15′ . (a),(b),(c),(d) are the results of different Gauss-Legendre nodes I × J ,respectively, with(a): I = 3, J = 3 (b): I = 4, J = 4
(c): I = 5, J = 5 (d): I = 6, J = 6. I and J are the Gauss-Legendre nodes in longitude and latitude directions, respectively. In general, the
precision will be improved with bigger Gauss-Legendre nodes and smaller size of divided Tesseroids when the computation point P at the
top of the shell.

Height = 0 if the Gauss-Legendre nodes is bigger or equal
to (4, 4) in the longitude and latitude directions, respectively,
and the Tesseroid grid mesh is less than or equal to 1◦ × 1◦.
In this paper, The Gauss-Legendre nodes will be set as (4, 4)
in the longitude and latitude directions and the parameter W
will be set as 1.5 for subsequent calculation, the relative error
can be controlled in 0.000943% =0.063

/
6628.232575.

B. DATA TEST ON A SYNTHETIC DENSITY LAYER
In this paper, we propose a synthetic model similar to
Guo et al. [6]. Unlike the model presented by [6] in Cartesian
coordinates, our synthetic density layer is simulated in spher-
ical coordinates with undulant top and bottom interfaces. The
range of the synthetic model is 100◦ -110◦E, 25◦ -35◦ N,
which has a grid of 41×41with a equal interval of 0.25◦ in the
longitude and latitude directions. The lateral residual density
distribution of the layer, the range of which varies from
−0.1841g/cm3 to 0.1462 g/cm3, is low in the west and high
in the east (Figure 7a). The range of the top interface varies
from 50m to 2070m (Figure 7b), and the lateral distribution of
the bottom interface can be regard as the Moho surface with

the range varying from 29380m to 43530m (Figure 7c). The
theoretical gravity anomaly of the subsurface density layer on
the constant observational arc-surface with an elevation 0m
can be calculated by (18). The range of the theoretical gravity
anomaly is from −246.0mGal to 163.8mGal with low in the
west and high in the east (Figure 7d).

Subsequently, the theoretical gravity anomaly can be con-
sidered as observed gravity anomaly, and we implement the
algorithm presented in this paper for apparent density map-
ping on the density layer. Figure 8a shows a well convergence
curve of the mapping approach between the RMS and itera-
tion number. Figure 8b shows the density distribution of the
presented approach after 10 iterations, which is very close
to the true model (Figure 7a). The deviation between the
mapped density distribution and the true model is extremely
small, which can be shown in Figure 8c with a maximum
deviation 0.0019g/cm3. Furthermore, the calculated gravity
anomaly after 10 iterations (Figure 8d) is very close to the
observed gravity anomaly (Figure 7d). The maximum devia-
tion between the calculated gravity anomaly and the observed
gravity anomaly is 0.144mGal (Figure 8e). The results of
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FIGURE 6. The absolute errors between the computed Tesseroid and shell effect with constant Tesseroid gird size 1◦ × 1◦ and constant
W = 1.5. I and J are the Gauss-Legendre nodes in longitude and latitude directions, respectively. (a) The errors of different values of Rp
(Height = Rp-R2), the values of Height varying from 0 to 2km with 0.1km intervals. (b) The errors of different values of latitude varying
from −90 to 90 with 10 intervals of Height = 0.

the apparent density mapping by our approach show a high
precision and verify the feasibility directly.

We also compare our methodwith the traditional method in
Cartesian coordinates, which divides the subsurface layer into
vertical juxtaposed prisms. The results of traditional method
can be seen in new Figure 8f and Figure 8g. Figure 8f is the
results of the density distribution by traditional approach after
10 iterations and the maximum deviation from the true model
reaches 0.0102 g/cm3 in Figure 8g. In addition, we extract
a profile AA′ to compare the results of different methods
in Figure 8h. Compared to the traditional method without
considering the curvature of the earth, the density distribution
by our approach is closer to the true model.

IV. APPLICATION IN CHINESE MAINLAND
A. DATA SOURCES
Chinese mainland, which located on the collision zones
between Indian and Eurasian Plates with an estimated
area of 9.6 million km2, is a westward subduction of
Pacific Plate. The approximate range of Chinese mainland is
73◦ -136◦E and 18◦ -54◦ N in geography. The units of China
have diverse origins and complex histories of amalgamation
and much attention has been received for last decades. For
that continental scale, the curvature of the earth can not be
ignored if we want to obtain more precious results. Hence,
we used apparent density mapping approach in spherical
coordinates presented in this paper for crustal apparent den-
sity mapping of Chinese mainland.

First, the Bouguer gravity anomalies of Chinese mainland
and the adjacent areas can be obtained from the database
of the world gravity map WGM2012 [36]. We assembled
the Bouguer data area span 70◦ - 140◦E and 15◦ - 58◦ N,
which has a grid of 281 × 173 with equal interval 0.25◦

in longitude and latitude directions. The high frequency
noise of the Bouguer gravity anomaly is mainly generated
by shallow geological units and terrain correction. Thus,

a low-pass filter of 200km wavelength is used to suppress
the high frequency noise, and the final Bouguer gravity
anomaly of Chinese mainland and the adjacent areas is
in Figure 9a.

Secondly, the undulating terrain in the study area can be
regarded as the upper interface of the layer, which can be
assembled from ETOPO1 model [37]. The smooth filter is
used to suppress the high frequency and the final upper inter-
face of the study area is in Figure 9b.Meanwhile, we assume
the upper interface is the observation surface in spherical
coordinates. In addition, the quality of the Moho interface
with the study area plays an important role on the results of
crustal apparent densitymapping.Models of the crustal thick-
ness or Moho depth in Chinese mainland have been derived
by different geophysical methods in recent years, such as
seismic refraction/reflection, gravity field, surface wave,
and body wave tomography studies [38]–[43]. Although the
details of the crustal thickness or Moho depth are different,
the general agreements have been reached among these stud-
ies. In this paper, we choose the Moho model obtained by
He R. et al. from receiver function analysis, and the distri-
bution of the seismic stations can be seen in Figure 9c [43].
The seismic stations are well in the east of China, whereas
fewer stations coverage in the west, such as Tibetan Plateau.
What is worse, there are no seismic stations in the adjacent
areas of Chinese mainland. To obtain more precision Moho
model of Chinese mainland and adjacent areas for our study
area, anotherMohomodel called CRUST1.0with a resolution
of 1◦ [44] in a global map is used to increase the precision
and quality of our Moho model, especially in the west China
and the adjacent areas of the Chinese mainland. The Moho
depth of CRUST1.0 with respect to sea level is based on a
new database from active source seismic studies and receiver
function studies. The Moho depth, which combines the mod-
els of He R. et al. and CRUST1.0 in our study area, can be
seen in Figure 9d.
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FIGURE 7. The synthetic model and its gravity anomaly in spherical coordinates, (a) the lateral residual density distribution, (b) the depth of the top
interface, (c) the depth of the bottom interface, (d) the gravity anomaly on the constant observational arc-surface with an elevation of 0m.

B. CRUSTAL APPARENT DENSITY MAPPING
The calculated gravity anomaly, the deviation between the
Bouguer gravity anomaly and calculated gravity anomaly,
and the crustal apparent density distribution of Chinese main-
land after 10 iterations with RMS = 0.284mGal can be
seen in Figure 10a, Figure 10b and Figure 10c, respec-
tively. The calculated gravity anomaly (Figure 10a) is sim-
ilar to the Bouguer gravity anomaly (Figure. 9a) in Chinese
mainland. The deviation from the gravity anomalies between
the Bouguer gravity anomaly and calculated gravity anomaly
(Figure 10b) varying from −0.5mGal to 0.5mGal, which
show a good fitting for the Bouguer gravity anomaly
in Chinese mainland. The range of the crustal apparent
density of Chinese mainland varying from 2.45g/cm3 to
2.81 g/cm3 with respect to a background density 2.67 g/cm3

(Figure 10c).

C. INTERPRETATON AND DISCUSSION
We combine the crustal apparent density distribution of the
Chinese mainland with the regional lithologic units and geo-
logical boundaries of Chinese mainland, which is displayed
in Figure 10c. The crustal apparent density mapping of
Chinese mainland is generally low in the west and high in the
east. It can be roughly divided into three regions from west
to east, including western region, central region and eastern
region.

1) WESTERN REGION
The western region mainly consists of Tibetan Plateau in
the southwest Chinese mainland and Xinjiang Plate in the
northwest Chinese mainland. The crustal apparent density
distribution of the western region is generally in the low value
area(less than 2.67 g/cm3).
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FIGURE 8. (a) The convergence curve of the presented space-domain, iterative algorithm between the RMS and iteration number. (b), (c), (d), (e) are the
results of the apparent density mapping by our approach after 10 iterations: (b) the mapped density distribution and (c)its deviation from the true
density model(Fig.7a), (d) the calculated gravity anomaly of mapped density distribution and (e)its deviation from the observed gravity anomaly(Fig. 7d);
(f), (g) are the results of the apparent density mapping by traditional method in Cartesian coordinates after 10 interations,(f) the mapped density
distribution and (g)its deviation from the true density model(Fig.7a); (h) the density distribution of profile AA′ , while the black dashed line is the true
density model (Fig.7a), the red dashed line is the density model by our approach(Fig 8b) and the blue dashed line is the density model by traditional
approach(Fig. 8f).

Tibetan Plateau is in the front of the collision areas between
the Indian plate and the Eurasian plate with a crustal thickness
that reaches above 75km, mainly including HT, LT, QT and
ST from south to north. The direction of mainly geological
structures is EW. The crustal apparent density distribution
of the Tibetan Plateau varies from 2.45-2.65 g/cm3, and the
average crustal apparent density is 2.51 g/cm3. The crustal
apparent density is the lowest with a value of 2.45 g/cm3 in the
transition area between the ST and West-Gunlun Organ, and
then increases gradually to the central, eastern and southern
areas of Tibetan Plateau. Due to the thinning of the Moho
thickness in the east of HT, the maximum crustal appar-
ent density of Tibetan Plateau can reach 2.65 g/cm3. The
results of the crustal apparent density distribution show a
good response to the boundary position of terranes in this
area.

Xinjiang Plate is comprised of the Tarim Basin, Tienshan
Organ, Turpan Basin(TB) and Jungger Basin (JGB) from
south to north, and the main directions of the Xinjiang Plate
are EW and NNW. The crustal apparent density ranges from
2.58 g/cm3 to 2.68 g/cm3. Due to the equilibrium theory,
the crustal thickness is thinned in the basin areas, such as
Tarim Basin and JGB (Figure. 9d). Hence, the value of the
crustal apparent density is obviously higher than that of adja-
cent areas. The maximum crustal apparent density can reach
2.68 g/cm3 in JGB.Meanwhile, the boundary of basins can be
clearly delineated by the value of the crustal apparent density
distribution.

2) CENTRAL REGION
The central region is a transitional region between east region
and west region with the value of crustal apparent density
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FIGURE 9. The black solid line is the boundary of Chinese mainland: (a) The Bouguer gravity anomaly of Chinese mainland and the adjacent
areas. (b) The upper interface of Chinese mainland and the adjacent areas. (c) The distribution of the seismic stations in Chinese mainland by
He R et al.. (d) The Moho depth of Chinese mainland and the adjacent areas which combines the models of He R. et al. and CRUST1.0.

varying from 2.52 g/cm3 to 2.75 g/cm3, mainly including
Qaidam Basin (QB), Kunlun–Qaidam Terrane (KT), Qulian-
shan Orogon, East-Gunlun Orogon and Qinling -Dabie Oro-
gon. The Qulianshan Orogon is the boundary of the North
China Carton (NCC) and KT in the northwest of the cen-
tral region, and East-Gunlun Orogon is the boundary of
ST and KT in the southwest of the central region. Qinlin-
DabieOrogon, located in the east of the central region, is the
boundary which separated the South China Block (SCB) and
NCC. The crustal apparent density is low in the west and
high in the east, and the result of the crustal apparent density
distribution effectively reflects the near EW tectonic strikes
and the boundaries of the plates.

3) EASTERN REGION
The eastern region, which mainly in east of Chinese main-
land, is mainly consist of SCB, NCC, SLB and Daxing’anling
from the south to north. Due to the westward subduction
of Pacific Plate in Chinese mainland, the crustal thickness
decrease gradually from the western inland to the eastern

coastline. The average value of the crustal apparent density
is higher than 2.67g/cm3.

The SCB is located in the southeastern part of Chinese
mainland, mainly including Yangtaze Craton in the northwest
and Cathaysia Block in the southeast. It is separated by the
Qinlin-Dabie Orogon in the north, the Longmenshan Fault
in the west, the Pacific plate in the southeast, and the South
China Sea in the south, respectively. The crustal apparent
density of SCB increases from northwest to southeast varying
from 2.58-2.81 g/cm3. Sichuan Basin(SB), located in the
northwest of SCB, can be clearly delineated in Figure 9c from
the value of the crustal density apparent. Furthermore, Jiao-
Shao Fault, located in the east of SCB, which is the northeast
boundary between Yangtze Craton and Cathaysia Block, and
Cathaysia Fold belt, located in the center of Cathaysia Block
can delineated in Figure 10c.

The NCC, as one of the oldest carton in the world, is sep-
arated by Qulianshan Orogon in the west, Qinling-Dabie
Orogon in the north, the Pacific plate in the east, and Yinshan-
Yanshan Orogon in the north, respectively. The NCC consists
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FIGURE 10. The results of Chinese mainland after 10 iterations with RMS = 0.284mGal. (a) the calculated gravity anomaly of Chinese mainland.(b) the
deviation from the gravity anomalies between the Bouguer gravity anomaly and calculated gravity anomaly.(c) the crustal apparent density
distribution and the lithologic units and geological boundaries of Chinese mainland. The white lines are the geological tectonic lines or plate
boundaries. HT:Himalayan Terrane; LT:LhasaTerrane; QT:Qiangtang Terrane; ST:Songpan–Ganzi Terrane; TB: Turpan Basin; JGB: Jungger Basin;
QB:Qaidam Basin; KT: Kunlun–Qaidam Terrane ;SB:Sichuan Basin; Ala: Alashan Block; OB: Ordos Block; HBB: Huabei Block; SLB:Songliao Basin.

of three major parts: the western NCC, Trans-North China
Fault (the central NCC) and the eastern NCC [45] The west-
ern NCC, mainly including Alashan Block (Ala) and Ordos
Block (OB), shows a low crustal apparent density. The aver-
age crustal apparent density is 2.63 g/cm3. Whereas, the east-
ern NCC, which is mainly consists of Huabei Block(HBB),
Tanlu Fault and Sulu Orogon shows a high crustal apparent
density.

The SLB and Daxing’anling are located in the northeast
of Chinese mainland. In the western part of Daxing’anling,
the tectonic evolution is dominated by theMongolia-Okhotsk

tectonic belt, supplemented by the Pacific tectonic domain,
and the average crustal apparent density is 2.68g/cm3. The
eastern side of Daxing’anling is mainly affected by the sub-
duction of the Pacific Plate. The crustal apparent density
increases from inland to coastal areas, and the average crustal
apparent density of SLB reaches 2.73g/cm3.

V. CONCLUSION
We have presented a modified algorithm (2-GLQ) to for-
ward the gravity anomaly generated by an arbitrary Tesseroid
in spherical coordinates. The numerical results can be
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controlled by lesser weighted points, and both the precision
and computation time have been improved vastly. In addition,
we have implemented a modified adaptive recursive algo-
rithm to improve the precision when the computation points
in the near surface of the Tesseroid.

In order to verify the precision of the present method,
a homogenous spherical shell was created to compare the
errors between the shell effect and computed Tesseroid.
We have tested the correlations between parameter W, num-
ber of the Gauss-Legendre nodes and the sizes of Tesseroids.
In general, the precision can be improved with more Gauss-
Legendre nodes and smaller size of Tesseroids. The relative
error can be controlled in 0.0009343% when the Gauss-
Legendre nodes are set as (4, 4) in the longitude and latitude
directions and the parameter W is set as 1.5. The precision
has been improved greatly compared to previous results [9].

We have presented an apparent density mapping approach
based on a subsurface density layer in spherical coordinates.
The synthetic data tests show that our approach is easy to
convergence and has high precision. Compared to the tradi-
tional method without considering the curvature of the earth,
the density distribution by our approach is closer to the true
model. The synthetic data tests verified the feasibility of the
presented approach.

In real application, Chinese mainland is a vast continent
with spans more than 60◦ and 30◦ in longitude and lati-
tude directions, respectively. Thus, the apparent density map-
ping with considering the curvature of the earth is closer to
the actual results. The crustal apparent density of Chinese
mainland is low in the west and high in the east varying
from 2.45g/cm3 to 2.81 g/cm3. Alternatively, the results
of crustal apparent density mapping correspond well with
regional lithologic units and geological boundaries, and can
also provide assistance for further study of regional tectonics
and geological structures.
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