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ABSTRACT The unprecedented growth of network traffic has brought excessive challenges to network
operators. To prevent network congestion, network operators conduct traffic engineering (TE) for their
routing optimization. In recent years, segment routing traffic engineering (SRTE) has emerged as one of
the promising approaches for its high scalability and low control overheads. However, conventional SRTE
approaches in large-scale networks are computationally prohibitive, which may lead to delayed system
operations and unsatisfactory service qualities. In this paper, we formulate a bi-objective mixed-integer
nonlinear program (BOMINLP) to investigate the trade-off between link utilization and computation time
in SRTE. Due to the difficulty in solving the original problem directly, we decompose it into two sequential
sub-problems. The first sub-problem is to minimize computation time through node selection, and the second
one is to minimize maximum link utilization via flow assignment. To this end, we first employ randomized
sampling based on stretch bounding to obtain a reduced solution space and then solve a linear program (LP)
using existing software tools for the sub-problems. To evaluate our proposed solution, we employ network
topologies and traffic matrices from publicly available datasets. Our simulation results show that our
proposed solution can effectively reduce computation time while retaining comparable maximum link
utilization as compared with several comparison approaches.

INDEX TERMS Segment routing, traffic engineering, bi-objective mixed-integer nonlinear program.

I. INTRODUCTION
The diversification of traffic types and the explosive growth
of traffic demands have prompted great research attention
to network congestion. By means of traffic engineering
(TE) [1]–[5], network flows can be dynamically embedded
into physical substrate networks, thereby avoiding network
congestion and optimizing routing performance for network
operators. In practice, a commonly adopted mechanism
for TE is multi-protocol label switching traffic engineering
(MPLS-TE) [6], [7], in which network resources along each
routing path can be reserved. However, MPLS-TE requires to
maintain and distribute network states (such as network topol-
ogy and bandwidth availability) across the whole network [8],
which may result in poor network scalability [9].
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Segment routing traffic engineering (SRTE) that leverages
centralized controllers to maintain network states has been
regarded as a promising solution to cope with the network
scalability issues of MPLS-TE. In SRTE, a segment indicates
the shortest path between any two nodes and a segment
routing path is an end-to-end path composed of multiple con-
nected segments. Therefore, each segment routing path can
be viewed as a logical tunnel from the ingress to the egress.
By using intermediate nodes as segment labels in SRTE,
the excessive number of concatenated labels inMPLS-TE can
be alleviated.

Various works on SRTE have been devoted to network
congestion in recent years. In [10], Bhatia et al. formulated
a generic SRTE problem to minimize maximum link uti-
lization, where all intermediate nodes are used to construct
optimal segment routing paths. In [11], Cianfrani et al.
formulated a mixed-integer linear program for the SRTE
problem to minimize the maximum link utilization among
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segment routing nodes. In Li and Yeung [13] proposed
tunnel training architecture with tunnel limit extension
for 2-segment routing that utilizes shortest path routing.
In [13], Li et al. proposed a mixed-integer linear program
to optimize link utilization while limiting the number of
segment labels. In [14], we proposed a stretch bounding
approach that achieves near-optimal maximum link utiliza-
tion for SRTE. Although the above works have addressed the
network congestion issues, they do not pay much attention to
the reduction of computation time.

In literature, some other exiting works on SRTE put their
focuses on improving computation time, system through-
put, or the use of segment labels. In [15] and [16],
Trimponias et al. proposed to reduce the number of candidate
intermediate nodes based on graph centrality, thereby mini-
mizing computation time at the price of worse link utilization.
In [17], Zhong et al. proposed an online maximum profit
algorithm to solve a segment routing problem in integrated
terrestrial-satellite networks. In [18], Gang et al. formu-
lated a mixed-integer linear program to maximize throughput
in hybrid segment routing networks. In [19], Huang et al.
proposed an integer linear program that considers the
maximum segment label depth and flow entry overhead.
In [20], Zhang et al. proposed a bandwidth allocation algo-
rithm to maximize user satisfaction as a function of resource
allocation in hybrid segment routing networks. In [21],
Hartert et al. formulated a constraint programming problem
for SRTE, and designed a local search algorithm that can
be manually terminated to meet a predefined time limit.
In [22], Gay et al. proposed a local search approach to
iteratively improve current TE solutions rather than finding
a complete solution based on the assumption that traffic
changes are limited. However, none of the above works can
guide us on how to strike a balance between link utilization
and computation time in SRTE.

In this paper, we aim to investigate the trade-off relation-
ship between link utilization and computation time in SRTE.
To this end, we formulate a bi-objective mixed-integer non-
linear program (BOMINLP) to minimize link utilization and
computation time. In the light of the two conflicting objective
functions and the non-linearity of constraints, we decompose
the original problem into two sequential sub-problems (i.e.
node selection and flow assignment). Then, we propose a
randomized sampling approach for the first sub-problem and
then leverage an LP solver for the second one.We employ two
publicly available datasets for performance evaluation, and
our simulation results demonstrate that the proposed solution
can effectively reduce the computation time but also retain
comparable maximum link utilization. The contributions of
this paper are as follows.
• We investigate the trade-off of link utilization and com-
putation time in SRTE and formulate it as a BOMINLP.

• We decompose the original problem into the sequential
sub-problems of node selection and flow assignment.

• We propose a randomized sampling approach and lever-
age an LP solver for the sub-problems, respectively.

• We show that our proposed solution can reduce com-
putation time enormously while achieving compara-
ble maximum link utilization on publicly available
datasets.

The rest of this paper is organized as follows. In Sec. II,
we present the network environment, segment routing, flow
splitting, and node selection. Sec. III describes the problem
formulation and decomposition. Sec. IV presents our pro-
posed solutions for the decomposed sub-problems. Sec. V
demonstrates our simulation results. Finally, this paper con-
cludes in Sec. VI.

II. SYSTEM MODEL
A. NETWORK ENVIRONMENT
Consider a general network graph G = (V, E,w, c), where V
and E refer to the sets of vertices (i.e. routers) and undirected
edges (i.e. links), respectively, and each edge e ∈ E is
associated with the weight w(e) and the capacity c(e). In
addition, each source-destination pair (i, j) can have a traffic
demand tij, for all i, j ∈ V . For brevity, we denote by Puv the
set of all shortest paths directed from node u to node v, and
by Ēs the set of edges along each shortest path s ∈ Puv, where
u, v ∈ V . For the ease of reading, we list primary symbols that
are used throughout the paper in TABLE 1.

B. SEGMENT ROUTING
A segment is either a single shortest path or a set of
equal-cost shortest paths between any two nodes in the net-
work. Whenever an incoming flow passes through a node,
it will be divided into multiple outgoing sub-flows, which
can be implemented by the equal-cost multi-path routing
(ECMP) [24]. A segment routing path is an established end-
to-end path that is constituted by a sequence of segments.
FIGURE 1 illustrates how segment routing works in practice.
In FIGURE 1a, the source node i sends a traffic flow to an
intermediate node l with the segment labels l and j. When
the intermediate node l receives the first packet of the flow,
the segment label of the intermediate node l is popped out.
Then, the intermediate node l can reroute the traffic flow to
the destination node j with the segment label j. The segment
labels that need to be specified in the packet header are the
remaining segment labels of rerouting nodes and the destina-
tion. In FIGURE 1b, we see that each segment routing path is
composed of two segments. The traffic from the source node
i to the destination node j passes through the intermediate
node l. The first segment is routed on a single shortest path,
but the second one is routed on two equal-cost shortest paths.

Despite the generality of multi-segment settings, we will
focus on the use of two segments. The reasons for choosing
the 2-segment setting are two-fold:

• lower elapsed time for processing packet headers, and
• near-optimal maximum link utilization.

The shortest paths can be constructed by the IGP extension protocol for
segment routing which has been under standardization [23].
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TABLE 1. List of notations.

FIGURE 2 compares the 2-segment SRTE setting (2-seg)
and unbounded segment SRTE setting (∞-seg). 2-seg uses
ECMP, while∞-seg uses all simple paths available to reach
the destination without considering the routing cost. The
maximum link utilization performance of 2-seg is identical to
∞-seg. Moreover, the effectiveness of the 2-segment setting
has been asserted by [10], [25], [26], therefore we restrict our
focus to the 2-segment setting in the following.

C. FLOW SPLITTING
Segment routing leverages ECMP to distribute sub-flows
acrossmultiple paths. To quantify the amount of sub-flows (of
the source-destination pair) passing through each individual
edge, consider a flow that passes through an intermediate
node l from the source node i to the destination node j in the
2-segment setting. We denote fil(e) and flj(e) the 1-segment
splitting ratios of the first and second segment, respectively.

FIGURE 1. Segment routing examples.

FIGURE 2. A comparison between SRTE (2-seg) and SRTE (∞-seg).

Let Guv = (Vuv, Euv) be an edge-induced directed
sub-graph when Euv =

⋃
s∈Puv

Ēs, where s is a shortest path
from u to v, s ∈ Puv, and Vuv is a set of nodes incident to an
edge in Euv. Note that, while G is undirected, Guv is directed
as the set Euv contains a direction from u to v in the shortest
path s. To assess fil(e) and flj(e), suppose that z is a node in
Guv, we define the following information:

• inuv(z): the set of incoming edges incident to node
z ∈ Vuv.

• outuv(z): the set of outgoing edges from node z ∈ Vuv.
Then, we define fuv(e) as

fuv(e) =

{
f ′uv(e, z), if e ∈ Euv,
0, otherwise,

∀e ∈ E, z ∈ Vuv, u, v ∈ V. (1)
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With the above information, we can obtain an assignment of
f ′uv(e, z) which satisfies the following equations:∑
e∈outuv(z)

f ′uv(e, z) =
∑

e∈inuv(z)

f ′uv(e, z),

∀u, v ∈ V, z ∈ Vuv \ {u, v}, (2)∑
e∈outuv(u)

f ′uv(e, u) = 1, ∀u, v ∈ V, (3)

∑
e∈inuv(v)

f ′uv(e, v) = 1, ∀u, v ∈ V, (4)

f ′uv(e1, z) = f ′uv(e2, z), ∀e1, e2 ∈ out(z),

∀u, v ∈ V, z ∈ Vuv, (5)

where (2) -(4) refer to flow conservation at an intermediate
node, the source node, and the destination node, respectively.
(5) ensures outgoing traffic should split equally with ECMP.

By substitute (u, v) in fuv(e) with (i, l) and (l, j), we can
obtain fil(e) and flj(e), respectively. Subsequently, we define
the 2-segment splitting ratio (aggregate the splitting ratios of
the two segments) gilj(e) as

cgilj(e) = fil(e)+ flj(e), ∀e ∈ E, i, l, j ∈ V. (6)

D. NODE SELECTION
For each source-destination pair, there is a tremendous num-
ber of candidate intermediate nodes, but some of them are too
far away from either the source or the destination. Therefore,
it is essential in practice to keep the number of candidate
intermediate nodes at a reasonable value.

Consider the source node, an intermediate node and the
destination node triple (i, l, j), and the shortest paths s1 ∈ Pil ,
s2 ∈ Plj and s3 ∈ Pij. We define the stretch as the ratio of the
total weights of the two segments to that of an end-to-end
shortest path, which can be expressed as

str(i, l, j) =

∑
e∈Ēs1

w(e)+
∑

e∈Ēs2
w(e)∑

e∈Ēs3
w(e)

, ∀i, l, j ∈ V.

(7)

By leveraging the stretch concept, the number of candidate
intermediate nodes can be greatly reduced through stretch
bounding (see FIGURE 3 for an example). To indicate
whether node l serves as a candidate intermediate node after
applying stretch bounding, we define the indicator as

cvilj(α) =

{
1, str(i, l, j) ≤ α,
0, otherwise,

∀i, l, j ∈ V, (8)

which is used to ensure that str(i, l, j) is not greater than a
stretch bounding coefficient α ≥ 1. Note that α = 1 states
that only the shortest paths are used, and α = ∞ represents
no stretch bounding takes effect.

The purpose of stretch bounding is to explicitly control the path length
for transmission (i.e., stretch), thereby reducing transmission latency [27],
[28]. However, it remains unknown from these works how to leverage stretch
bounding for link utilization in SRTE.

FIGURE 3. Stretch bounding approach.

III. PROBLEM FORMULATION
Generally, network operators have incentives to periodically
optimize link utilization and computation time to adapt to
network dynamics. For these reasons, we formulate an opti-
mization problem as a bi-objective mixed-integer nonlinear
program (BOMINLP) to jointly minimize maximum link
utilization θ and computation time ζ via

x =
{
xilj,∀i, l, j ∈ V

}
, (flow assignment) (9)

y =
{
yilj,∀i, l, j ∈ V

}
, (node selection) (10)

where xilj denotes the amount of traffic flow from node i to
node j that passes through node l and yilj determines whether
l serves as a candidate intermediate node between i and j for
all i, l, j ∈ V .

Mathematically, we formulate the BOMINLP as

P1 (Joint Node Selection and Flow Assignment):

min
y
ζ , h(y), ←− computation time

min
x
θ, ←− maximum link utilization

s.t. C1:
∑
l∈V

xiljyilj ≥ tij, ∀i, l, j ∈ V,

C2:
∑
i∈V

∑
j∈V

∑
l∈V

gilj(e)xiljyilj ≤ θ · c(e), ∀e ∈ E,

C3: yilj = min(
∑
l′∈V

vil′j(α), dβ|V|e), ∀i, l, j ∈ V,

C4: yilj ∈ {0, 1}, ∀i, l, j ∈ V,
C5: xilj ≥ 0, ∀i, l, j ∈ V,

where h : y → R≥0 is a monotonically increasing function
that maps from candidate intermediate nodes to the corre-
sponding computation time . C1 represents that the flow
assignment should satisfy all traffic demands.C2 ensures that

The monotonically increasing property can be observed in general SRTE
(e.g. [14], [15]).
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the flows routed through a link do not exceed the link capac-
ity. C3 presents the intermediate node restriction by stretch
bounding and restricts the size of candidate intermediate
nodes through the regulatory coefficient β to prevent loosely
bounded stretches. C4 and C5 refer to the auxiliary con-
straints for node selection and flow assignment, respectively.

In essence, P1 is formulated to characterize the trade-off
between maximum link utilization and computation time.
However, there is a lack of solution approaches for tackling
P1 directly due to the following reasons.

• Conflicting objective functions. To minimize ζ , it is
desirable to have less selected nodes, which may give
rise to a concentrated flow assignment. To minimize θ ,
it is intuitive to assign flow uniformly as much as pos-
sible, but at the price of more selected intermediate
nodes. Evidently, it is not possible to optimize ζ and θ
simultaneously.

• Mixed decision variables. The decision variables x are
non-negative real numbers and y are binary integers. Due
to the combinatorial feature of y, solving P1 optimally is
in essence NP-hard (as a general ILP [29]).

• Nonlinear constraints. C1 and C2 involve products
between two decision variables. These expressionsmake
x and y involved and difficult to decouple.

The aforementioned reasons explain the difficulties in solving
P1 optimally. Therefore, we are motivated to consider the
following two sequential sub-problems:

P2 (Node Selection): P3 (Flow Assignment):
min
y

ζ, min
x|y

θ,

s.t. C3,C4, s.t. C1,C2,C5.

It is important to note that, if we fix y, the BOMINLP stated
above will turn to be an LP. In this way, we simply need
to look for a subset of candidate intermediate nodes in P2
through y, based onwhichwe find out a flow assignment inP3
through x. Since P2 and P3 are an ILP and an LP, respectively,
we can then design a computation-efficient algorithm for
solving them in practice.
Remark 1: In fact, P2 and P3 retain all of the constraints

in P1, therefore the feasible solution space of P1 can be kept
intact after the problem decomposition.

IV. ALGORITHM DESIGN
In this section, we propose a two-phase algorithm (denoted by
SRTE+) to address the decomposed sub-problems P2 and P3.
Our design principle is to select candidate intermediate nodes
efficiently and effectively.

In Phase 1, we leverage a randomized sampling approach
for the node selection. The purpose of the randomized sam-
pling is to distribute the traffic load among a limited number
of candidate intermediate nodes so that the congestion at a

In practice, one may choose loosely bounded stretches (i.e., large α) to
prevent network congestion, but at the price of high computation time since
there are many choices of paths. As a complement, β can be used to limit the
number of candidate intermediate nodes (e.g. β = 2.5-7% [15]).

Algorithm 1 A Computation-Efficient 2-Phase SRTE+ Alg
Input: α, β, V , E , {c(e),∀e ∈ E}, {tij,∀i, j ∈ V},
{gilj(e),∀i, l, j ∈ V, e ∈ E}.

Output: x.
(Phase 1) Randomized Sampling based Node
Selection

1: Initialize V̄ij← {l|vilj(α) = 1 in (8),∀i, l, j ∈ V };
2: Initialize y←

{
yilj = 0,∀i, l, j ∈ V

}
;

3: for i ∈ V do
4: for j ∈ V do
5: if |V̄ij| ≤ dβ|V|e then
6: for l ∈ V̄ij do
7: Set yilj← 1;

8: else
9: Initialize L← ∅;
10: while |L| < dβ|V|e do
11: Choose l ∈ V̄ij \ L randomly;
12: Set yilj← 1 and L← L ∪ {l};

(Phase 2) LP-based Flow Assignment
13: Solve P3 based on y;
14: Output x←

{
xilj,∀l ∈ V̄ij, i, j ∈ V

}
.

specific link can be avoided. The LP problem size becomes
larger if there are more elements of y being one. Therefore,
the number of elements of y being one will determine the size
of the LP and the computation time to solve it. In Phase 2,
we reduce the number of decision variables according to y,
and then solve P3. Note that Algorithm 1 leverages α and β
as partial information to reduce the computation time, since
the exact form of h may not be available.

Algorithm 1 presents a computation-efficient 2-phase algo-
rithm for SRTE+ (see FIGURE 4 for an overview).

• Lines 1-2: The algorithm initializes the set of candidate
intermediate nodes with V̄ij and sets the indicators y to
zeros.

• Lines 5-7: The algorithm checks the size |V̄ij| of
candidate intermediate nodes. If the size is at least
dβ|V|e, all intermediate nodes in V̄ij are selected as
candidate intermediate nodes by setting yilj to 1 for
all l ∈ V̄ij.

• Lines 8-12: If the size |V̄ij| is greater than dβ|V|e,
the algorithm randomly selects candidate intermediate
nodes from V̄ij until the number of candidates inter-
mediate nodes reach dβ|V|e. Specifically, the algorithm
initially sets L to be the empty set to keep track of the
selected candidate intermediate nodes. The algorithm
iteratively selects intermediate node l from V̄ij \ L by
setting yilj to 1, and then adding l into L.

• Lines 13-14: Finally, the algorithm solves P3 with the
reduced number of candidate intermediate nodes in y
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TABLE 2. Datasets, network topologies and traffic matrices.

FIGURE 4. The algorithmic overview of SRTE+.

(the number of y being 1 is reduced), which implies the
reduced problem size of P3.

Since LP can be solved in polynomial time using the
Karmarkar’s interior point algorithm which grows in cubic
order of the number of variables [30]. Consequently, the run-
ning time of SRTE grows quickly with the number of nodes
|V| and the number of candidate intermediate nodes (the
number of elements of y being 1). Such running timewould be
very slow even for a network of moderate size when all nodes
are considered as candidate intermediate nodes. For instance,
among the data set that we employ in Sec. V, the number
of nodes ranges from 27 to 153, corresponding to (27)3 to
(153)3 segment routing path variables, which could lead to
the LP solving computationally prohibitive. By means of the
regulatory coefficient β, solving the LP can be accelerated by
1 − β (e.g. 96.6% when β = 0.04). Note that with specific
candidate intermediate nodes, the problem P3 is in essence
an LP, which can be solved by various software tools (e.g.
CPLEX [31], GUROBI [32] or GLPK [33]).
Remark 2: To implement SRTE+ on real networks,

the most common way is to leverage a software-defined
network (SDN) architecture . By using the SDN architecture,

we can directly place our optimization program (i.e. Algo-
rithm 1) on an SDN controller. After running the optimization
program, the SDN controller will configure routers according
to the decisions of flow assignment.

V. PERFORMANCE EVALUATION
In this section, we first choose balance stretch sizes for
our proposed solution in different network topologies.
Then, we compare our proposed solution with various TE
approaches. Finally, we demonstrate the impact of routing
metrics. Note that all of the following simulation results are
averaged over all traffic matrices and yield 95% confidence
intervals.

A. SIMULATION SETTINGS
1) SYSTEM SET-UP
We conduct our simulations on a Dell PowerEdge
R430 server (composed of an Intel Xeon E5-2640 v3 pro-
cessor and 64-GB physical memory) with Linux 4.4.0. As to
the LP solver, we use IBM ILOG CPLEX version 12.8 [31].

2) DATASETS
To make our simulation results reproducible, we employ the
following two public datasets that provide practical network
topologies and traffic matrices.

• TheGEANT dataset [34] contains one network topology
and 10,772 real-world traffic matrices (96 of which will
be chosen for our performance evaluation).

• The REPETITA dataset [35] contains 266 real-world
network topologies (five of which will be chosen for our
performance evaluation), and each network topology is
associated with 5 synthetic traffic matrices.

In addition, we restrict the number of flows to 5,000 for each
traffic matrix due to the shortage of system memory. More
detailed information regarding the network topologies and
traffic matrices can be found in TABLE 2.

3) ROUTING METRICS
We consider three different commonly used routing metrics
as follows:

• unary: all links have equal weights.
• delay: each link weight is calculated based on the phys-
ical link distance.

• inverse: each link weight is set to the inverse of the link
capacity.
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4) PERFORMANCE METRICS
To evaluate the effectiveness of our proposed solution,
we employ the computation time ζ and the normalized max-
imum link utilization θ̈ = θ/φ as our primary performance
metrics, where φ is the maximum link utilization obtained
by a shortest path algorithm (e.g. Dijkstra algorithm [36] and
Bellman-Ford algorithm [37]).

5) COMPARISON SCHEMES
To demonstrate the performance gain achieved by our
proposed solution SRTE+, we consider the following TE
approaches for comparison.

• SRTE [10]: all of the nodes in V are chosen as candidate
intermediate nodes.

• SRBS [14]: candidate intermediate nodes are chosen
similarly as SRTE+, except that SRBS neither regulates
the size of candidate intermediate nodes nor performs
randomized sampling.

• DEG [15]: all of the nodes are sorted in descending order
of their degree centrality, and the first dβ|V|e nodes will
be chosen.

• BETW [15]: all of the nodes are sorted in descending
order of their betweenness centrality, and the first dβ|V|e
nodes will be chosen.

• RAND [15]: dβ|V|e of nodes are chosen uniformly as
candidate intermediate nodes.

For simplicity, we focus on the unary routing metric (i.e.,
all links have equal weights) in Sec. V-B.1 and V-B.2. The
impact of various routing metrics will be left to Sec. V-B.3.

B. SIMULATION RESULTS
1) THE CHOICES OF STRETCH SIZES
Choosing stretch sizes differently has direct impacts on both
of the performance metrics as depicted in FIGURE 5.

a: LARGE STRETCH SIZES IMPROVE LINK UTILIZATION
In FIGURE 5a, as the stretch size increases, the maximum
link utilization tends to decrease for all network topologies.
This is because larger stretch sizes can offer more candi-
date intermediate nodes and more path choices. In addi-
tion, we observe that the maximum link utilization remains
unchanged when the stretch size becomes large. The reason
is that large stretch sizes includemany candidate intermediate
nodes that are too far away, and therefore they cannot reduce
the maximum link utilization any further. Note that how
vertices are connected can affect link weights and network
connectivity, so the lines in FIGURE 5a can vary greatly with
network topologies.

The normalization is to scale the link utilization results such that the link
utilization of the shortest path is at 100% utilization. For brevity, we will
interchangeably use the terminology normalized maximum link utilization
and maximum link utilization.

FIGURE 5. The impact of stretch size (unary).

b: LARGE STRETCH SIZES REQUIRE HEAVY COMPUTATION
In FIGURE 5b, we see that the computation time is mono-
tonically increasing with the stretch size. The reason is that
large stretch sizes will increase the number of candidate
intermediate nodes, and hence the problem size of LP and the
required computation time significantly increase. In addition,
the larger the network topology, the higher the computation
time due to the greater problem size.

c: STRETCH SIZES BALANCE THE PERFORMANCE METRICS
As the maximum link utilization remains unchanged and
the computation time increases monotonically, we can cer-
tainly choose the smallest stretch size (the saturated point)
that corresponds to the lowest maximum link utilization.
In other words, increasing the stretch size beyond the satu-
rated point does not help decrease the link utilization, but will
incur higher computation time. By looking at FIGURE 5a
and FIGURE 5b, we see that there exist stretch sizes
that balance the maximum link utilization and computa-
tion time on each network topology. Accordingly, we have
the balanced stretch sizes for each network topology as
shown in TABLE 3, which will be used for the following
subsections.
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TABLE 3. The list of balanced stretch sizes (the grey-shaded column and
row refer to the settings used in FIGURE 6 and 7, respectively).

FIGURE 6. Performance comparison among various approaches
(β = 0.04, unary).

2) THE COMPARISON AMONG TE APPROACHES
FIGURE 6 illustrates how SRTE+ outperforms other TE
approaches in terms of the two performance metrics.

a: SRTE+ IMPROVES LINK UTILIZATION EFFECTIVELY
In FIGURE 6a, SRTE+ outperforms DEG, BETW,
and RAND in terms of the maximum link utilization.

FIGURE 7. The impact of routing metrics (β = 0.04, Geant).

The reason is that stretch bounding allows SRTE+ to use
diverse candidate intermediate nodes whereas the centrality
approaches use static candidate intermediate nodes for all
source-destination pairs. SRTE+ has competitive maximum
link utilization as compared to SRTE and SRBS. Even though
the number of candidate intermediate nodes in SRTE+ is
much smaller than those in SRTE and SRBS, the maximum
link utilization remains low in SRTE+.

b: SRTE+ REDUCES THE COMPUTATION TIME
ENORMOUSLY
In FIGURE 6b (in log scale), SRTE+ outperforms SRTE and
SRBS in terms of computation time since the LP problem
size in SRTE+ is much smaller than those in SRTE and
SRBS. SRTE+ has comparable computation time to DEG,
BETW and RAND because the regulatory coefficient ensures
that SRTE+ has similar LP problem sizes as the centrality
approaches. Note that our simulation results demonstrate that
the computation time of SRTE+ (for all network topologies
that we have tested) can be kept within one minute, which
conforms to the requirement that TE programs are typically
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invoked by network operators periodically in short intervals,
e.g. 5-10 minutes [2].

c: SRTE+ BALANCES THE TWO OBJECTIVE
FUNCTIONS EFFECTIVELY
SRTE serves as a lower bound of SRTE+ with respect to the
maximum link utilization as it uses all candidate intermediate
nodes to reduce network congestion. Even though SRTE+

sacrifices a small amount of link utilization (θ), the compu-
tation time (ζ ) can be reduced enormously.

3) THE IMPACT OF ROUTING METRICS
FIGURE 7 shows how SRTE+ varies with other routing
metrics and how it outperforms other TE approaches.

a: SRTE+ THRIVES ON VARIOUS ROUTING METRICS
In FIGURE 7a, SRTE+ has comparable maximum link uti-
lization as compared to SRTE and SRBS even SRTE+ has
much less number of candidate intermediate nodes. In addi-
tion, SRTE+ outperforms DEG, BETW, and RAND in terms
of maximum link utilization since SRTE+ can better dis-
tribute the traffic load to less congested paths as compared
to the centrality approaches. In FIGURE 7b, SRTE+ outper-
forms all comparison TE approaches across all routing metric
in terms of computation time since it has small LP problem
size.

VI. CONCLUSION
In this paper, we formulated a BOMINLP to characterize
the trade-off between link utilization and computation time
in SRTE. Due to the conflicting objective functions, mixed
decision variables, and nonlinear constraints of the original
problem, we proposed to decompose it into the node selection
and flow assignment sub-problems. Then, we designed a
computation-efficient two-phase SRTE+ algorithm to solve
the sub-problems sequentially: we first proposed randomized
sampling to reduce the number of candidate intermediate
nodes and then assigned traffic flows by solving LPs with
reduced problem sizes. We conducted our simulations based
on two publicly available datasets with practical network
topologies and traffic matrices. Extensive simulation results
show that SRTE+ can reduce computation time enormously
with respect to several comparison approaches, and mean-
while the achieved maximum link utilization remains com-
parable.
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