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ABSTRACT Advanced microscopy techniques currently allow scientists to visualize biomolecules at high
resolution. Among them, atomic force microscopy (AFM) shows the advantage of imaging molecules in
their native state, without requiring any staining or coating of the sample. Biopolymers, including proteins
and structured nucleic acids, are flexible molecules that can fold into alternative conformations for any
given monomer sequence, as exemplified by the different three-dimensional structures adopted by RNA in
solution. Therefore, the manual analysis of images visualized by AFM and other microscopy techniques
becomes very laborious and time-consuming (and may also be inadvertently biased) when large populations
of biomolecules are studied. Here we present a novel morphology clustering software, based on particle
isolation and artificial neural networks, which allows the automatic image analysis and classification of
biomolecules that can show alternative conformations. It has been tested with a set of AFM images of
RNA molecules (a 574 nucleotides-long functinal region of the hepatitis C virus genome that contains its
internal ribosome entry site element) structured in folding buffers containing 0, 2, 4, 6 or 10 mM Mg2+. The
developed software shows a broad applicability in the microscopy-based analysis of biopolymers and other
complex biomolecules.

INDEX TERMS Artificial neural networks, atomic force microscopy (AFM), biomolecules, growing cell
structures (GCS), hepatitis C virus (HCV), Image analysis, internal ribosome entry site (IRES), ribonucleic

acid (RNA), self-organizing maps (SOM).

I. INTRODUCTION

Microscopy techniques have undergone a steep advance
in recent years, allowing ultra-high resolution imaging
and three-dimensional reconstruction of the imaged fea-
tures [1]-[4]. A number of modes of operation and set-ups
have been applied to organic and inorganic samples under
different environments, in which one of the final goals
is to discern their morphological features [S]-[7]. In this
sense, distinct free software applications for image analysis
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have became popular, such as ImageJ [8], [9], WsxM [10],
and Gwyddion [11]. They are valuable tools for handling
microscopy images, and the last two of them have proven
especially useful in the field of atomic force microscopy
(AFM). AFM is a type of scanning probe microscopy that
allows the structural analysis of a wide range of materials
(including biomolecules) at nanometre resolution, and pro-
vides a 3D surface profile of the imaged sample without
requiring its previous staining or coating [12], [13].
Unveiling the morphology of the imaged features is a chal-
lenging task when biological specimens (biopolymers such as
proteins or structured folded nucleic acids, macromolecular
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assemblies, viruses or cells) are involved [14], [15]. This is
due to the fact that the organic biomaterial shows, in general,
much higher flexibility and plasticity than inorganic one, and
also because it can interact with the substrate onto which
it is adsorbed. Thus, the conformation of the biomolecules
can be distorted when the sample is imaged under ambi-
ent (or vaccum) conditions that require a drying process.
Additionally, depending on the type of interaction that gov-
erns the immobilization of the sample onto the substrate,
many geometries are possible for a given biomolecule or
macromolecular assembly. For instance, many sites at the
surface of the biological material are, regardless of their
geometrical distribution, avalaible for the unspecific adsorp-
tion process. In turn, if specific immobilization takes place
through a directional and selective bonding, the geometry
of the deposited molecules will depend on the distribution
of the active sites on the substrate surface. Additionally, the
buffer used to resuspend the biomolecules (in particular, its
pH, ionic strength and concentration of divalent cations) as
well as the immobilization conditions of the biomolecules
(including variables such as temperature and time), can make
them adopt different conformations. Therefore, in any appar-
entely homogeneous biological sample a certain degree of
diversity in the imaged molecular conformations is expected.
Due to the fact that valuable biological information can be
retrieved from the imaged structure, it is currently required
to develop computational methods to analyze in detail the
microscopy data of biomolecules [16], [17]. Such a scenario
is even more critical when imaging biomolecules using AFM.
This is so because the dimensions of the imaged structures,
typically of a few nanometers, are of the same size or even
smaller than the AFM tip diameter and, therefore, the images
show a convolution of both. AFM tips could also present
irregular shapes that vary from one to another. Moreover,
in many cases the substrate is chemically functionalized
and, as a result, its own roughness and morphological fea-
tures could be misintrepreted by the user as the immobilized
biomolecule.

This is especially relevant in the case of RNA imaging,
as this nucleic acid is highly flexible and can adopt multi-
ple three-dimensional conformations in solution [18]. More-
over, the sequence-structure relationship affects the activity
of functional RNA molecules such as ribozymes, aptamers,
riboswitches, viroids or functional regions of viral RNA
genomes. Indeed, RNA molecules assemble into tertiary
structures and form globular conformations in solution that
are stabilized by networks of RNA-RNA interactions. In the
cells, folded RNAs are then recognized by different ligands
(including Mgt and other cations, low molecular weight
organic molecules, other RNA molecules or RNA-binding
proteins) in such a way that the patterns of interactions have
a direct effect on the cellular metabolism, the regulation
of the flow of genetic information, or the viral replication
cycles [19], [20]. Therefore, a high-resolution structural anal-
ysis of populations of RNA molecules is required in differ-
ent fields of biochemistry and molecular biology, and AFM
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shows the advantage over other microscopy techniques of
imaging RNA in native conditions [12], [13], [21].

We have previously analyzed two different kinds of func-
tional RNA molecules using AFM. The first of them was the
5’ untranslated region (5’UTR) of hepatitis C virus (HCV)
genomic RNA, which contains an internal ribosome entry
site (IRES) element required for cap-independent initiation of
the viral genome translation. We studied the RNA conforma-
tions present in a number of prepararions of this 574 nt long
molecule at different ionic conditions. Our results showed
that HCV IRES element switches between two alternative
conformations: from an ‘open’ and elongated one at 0-2 mM
Mg?* concentration to a ‘closed” and comma-shaped mor-
phology at 4-6 mM Mg?*t [22]. Subsequently, we analyzed
viroids by AFM. Viroids are short (typically, 250-430 nt
long) infectious and non-protein-coding circular RNAs that
replicate independently in plants. Three different species of
viroids belonging to the families Pospiviroidae and Avsunvi-
roidae were imaged at single molecule resolution. Our AFM
analysis revealed their compact, rod-like or spoon-shaped
three-dimensional conformations at 0 and 4 mM Mg”, and
has evidenced the role played by some elements of RNA
tertiary structure in the structural stabilization of viroids [23].

Both studies have involved the manual image analysis of
hundreds of RNA molecules in different preparations and,
therefore have evidenced the need for new computational
methods to automatically isolate, analyze and group the indi-
vidual morphologies and shapes present in the samples [24].
Within this context, the goal of the present work is to develop
a dedicated software that should be able to routinely isolate
and analyze the different structures of biomolecules imaged
by microscopy techniques, obtain the metrics of each one and
cluster them in groups or types based on their morpholog-
ical features. Though the proposed software shows a broad
applicability in different fields of microscopy, based on our
previous experience it has been developed using a set of AFM
images of RNA molecules, in particular those of the HCV
IRES element structured in folding buffers containing 0, 2, 4,
6 or 10 mM Mg”t [22].

The developed method consists of two phases: isolation
of the individual images of the molecules in each sample,
and morphology-based clustering of the isolated particles.
The automation of the molecule isolation process shows a
number of advantages with respect to the manual method,
as previously highlighted by other Sdnchez and Wyman [24]:
i) the time needed to identify and obtain the particles is
considerably reduced, as manual procedure is very time con-
suming even for an expert user; ii) the number of retrieved
particles is highly increased, as manual procedure is poorly
effective with this regard; iii) the feature isolation is nei-
ther subject to any operator bias or subjective selection, nor
affected by the performance of the human eye (with possible
defects in vision), the type of graphics used (palette of colors,
resolution and constrast of the image, etc) and the quality
of the computer screen; iv) the visualization of the isolated
particles is improved by producing individual image files for
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each one, where only the pixels of the molecule are included
(without any noise around it), and the further generation of
a single image file with all the isolated particles provides
the user an immediate visualization of the set of feature
morphologies present in the processed image; v) the auto-
matic molecule isolation offers a broad compatibility with
AFM images of different sizes and resolutions, which might
have been obtained using the main microscopes currently
in use and saved in a number of formats, provided that the
basic parameters of window size and total height interval are
known.

Once the isolation of the individual images of the
molecules has been conducted, clustering techniques can
be applied to automate the grouping of the morphologies
detected in the original image. The clustering of 2D or
3D morphologies by a human expert can lead to erroneous
results, especially when the imaged particles have not been
previously filtered or are very noisy. In turn, the unsuper-
vised clustering techniques can analyze the types of mor-
phologies in an automatic and unbiased way, also facili-
tating the visualization of the prototypes of molecule mor-
phologies for each cluster. In the field of image analysis,
different automatic clustering methods have been used to
group the imaged features regarding their shape, geometry
and/or dimensions [25], [26]. Among them, Self-Organizing
Maps (SOM) are models of artificial neural networks that
have been widely applied to clustering tasks and visual
exploratory data analysis [27], [28]. The architecture of
the SOM network consists of an input layer that contains
as many neurons as the number of features or dimension
defines the input space, and an output layer composed of
neurons arranged in a low-dimensional topology (usually
bi-dimensional) ordered lattice that establishes the connec-
tions of neighborhood between the output neurons. In addi-
tion, each output neuron has an associated vector (known as
‘synaptic vector’) with the same dimension and nature than
the input space [27]. The operation of the SOM model is very
simple: when an input vector is presented to the network, it is
distributed among all the output neurons, in such a way that
only one of them (the best matching unit, bmu, which shows
the lowest Euclidean distance between its synaptic vector
and the input vector) is activated. Thus, the SOM model
produces a nonlinear projection of a high-dimensional input
space onto the low-dimensional output mesh. The training
algorithm defines the process that creates such a mapping,
which is a competitive and unsupervised method that adjusts
the synaptic vectors of the output neurons: i) a training
dataset is presented iteratively to the network; ii) for each
training vector, the bmu is calculated and its synaptic vec-
tor is modified to bring it closer to the processed pattern;
iii) similarly, the synaptic vectors of the neurons that fall in
a neighborhood area of the bmu are also modified; iv) the
neighborhood area is a dynamic factor whose size decreases
as the training process of the network advances. In this way,
the main objective of the SOM training algorithm is that
similar input vectors keep mapped by nearby neurons just as,
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conversely, neighboring neurons in the map represent only
similar input data. Indeed, this is an informal definition of
topology preservation [29]. Due to the fact that SOM learning
algorithm has a non-deterministic nature (i.e., using the same
input data set and configuration of the training parameters,
it can produce different values in the synaptic vectors of
the neurons on different trainings), the topology preservation
factor allows measuring the quality of a SOM network after
training, as well as the degree of success in the initial config-
uration of the network architecture (i.e., number of neurons
in the output layer and arrangement of the neighborhood
connection).

Usually, the SOM network is trained with a number of
input vectors higher than that of the output neurons; hence,
the synaptic vectors can be considered as a reduced set of
prototype vectors of the input space. In addition, based on the
nature of the SOM algorithm, the synaptic vectors are ordered
by similarity in the grid of neurons of the output layer. In the
first SOM model developed, known as Kohonen’s SOM [27],
the output neurons were organized in a two-dimensional grid
that could be projected in the plane. This feature made the
SOM model a powerful tool for graphically analyzing mul-
tidimensional data properties [30]. Despite the good perfor-
mance of Kohonen’s SOM, this model exhibits several draw-
backs. First, the complete architecture of the network must
be fully configured before executing the SOM algorithm.
Specifically, the two architectural factors to be highlighted
are the number of output neurons and the neighborhood
connection topology, which remain constant throughout the
entire life cycle of the SOM. This requires having a prior
knowledge of the features of the input space in order to
properly design the architecture of the network, which is not
always possible. Another drawback is related to the com-
pact connection topology of the output mesh, which links
all the output neurons via neighborhood connections. For
probability distributions where the input patterns are located
in several separate regions with a probability density greater
than zero, the Kohonen’s SOM network may obtain poor
values of topology preservation, since some output neurons
may be positioned in areas of the input space with low or null
probability density [31]. These units are known as ‘interpolat-
ing neurons’, suitable for identifying the boundaries between
clusters in the U-matrix map [32], but undesirable for using
the SOM as a clustering tool. Furthermore, in the SOM model
several synaptic vectors identify a single cluster of input data,
in contrast to k-means where each cluster of data is charac-
terized by a single centroid. Due to the compactness of the
neighborhood connection topology of Kohonen’s SOM, once
the network training is completed similar synaptic vectors
must be combined to identify the natural clusters underlying
the input space [33].

Alternative SOM models have been developed to address
these drawbacks, such as Incremental Grid Growing
(IGG) [34], Growing Neural Gas (GNG) [35], or Growing
Cell Structures (GCS) [36]. These dynamic SOM models
share a common feature: they create a basic structure in the
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FIGURE 1. Methodology for the proposed work.

SOM output layer, and both neurons and neighborhood con-
nections are added or removed during SOM training. In the
IGG model, the basic structure is formed by four neurons
arranged in a square grid, and new neurons are incrementally
added to the regular bi-dimensional grid, thus ensuring that
the output layer is drawable. However, this model limits the
maximum number of neighboring neurons to four, which
can negatively affect the topology preservation for certain
probability distributions of the input space. Regarding GNG,
its basic structure is formed by two neurons and, during
the training process, neurons are added and removed aiming
at adapting the dimension of the network topology to the
unknown dimension of the input data. As a result, this model
is appropriate for clustering and vector quantization tasks.
Nevertheless, GNG does not have an output topology with
a fixed dimension and thus it cannot be used for visual
exploratory data analysis. Finally, in the GCS model, the out-
put layer of the network is formed by basic k-dimensional
structures, where k is a factor that can be arbitrarily chosen.
Initially, the network consists of a single k-dimensional
structure. The insertion and removal of neurons during the
training process ensures the topology of basic k-dimensional
structures in the output layer of the network. The aim of
neuron removal is the elimination of the interpolating ones,
which normally produces better topology preserving values
in comparison with Kohonen’s SOM model. Other advantage
of GCS is that the removal of neurons and neighborhood
connections can produce several separate subgrids in the
output layer, each one identifying a different type of input
data. On the other hand, when the network is configured
with a k = 2 factor, the basic neighborhood structure is a
triangle that connects three neurons: in this case, the output
layer will be formed by groups of interconnected triangles,
which presents a two-dimensional topology that can be used
in visual exploratory data analysis [37], [38]. In this way,
the output layer of the GCS network can be visualized as a
two-dimensional graph, in which some of the characteristics
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of the training dataset learned by the network are included.
Considering that the synaptic vectors of the neurons share
dimension and nature with the input data, they can be dis-
played using the same format than that of the training data: if
the dataset consists of images, the synaptic vectors can also
be shown as images. For example, in [39] this type of graph
is generated from a Kohonen’s SOM trained with a dataset
of cryoelectron microscopy images of SV40 large T-antigen,
whereas in [40] a dataset of electron microscopy images
of human muscle phosphofructokinase enzyme is used. All
these features support the use of GCS model for the phase of
morphology clustering required in this work.

Il. METHODOLOGY

The proposed method consists of five steps, the first and sec-
ond of which are prior to the computer analysis here devel-
oped: A) sample preparation; B) AFM analysis; C) particle
isolation; D) feature extraction; and E) morphology cluster-
ing. An overview of the method is shown in Fig. 1 and the
detailed description of each step is given below.

A. SAMPLE PREPARATION

The preparation of the 574 nt-long RNA molecules con-
taining the HCV IRES element (domains I-VI) and their
resuspension in the five folding buffers tested (composed
of 100 mM HEPES pH 7.4 and 100 mM NaCl, either
magnesium-free or containing 2, 4, 6 or 10 mM MgCl,) was
previously described [22]. The whole experimental protocol
has been conducted using all the precautions required that
avoid RNase contamination, thus guaranteeing the highest
attainable integrity of RNA. In all cases, RNA adsorption
(a 30 ul drop of each preparation, at 0.5 ng/ul concentration)
on freshly cleaved muscovite mica Hi-Grade V2 (Mono-
comp Instrumentation) surfaces was performed, using
3-aminopropyltriethoxysilane (APTES, Sigma-Aldrich).
This reagent promotes a tight enough immobilization of
RNA molecules on the mica surface through electrostatic
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interactions, without damaging or disrupting the solution
structure of the biomolecule [41]. However, it is worth
mentioning that APTES functionalization induces a certain
roughness and morphology on the substrate, which in some
cases could make it difficult to analyze the conformation of
the adsorbed RNA molecules. After incubation at 25°C for
20 min in a humidity chamber, the excess of RNA was rinsed
off using diethyl pyrocarbonate (DEPC)-treated MilliQ water,
and the RNA-containing surfaces were air-dried at 25°C
for 2 h. Noticeably, dried RNA samples are expected to be
protected against further RNase degradation, as the activity
of such enzymes require a liquid medium.

B. AFM IMAGING

The AFM data were obtained using two experimental sys-
tems, namely a Nanoscope IIla (Veeco) and an Agilent
5500 PicoPlus (Agilent Technologies) microscopes, with a
nominal tip radius of 2 nm. As a general rule, we have kept
a resolution of a minimum of 20 pixels per RNA molecule.
Thus, different pixel densities were used: larger images (up
top 3 x 3 um) contained 2,048 x 2,048 pixels, whereas smaller
ones (500 x 500 nm and 250 x 250 nm) had 512 x 512 pixels.
All the images were obtained in the dynamic mode and using
low free amplitudes (below 0.6 V), while the setpoint/free
amplitude ratios were kept as close as possible to 0.9. These
procedures were intended to keep to a minimum the force
load exerted on the biomolecule by the AFM tip and, thus,
to minimize the eventual distortion of its native conformation.
With this aim, silicon cantilevers (Bruker) with constant force
in the 1-3 N/m range were employed. The images obtained are
a square matrix of heights of the RNA molecules adsorbed
onto the functionalized mica. The file header of each image
contains its lateral and vertical dimensions in metric scale.
Using the Nanoscope or Gwyddion software applications,
the images are routinely treated in order to correct an eventual
‘general plane’ present in the image, corresponding to a tilting
of the sample plane with respect to the x-y plane of the
scanning tip. Certain discontinuities from one scanning line to
the next one, typical of AFM images, are corrected by means
of a specific tool implemented in these software packages,
known as ‘flatten’. In our case, we have used the lowest
order of the flatten tool, i.e., 0. Once the obtained image is
optimized, a PNG file is exported using a z-hot color scale,
which has become a standard method in many AFM software
applications since it provides a better visualization of the
height profile.

C. PARTICLE ISOLATION

In our model case, two factors must be considered regarding
the nature of the images: the underlying morphology of the
APTES-functionalized substrate, and the eventual overlap of
two or more adsorbed RNA molecules. The success of the
particle isolation automatic process will reside in its ability to
filter these two sources of noise, which is required to obtain
as many image files of individual molecules as potential
particles exist in the original image.
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Currently, there are several software packages that sup-
port the manipulation and transformation of AFM images,
such as Image] [8] or WSxM v5.0 [10]. They include
functions typically used in digital image processing tasks,
although the end user must manually select the sequence of
steps and algorithms to be applied in each case [22], [23].
The particle isolation stage used in this work addresses the
automation of such a task in order to obtain: i) all the
individual molecules present in the original image, instead
of only a few of them selected by the expert user; ii) an
output image of each isolated molecule stored in an indi-
vidual file, in which only the pixels of the particle are
included; iii) the original AFM image without noise, to pro-
vide intuitive and fast visual identification of the isolated
molecules.

Fig. 2 displays the workflow used for the particle isolation
phase. Data input consists of an AFM image (usually, in PNG
format) containing a number of HCV IRES molecules (in this
example, those resuspended in a folding buffer supplemented
with 4 mM Mg?), with its specific size and resolution.
In the first step, the original image in RGB color scale is
transformed to gray scale, which is the format used by the
thresholding algorithms. Then, ‘Thresholding’ stage aims at
differenciating background pixels from foreground ones, thus
producing a black and white image. The algorithms calculate
a threshold (a value within the range 0-255) and transform
all pixels with an intensity above this value to white pixels,
while the rest are set to black ones. ImageJ software pack-
age includes several histogram-derived thresholding meth-
ods, which have been tested with the images used in this
work. Most of them (such as Otsu [42], ISODATA [43],
mean threshold [44], Huang and Wang [45], Yen et al. [46],
Shanbhag [47] or Li and Lee [48]) establish the threshold
value based on the assumption that two classes of objects
are present in the image: background and foreground. In gen-
eral, the application of these algorithms to our AFM images
produces a threshold value that is either too high (thus, most
of the molecule pixels are filtered and lost) or too low (in
which case, background pixels due to APTES or substrate
irregularities are not filtered and all RNA molecules appear as
a single, compact object). ImageJ also includes the multiOtsu
thresholding algorithm, a modified version of Otsu’s method
based on the existence of more than two classes of objects in
the original image [49]. Specifically, by setting the number of
classes to three, the algorithm looks for two threshold values,
which discriminate between background, intermediate and
bright pixels. This is the case of the AFM images of HCV
IRES molecules under study, as they contain three classes
of elements: mica surface (lowest gray levels), APTES layer
(intermediate gray levels) and RNA molecules (higher gray
levels). We have determined that, by filtering the lowest and
intermediate pixels by means of the multiOtsu thresholding
algorithm adapted to three classes, the results are comparable
to those manually obtained by a human expert. Thus, this
has been selected as a thresholding algorithm for the particle
isolation stage.

VOLUME 7, 2019



S. Delgado et al.: Morphology Clustering Software for AFM Images

IEEE Access

<— 1,484 pixels —»

190 nM = 295 pixels {

Thresholding

Invert image

Particle
identification
+
Remove
particles on
edges

Filter by
molecule
area size
(nm?)

RGB images
(one per isolated particle)

FIGURE 2. Workflow of particle isolation phase.

The black and white image resulting from the thresholding
stage is subjected to further sequential steps. The ‘Invert
image’ stage transforms white pixels into black, and vice
versa: in this way, the resulting image displays more clearly
the objects that passed the thresholding filter, considering
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that the contour of a white object on a black background
becomes blurred to the human eye compared to a black object
on a white background. Thus, the inversion of the image
facilitates the visualization of the smallest particles, as shown
in Fig. 2.
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The AFM technique produces an image of the surface
of the sample using a tip that ‘runs’ through it making a
line-by-line scan. In some cases, this procedure introduces
artefacts in the final image in the form of thin lines just 1 pixel
thick. Additionally, too small and non-representative imaged
features can be due to the sample itself, in our case resulting
from incompletely transcribed or even partially degraded
RNA molecules, as well as by the formation of APTES
aggregates under certain experimental conditions. To remove
these sources of noise, which may have not been filtered by
the thresholding algorithm, an ‘Erode and dilate’ step is then
performed. The erosion process, in addition to eliminating the
smallest particles also removes the thin and isolated lines of
pixels, thus separating two or more molecules artifactually
joined by such horizontal filaments and smoothing the final
contour of the molecules. However, this process produces
an undesirable effect on the biochemically relevant objects,
because it also modifies them by decreasing their contour.
Therefore, a subsequent dilation step is necessary to add
pixels to the edges of black objects, thus eliminating the
negative effect of erosion on them.

The algorithms used in previous steps work at pixel level.
Then, the ‘Particle identification’ stage will transform pixel
unit to particle unit, by grouping the connected pixels that
conform a compact block. The implemented algorithm han-
dles the image of masks obtained after the dilatation step
as an undirected graph consisting of connected components.
Each black pixel is modeled as a vertex of the graph that
can have up to eight potential neighboring vertices (black
pixels around the current one). The image of masks is scanned
from left to right and top to bottom, looking for black pixels.
When one of them is found for the first time, a classic
breadth-first search is performed from this source vertex,
labeling the visited vertices (pixels) in such a way that they
will not be further candidates in the image scanning. This
procedure visits all the pixels that conform the connected
component (i.e., the imaged molecule) to which the source
pixel belongs. Then, thanks to the ‘Remove particles on
edges’ step, those masks with one or more pixels in the border
of the original image are rejected, since they may represent
partially captured molecules. The particle identification step
also generates a file that includes the following information
for each isolated object: i) id_number (the identifiers are
assigned from O and are used to name the PNG file of the
isolated molecule image); ii) x-y coordinates of the upper
left corner of the minimum rectangle that contains the image
of the molecule; iii) width and height (in pixels) of such a
minimum rectangle; iv) area (number of pixels of the particle
contained inside the rectangle); and mass (the sum of all the
gray level values of the pixels that conforms the molecule
image).

Fig. 2 displays the result of applying this stepwise pro-
tocol to the original AFM image, where pixels that do not
belong to any particle have been removed. This image still
includes small objects (as previously discussed) along with
some large ones (presumably due to the eventual overlap of
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two or more RNA molecules). In order to remove these two
types of features, a final step adapted to the characteristics of
the HCV IRES molecules has been included. In the previous
step, the area of each isolated particle was obtained, expressed
as the number of pixels that it contains. However, due to
the fact that the method must work with input AFM images
captured at different resolutions, pixel unit is not appropriate
to compare objects isolated from different AFM images.
Hence, based on the original size of each AFM image and
the nm/pixel ratio specified in the input data, the particle
area expressed in number of pixels is transformed to nm?.
Fig. 2 includes the histogram generated by the ‘Filter by
molecule area size’ step, where a high number of particles
in the range 0-40 nm?2, plus some features with an area
above 550 nm? are evidenced. In fact, an area within the
range of 100-500 nm? has been experimentally determined
for HCV IRES [22], and consequently particles with an area
outside these limits are discarded. The selection of such an
area range requires a previous knowledge of the imaged
molecules, as well as of the technique used. In our case,
the maximum theoretical length of the fully unfolded (a
situation that is not thermodynamically stable in practice)
HCV IRES molecule assayed would be 155 nm, assuming
that each of its 574 ribonucleotides is 0.27-nm long (in an
A-RNA helical conformation, with a pitch of 3.0 nm and
11 nts per turn). The theoretical diameter of A-RNA is 2.6
nm, a value which in our case would be imaged as about
4.6 nm due to the increase in the lateral dimensions induced
by the AFM tip (with a nominal radius of 2 nm) convolution.
Thus, in this (very unrealistic) estimation, the area of the fully
unfolded RNA molecule imaged by AFM would be around
700 nm?. Therefore, we can asume that different degrees of
compactness in solution would be induced by intramolecular
interactions estabilized by the folding buffer, as previously
checked by AFM [22]. Thus, an area in the range of 100-
500 nm? seems a reasonable estimation for our imaged HCV
IRES molecule at different Mg?* concentrations. Such an
assumption allows discarding the small imaged features that
might have been preserved until this stage of the particle
isolation process (including fragments of RNA, some protru-
sions due to either APTES or the salts present in the folding
buffer, which also become enlarged by the tip convolution,
and even local imaging inestabilities), as well as the statisti-
cally scarce, too large structures (e.g., undesired aggregates
of RNA, salt crystals or even particles of dust adhered to the
sample).

The global process of particle isolation produces two out-
puts: i) as many individual image files as molecules have been
isolated; ii) the original AFM image containing just the RGB
information of the isolated molecules, in which all the noise
and artifacts have been removed (Fig. 2).

D. FEATURE EXTRACTION

The second objective of this work is the identification and
classification of morphologies of the imaged molecules. The
clustering method used to accomplish this task is the GCS,
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FIGURE 3. Workflow of feature extraction phase.

a dynamic SOM model. In SOM models, input data must be
represented in vector format and all vectors must share the
same dimension or number of components. In this work, input
data consist of the images of the HCV IRES molecules iso-
lated in the previous phase, so its vectorization is a necessary
step before being analyzed by means of the GCS model.

A simple way to vectorize an image is to obtain a set of
measurements, e.g., number of pixels, mean intensity, maxi-
mum value, etc. The resulting vector of this parametrization
has as many components as values of the measured image,
regardless of the image size. The key advantage of this option
is the dimension unification of the vectors, whereas its main
drawback is the need to ensure that the selected characteris-
tics are representative and discriminative of the morphology
of the imaged molecule.

Other option is to compute the rotational power spectra of
the image [50]. This method, based on the Fast Fourier Trans-
form (FFT), produces low-dimensional vectors, because only
the first values of the power spectrum are used. Rotational
power spectra is adequate to vectorize images that include
objects showing some type of rotational symmetry [39], [51].
One of the drawbacks of this type of vectorization is the
need to ensure that the origin of polar coordinates lies on
the symmetry axis of the object in the image. In addition,
two or more objects with the same morphology but different
size will produce similar rotational power spectra vectors.
It should be noted that Fourier transform has inverse function,
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that is, it is possible to reconstruct the original image from
the complex data of the FFT. However, the rotational power
spectra transformation does not have inverse function. Thus,
if a SOM method is used to cluster rotational power spectra
vectors, it will not be possible to reconstruct the average
image represented by a prototype vector. This is not a problem
for the clustering algorithm, but the interpretation of the
visualization of the rotational power spectra is less intuitive
than the visualization of images [39].

In this work, the images of the isolated molecules have
been used directly, by applying some previous transforma-
tions. Specifically, three treatments have been implemented:
particle alignment, size unification of the images, and vector-
ization (Fig. 3). During the preparation of the AFM samples,
the biomolecules are adsorbed onto the APTES-modified
mica surface in random orientations. Fig. 3 shows, as an
example, an HCV IRES molecule oriented in four of its
many possible options. GCS networks trained with images
are very sensitive to the orientation of the particles [36].
Thus, to ensure that molecules with similar morphology are
grouped in the same cluster of the GCS network, they must
have the same orientation. To address this problem, a rotation
of the image by means of Singular Value Decomposition
(SVD) has been implemented. This technique looks for the
two principal eigenvectors of the image, which will conceptu-
ally identify the main and secondary pixel distribution of the
molecule, respectively. The two eigenvectors are orthogonal

160311



IEEE Access

S. Delgado et al.: Morphology Clustering Software for AFM Images

and define the basis of the new coordinate system that will be
used to rotate the image. When SVD is computed, the sign of
the two eigenvectors is not significant: v1 is one of the two
vectors that identifies the main pixel distribution and v2 is
one of the two vectors orthogonal to v1. Fig. 3 shows the
two eigenvectors obtained for the four orientations of a given
HCV IRES molecule, as well as the result of the rotation of
the images. Two of the rotated particles differ in a 180f turn
compared to the other two. To ensure an identical orientation,
the mass of the left and right half of the rotated molecule is
calculated: the image is rotated 180f if the mass value of the
left half is larger than the value of the right half. In the unlikely
event that both halves have the same mass, a second validation
is computed to ensure that the right half of the image is the
one that contains more pixels with the highest RGB value, and
the molecule is rotated again 180f if necessary. When rotation
is computed, the (Xx,y) pixel coordinates are transformed to
the new orthogonal basis defined by the eigenvectors. This
operation yields real numbers that must be rounded to integer
numbers. In this coordinate system transformation, as num-
bers lower than 0.49 are rounded to 0, several isolated black
pixels may appear in the body area of the molecule. Thus,
a ‘salt-and-pepper’ noise arises in the image of the rotated
molecule (Fig. 3). To avoid such an effect, a filling process of
each of these black pixels is performed, and the average RGB
value of its neighboring pixels (up to 4: north, south, east, and
west) is computed.

To ensure that all the isolated and rotated images have
the same width and height in pixels, the second step in the
feature extraction stage is its size unification. This is a simple
process in which the maximum width (W) and height (H) of
all rotated images is computed. The size of the smaller images
is unified by filling their borders with background pixels, and
the particle is then centered in this resized image (Fig. 3).

The third and last step is the vectorization, a process which
consists of linearizing the W x H pixels of each image: the
W pixels of the first row of the image will be the first W
components of the vector, the W pixels of the second row
will be the second W components of the vector, and so on.
The value stored in the vector for each pixel is its gray level
(in the range of 0 to 255). In this way, a vector consisting of
W x H components is stored for each image (Fig. 3).

E. MORPHOLOGY CLUSTERING

The morphologies of the HCV IRES molecules are analyzed
using the unsupervised artificial neural network model GCS,
one of the so-called dynamic SOMs. With the exception of
the neighborhood connection topology of the output layer
neurons, the architecture of the GCS model is identical to
the Kohonen’s SOM model (Fig. 4): all the input neurons are
connected to all the output neurons, and every neuron in the
output layer has a synaptic vector with the same dimension
and nature than the input space. The processing dynamics is
also identical: the input vector is distributed to all neurons in
the output layer and only one (the bmu) is activated. However,
the GCS training algorithm considerably differs from the
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Kohonen’s SOM training. At the beginning of the learning
process, the output layer of the GCS network consists of a
single basic k-dimensional structure (for k = 2, three inter-
connected neurons). A training dataset is presented iteratively
to the network: for each training vector, the bmu is calculated
and its synaptic vector is modified to bring it closer to the
processed vector. In addition, the synaptic vectors of the neu-
rons with direct neighborhood connection with the bmu are
also modified. This eliminates the decreasing neighborhood
area factor present in the Kohonen’s SOM algorithm. Then,
a new neuron is periodically inserted into the output layer
of the GCS, and new neighborhood connections are included
or removed, ensuring that the output layer is still composed
of basic k-dimensional structures [36]. The insertion of neu-
rons can be done using two different criteria: looking for
the unknown probability distribution of the input patterns
(insertion near the neuron that represents more patterns) or
equalizing an accumulated error (insertion near the neuron
with the highest accumulated error value) [52]. In addition,
neurons from the output layer with a synaptic vector in an
area of the input space with low or null probability density
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are periodically removed. This procedure also ensures that the
output layer is still formed by basic k-dimensional structures,
although it can be divided into several sub-grids. In the exper-
iments carried out in this work, the improved GCS training
algorithm proposed in [52] has been used.

When the training patterns are grouped into separated
regions of the input space, the removal of neurons causes the
output layer to be divided into several sub-grids, each of them
formed by neurons with similar synaptic vectors. This feature
allows defining a stop-training criterion: the process will end
when a pre-defined number of sub-grids in the output layer
is achieved. In addition, since the training algorithm itself
groups the similar synaptic vectors in the same sub-grid, each
one will identify a typology of data, thus determining the
different kinds of morphologies present in the input space,
in our case, those of the RNA molecules contained in a sample
imaged by AFM.

The output layer of GCS networks with architectural factor
k = 2 consists of groups of interconnected neighborhood
triangles in which a neuron is located at each vertex. This
topology has a two-dimensional nature and can be projected
on a plane, generating what is known as the topographic
map, where neighboring neurons have close topographical
coordinates and neighborhood connections between neurons
do not cross (Fig. 4). The topographic map of the GCS
network can be used as the basis to visualize graphics, similar
to those generated with the Kohonen’s SOM model, such
as U-matrix. The algorithm for the construction of the GCS
topographic map and the generation of several types of graph-
ics has been described in detail in a previous work [37].
One of the available graphic representations is the direct
visualization map, in which the synaptic vectors of the output
neurons are showed in some graphic display. Accordingly,
a direct visualization map adapted to the characteristics of
our input data (images of the HCV IRES molecules) has been
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developed (Fig. 5). The synaptic vectors of the GCS neurons
are prototype vectors of the training dataset, so they have the
same dimension and nature: they are thus prototype images of
the vectorized HCV IRES molecules. By using the width and
height of the training dataset images obtained in the feature
extraction stage, the inverse process to the vectorization is
performed to generate an image of each prototype vector.
The synaptic vector represents a grayscale vectorized image,
though in the visualization of this map a conversion of the
grayscale to hot-color scale has been applied, as can be seen
in Fig. 5. The direct visualization map of Fig. 5 shows six
clusters of neurons (sub-grids): in this case, each cluster
displays the homogeneity between the images of the synaptic
vectors of the neurons that comprise it. If a cluster of neurons
contains images with different morphologies, it will be an
indicator that such a trained network is not appropriate for
discriminating the morphologies of the HCV IRES molecules
present in the imaged sample.

To identify the number of different morphologies in
the images of the RNA molecules, the scheme depicted
in Fig. 6 has been followed. Using the HCV IRES molecules
isolated and vectorized, several GCS networks are trained,
each formed by c clusters in the output layer. The values
used for ¢ ranged from 2 to 10, so nine GCS networks
will be available, each of them capable of discriminating as
many morphologies as clusters contained in the network. The
maximum value ¢ = 10 has been experimentally determined
by training several GCS networks and analyzing the direct
visualization map. It has been found that, when looking for
more than 10 types of morphologies, two or more clusters of
the trained GCS network identify similar molecule conforma-
tions. In any case, although the features of the biomolecules
analyzed in this study had led to this upper limit, the devel-
oped methodology can be applied to a higher range of clusters
when required. To evaluate which of the 9 GCS networks
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discriminates better the morphologies of the imaged
molecules, one of the most widely used cluster validity
indexes has been used: the Davies-Bouldin Index (DBI) [53].
It is defined as a function of the ratio of the within-cluster
scatter (measured as the average of the distances of the feature
vectors to the centroid of its cluster) and the between-cluster
separation (measured as distance between the centroids of
each pair of clusters). In this way, the lower the value of DBI,
the better the separation between clusters and the homogene-
ity within each group. DBI is usually calculated on clustered
data. However, given that synaptic vectors of a GCS represent
a simplified model of the training data, the calculation of
DBI directly on the synaptic vectors is proposed in this work,
taking into account that they are clustered by the sub-grid
to which their neuron belongs. This method of computing
DBI is similar to that performed in [54] with Kohonen’s
SOM networks. Although clustering indexes are a reliable
tool for evaluating the quality of a clustering algorithm, none
of them has proven to be robust enough for all types of
data of different nature and separability of partitions [33].
For this reason, in cases where two or more GCS networks
provide similar minimum DBI values, the final decision about
which of them differentiates most appropriately the mor-
phologies is taken with the support of the direct visualization
maps.

The training algorithm of the GCS networks is non-
deterministic, thus two GCS networks trained with the same
dataset and training parameters will produce GCS networks
slightly different. This is due to the random initialization
of the synaptic vectors and the random order of presenta-
tion of the training patterns. Therefore, when this type of
model is used, it is necessary to train several GCS net-
works with the same dataset and the same configuration of
the training parameters, and then select the best network
based on some measure of quality. In the context of the
SOM models, quality measures are related to the concept
of topology preservation: similar input vectors are mapped
by nearby neurons in the map, and neighboring neurons
represent similar input data. Some of the metrics proposed
in previous works only evaluate the information provided
by the SOM network, without considering the structure of
the dataset itself [31]. In contrast, Kaski-Lagus function [55]
and topographic function [31] deal with this aspect, evalu-
ating both the mapping of the input space in the SOM grid
and the precision of the SOM to represent the dataset. The
Kaski-Lagus function obtains accurate topology preserving
measures, though it is only appropriate to compare SOM
networks with the same number of neurons [33]. When the
stop-training criterion used is based on obtaining a specific
number of clusters of neurons in the output layer, the final
number of neurons in the GCS network is unknown, thus it is
not feasible to use the Kaski-Lagus measure to compare two
GCS networks with the same number of clusters. To address
the non-determinism of the GCS training algorithm, in this
work 20 GCS networks have been trained for each value of
c(Fig. 6). To select the GCS network of ¢ clusters with the best
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topology preserving measure, the topographic function [31],
CDIXI(O), adapted to the GCS model, has been used [56].
Fig. 6 shows the detailed flowchart of the developed method
to analyze the number of clusters of RNA morphologies.
Given a dataset composed of the vectorized images of the
HVC IRES molecules present in one of the samples analyzed
by AFM, the objective is to get 9 GCS networks, each of them
with a particular number ¢ of clusters (from 2 to 10) in the
output layer. To obtain a single GCS network with c clusters,
20 GCS networks are trained and the one that renders the
lowest value of the topographic function is selected. Then,
for the 9 GCS networks obtained, the DBI index is calcu-
lated. Finally, the direct visualization maps of the networks
with the lowest DBI values are generated, and the GCS
network that will be used to classify the imaged molecules is
chosen.

The selected GCS network undergoes an unsupervised
labeling process: the neurons belonging to the same sub-grid
are assigned the same numerical label (a value in the range
1-c), and the classification of the isolated molecules is carried
out using such a labeled GCS network. With that aim, each
vectorized image is processed by the labeled GCS, the bmu
and the second bmu (the neuron whose synaptic vector has
the second smallest Euclidean distance with the input vec-
tor) are determined, and the system checks whether the first
and second bmu belong to the same cluster. If so, the molecule
is classified with the bmu label (as the molecule clearly
shows a morphology type of the bmu sub-grid of neurons).
Otherwise, the molecule is classified with a combined label
of the first and second bmu. In this case, the molecule shows
an intermediate morphology between those characterized by
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FIGURE 7. Particle isolation and morphology clustering for HCV IRES at omM Mg2+.

both clusters, though it will be closer to that represented by
the first bmu.

Once all the features have been classified, a directory tree
is generated to organize the images of the isolated molecules
based on their classification. A directory is created for each
cluster of the GCS network, and it is named by the label
shared by the neurons of such a cluster. The image file
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of each molecule classified as ‘pure’ (i.e., that whose first
and second bmu are in the same cluster) is directly copied
into the directory named as the class of the molecule. For
each molecule classified as ‘soft’ (with its first and second
bmu placed in different clusters), the image of the molecule
is copied into a subdirectory created within the directory of
the first bmu, which is named with the identifier of the second
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bmu. In this way, all the isolated molecules are organized by
class to facilitate the individual analysis of each morphology.
In addition, a PNG file containing the complete AFM image
is generated with all the molecules isolated in the sample,
each of them identifiyed by the color associated with its class.
Finally, it is also possible to obtain as many complete images
as types of morphologies have been discriminated, each one
visualizing the isolated molecules of a specific class. This last
function is very useful when the number of molecules and/or
the number of different detected morphologies is large.

Ill. EXPERIMENTAL EVALUATION, RESULTS, AND
DISCUSSION
The method described in the previous section has been imple-
mented in Java. To validate its effectiveness, 5 AFM images
of HCV IRES molecules structured in folding buffers con-
taining 0, 2, 4, 6, and 10 mM Mg>*, respectively (which
were manually analyzed in our previous report [22]) have
been used. All GCS networks trained in the morphology
clustering phase have been configured with the same learning
parameters (details about them can be found in [52]). The
number of input neurons corresponds to the dimension of the
training vectors generated in the feature extraction phase, and
the stop-training criterion is established by the achievement
of a specific number of clusters of neurons in the output layer.
A neighborhood connection architecture factor k = 2 has
been used to generate the direct visualization maps. The GCS
training algorithm makes use of two learning rates for the
modification of the synaptic vectors, one for the bmu (&p)
and the other for its immediate neighbors (e,). The values
ep = 0.06 and ¢, = 0.002 have been provided (as suggested
in [52]). The A factor determines the periodicity of insertion
of a new neuron in the output layer and has been configured
to occur at the end of the epoch, that is, each time all the
vectors of the dataset are processed (thus, A = size of the
dataset). The insertion of neurons is carried out using the
criterion of equalizing an accumulated error, so a new neuron
is inserted near the one with the highest accumulated error
value. Removal of superfluous neurons is performed at the
end of the epoch. The improvement proposed in [52] about
this proceeding has been applied using the recommended
threshold value u = 0.001. For the procedures of insertion
and removal of neurons, the GCS training algorithm uses two
counters associated with each of the neurons in the output
layer. One of them records the number of training patterns
for which the neuron has been bmu, whereas the other main-
tains the error accumulated by the neuron (error between the
synaptic vector of the neuron and the training patterns for
which it is bmu). At the end of the epoch, an aging factor
() is applied to both counters in order to ‘forget’ the oldest
accumulated values, in such a way that the insertion and
removal of neurons is carried out based on the information
of the most recent epoch. A value « = 0.33 has been used,
as recommended in [52].

Fig. 7 summarizes the results of the developed method-
ology, applied to the particular case of the AFM image of
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FIGURE 8. AFM images used. Left: Original images (1,484 pixels x
1,484 pixels). Right: Isolation results. The folding buffer used to
resuspend the HCV IRES molecules either lacked divalent cations (a) or
contained Mg2+ at 2 mM (b), 4mM (c), 6 mM (d) or 10 mM

(e) concentration.

HCV IRES molecules in folding buffer lacking Mg?*+. The
original PNG image had a size of 1,484 x 1,484 pixels, with a
resolution of 120/295 nm/pixel. As a result of the particle iso-
lation phase, 55 molecules were obtained within the area size
range of 100-500 nm?. Thus, 55 PNG image files were gener-
ated (each of them containing an isolated particle), as well as
a single PNG image similar to the original AFM image, where
all the pixels that do not correspond to any isolated molecule
were filtered. Fig. 7 shows the filtered AFM image, and
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Right: Molecules classified by the network (each molecule is colored according to the color code of the cluster in direct
visualization map that contains the bmu for that particle. The folding buffer used either lacked divalent cations (a) or contained
Mg2+ at 2 mM (b), 4mM (c), 6 mM (d) or 10 mM (e) concentration.

the enlarged images of three of the isolated particles. In the applied to three of the isolated images, can be also observed
feature extraction phase, rotation was performed by means in Fig. 7. Subsequently, the width and height of the 55 rotated
of SVD ensuring that the main distribution of pixels of each images were unified, ensuring that the molecule remained
image is located on the x axis. The result of such a rotation, centered in the resized image. The unification of the size

VOLUME 7, 2019 160317



IEEE Access

S. Delgado et al.: Morphology Clustering Software for AFM Images

column =

O NM NI 0
O NMITNOMNOO e v e

row

NRPRRRRR R R R
CQLONOUAWNROOVONIOIVTAWNRLRO

NN NN
PWNER

Mean
values

11.5
12.0
13.0
11.4
10.5
9.5

11.0
11.5
11.0
12.0
12.5
13.0
13.0
12.5
12.5
12.5
12.0
12.0
12.5
11.5
12.5
13.0
12.5
14.0
13.5
15.0

FIGURE 10. Molecule length estimation of HCV IRES at omM Mg2+.

produced 55 images with 70 pixels of height (which was that
of the highest image) and 138 pixels of width (corresponding
to the widest image). Finally, the images were vectorized
producing 55 vectors of 9,660 components each, which were
used to train the GCS networks in the morphology clustering
phase. Following the scheme depicted in Fig. 6, nine GCS
networks were obtained, each of them showing a different
number of clusters within the range 2-10, and the value of
DBI clustering index was calculated. Fig. 7 shows the graph
with the DBI values obtained for the nine GCS networks.
For the two networks displaying the best DBI values (5 and
8 clusters), the direct visualization maps were generated. The
GCS of 5 clusters showed a sub-grid of neurons representing
different types of morphologies of the HCV IRES molecule
(lower right cluster). However, the GCS of 8 clusters dis-
played much more compact morphologies in all its sub-
grids, thus the 55 molecules were accurately classified using
such a GCS of 8 clusters. Different colours were used in
the direct visualization map depicted in Fig. 7 to identify
the morphology class contained at each of the 8 clusters of
neurons. As a result, a tree of directories and subdirectories
was generated, where the files of the isolated images were
organized according to their class. Fig. 7 shows a section of
such a directory tree, and some of the image files. Within
the directory that groups the files of the molecules classified
as ‘pure’ in ‘class 1’, two subdirectories (‘4 and ‘5’) were
created, where the files of the images classified as ‘soft’
(in this case, with first bmu in class 1 and second bmu in
class 4 or class 5, respectively) have been stored. In addition,
a reconstructed image similar to the original AFM one was
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generated, by filtering all the pixels that do not belong to
any particle and coloring each molecule according to its class
identified in the direct visualization map (Fig. 7). Finally,
8 images were generated, each of them containing only the
isolated molecules of a specific class, to allow a clear visual-
ization of the resulting classification (Fig. 7).

This methodology was also applied to the AFM images
of HCV IRES molecules structured in folding buffer supple-
mented with 2, 4, 6, and 10 mM Mg?*. Figs. 8 and 9 show
the details of their processing, together with those obtained
for the image corresponding to folding buffer lacking Mg,
as previously exposed. Fig. 8 depicts the 5 original AFM
images (all of them of 1,484 x 1,484 pixels in size) and their
resolution (in the range of 120-190 nm per 295 pixels). It also
includes the images obtained after the isolation phase, show-
ing the filtered molecules in each one of them. As expected
from the fact that the same RNA concentration was used in
the preparation of the 5 imaged samples (0.5 ng/ul), the AFM
image showing the lowest resolution (corresponding to the
sample structured in the presence of 4 mM Mg>") contained
the highest number of isolated particles (348), whereas, con-
versely, in the AFM image with the highest resolution (sam-
ple at 0 mM Mg2+) the smallest number of molecules (55)
were retrieved. Table 1 summarizes the results of the feature
extraction phase for each image: the width and height values
used in the unification of size once the images were rotated
(expressed in pixels), the number of vectors produced (as
many as isolated molecules), and its final dimensions.

Fig. 9 includes the graphs with the DBI values computed
for the 9 GCS networks obtained in each case, after applying

VOLUME 7, 2019



S. Delgado et al.: Morphology Clustering Software for AFM Images

IEEE Access

(@ P =0.0019 P =0.0009 (b)
r \ r "
P =0.0257 P = 0.0001
90, L
80 1
70 1
£ 60
z 501
%" 40 1 =
30 X
I &
201 - -
10 =
0 T
0 2 4 6 10
[Mg](mM)
(©)

omM Mg
90 - % -

2mM Mg?*

lll.[.gﬁéﬂ ‘|

R
-t

20 1 20

8o 40

Length (nm)

— 30

60

50

% of molecules

10 7

£ 60
c
5
<
i)
® 40

o
= 30

40

30 1

20 1

®10-20

®20-30

30-40

m40-50

®50-60

0 2 4 6
[Mg?)(mM)

10

4mm Mg?*

*é* = = e
= gy

6mM Mg?* 10mM Mg?*

Length
&
Length (nm)

Cluster Cluster

cl 2 3 c4 <5 cl 2 3 cl 2

Cluster Cluster Cluster

FIGURE 11. Length distribution of HCV IRES molecules (isolated and rotated) at different Mg2+ concentrations. (a) Length distribution (computed over all
isolated molecules: 55, 94, 348, 164, and 198 for 0, 2, 4, 6, and 10 mM Mg2*, respectively) of the IRES molecule in folding buffer supplemented with 0, 2,
4, 6, and 10 mM Mg2+ concentration is depicted in a box plot. Boxes represent 25-75 percentile range, vertical lines span 10-90 percentile range and
horizontal bar and cross symbol within the box represent the median and the average value, respectively. Maximum and minimum values are depicted as
circles (maximum) and hyphen (minimum). Statistical P-values corresponding to the average length of HCV IRES molecules for 0 versus 2, 2 versus 4,

4 versus 6, and 6 versus 10 Mg2* concentration are shown. (b) Distribution of molecular length versus Mg2+ concentration, computed for isolated
molecules at each buffer composition. Box: intervals of molecular length (nm). (c) Length distribution box plots of the IRES molecule computed for each
group of molecules classified by GCS_8 (0 mM Mg2+), GCS_6 (2 mM Mg2*), GCS_5 (4 mM Mg2t), GCS_3 (6 mM Mg2t), and GCS_2 (10 mM Mg2+), where
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TABLE 1. Results of feature extraction phase.

Rotated particles Unified size
“Hmax bWimax NV “Dim
0 mM Mg** 70 138 55 9,660
2 mM Mg** 46 86 94 3,956
4 mM Mg** 48 82 348 3,936
6 mM Mg 42 77 164 3,234
10 mM Mg* 41 89 198 3,649

*Hmax, maximun height (pixels); "Wmax, maximum width (pixels);
NV, number of vectors; “Dim, vector dimension.

the scheme shown in Fig. 6, where the number of clusters of
the selected GCS has been marked with a circle. The direct
visualization map is also shown, and the neurons belonging to
the same sub-grid have been rounded with different colors for
easy identification. Finally, Fig. 9 also includes the complete
image of the molecules classified by the corresponding GCS
network, in which each molecule has been colored according
to the color code of the cluster containing the bmu that char-
acterizes each particle. Interestingly, the fact that the number
of identified clusters decreases with the Mgt concentration
present in the folding buffer (from 8 clusters at 0 mM Mg?+
to only 2 at 10 mM Mg>*) clearly shows that the structural
homogeneity and the compactness of HCV IRES molecules
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are promoted by this divalent cation, in agreement with our
previous results [22]. It is also evident that, as observed in
our prior manual analysis (which involved the use of several
initial AFM images for each Mg?t concentration), elon-
gated and highly branched HCV IRES molecules are mainly
present in the buffers with 0 and 2 mM Mg?* concentration,
more compact and ‘comma-shaped’ morphologies abound at
4 and 6 mM Mg?*, whereas compact and ‘round-shaped’
conformations dominate the sample at the highest Mgt
concentration tested (10 mM).

To make a quantitative study of the effect of Mg>* concen-
tration in the folding process of HCV IRES, the end-to-end
length of all isolated, rotated and classified molecules was
estimated for each AFM image. The algorithm implemented
to estimate the length of a given molecule makes use of
the coordinates (row, column) of each pixel of the particle
(Fig. 10). It must be taken into account that we have not
used the z-coordinate (height) in our current analysis because
this value might have been affected by the AFM tip load
exerted on the folded biomolecules, as commented in our
previous, manual analysis of HCV IRES [22]. Thus, for
each column c; in the image, the average value of the rows
containing some pixel of the molecule is calculated, which
generates coordinates of the type (ri juean. ci), depicted as
gray, connected circles in Fig. 10. Then, the sum of the

160319



IEEE Access

S. Delgado et al.: Morphology Clustering Software for AFM Images

40

¥ 100-150

¥ 150-200
¥ 200-250

= 250-300

(@ P =0.0001 P = 0.9582 (b)
L —— |
P =0.028 P = 0.5003
500 4 o o R B
o
450
400 A .
350 -
< 300 { | X
=
© 250 - %
o
% 20 | ]
150 - [ I e
100 4 - - - =
50 |
0 . . . . .
0 2 4 6 10
Mg*)(mMm)
(©
omM Mg?* 2mM Mg?*

500 4
450
400
350
300 4
250
200

Area (nM?)

150

100
50 -

HT+—@ -

Cluster

Area (nM?)

500 4
450
400
350
300 4

250
200
150

100

-

iy
-

cl

c2 c3 c4

Cluster

c5

c6

% of molecules

500 4
450 A
400
350
300 o

250
200
150

Area (nM?)

100 -

= 300-350
350-400
400-450
450-500

[Mg?"])(mM)

n B
8

Cluster

6mM Mg**

*Qﬁ

500
450
400
350

S 300

< 250

©
2 200
<
150
100
50
0

10mM Mg?*

500
450
400 $
350

300
250
200
150
100
50

Area (nM?)

cl c2 c3
Cluster

0 T d
cl c2
Cluster

FIGURE 12. Area distribution of HCV IRES molecules (isolated and rotated) at different Mg2+ concentrations. (a) Area distribution (computed over all
isolated molecules: 55, 94, 348, 164, and 198 for 0, 2, 4, 6, and 10 mM Mg2™, respectively) of the IRES molecule in folding buffer supplemented with 0, 2,
4, 6, and 10 mM Mg2+ concentration is depicted in a box plot. Boxes represent 25-75 percentile range, vertical lines span 10-90 percentile range and
horizontal bar and cross symbol within the box represent the median and the average value, respectively. Maximum and minimum values are depicted as
circles (maximum) and hyphen (minimum). Statistical P-values corresponding to the average area of HCV IRES molecules for 0 versus 2, 2 versus 4,

4 versus 6, and 6 versus 10 Mg2+t concentration are shown. (b) Distribution of molecular area versus Mg2+ concentration, computed for isolated
molecules at each buffer composition. Box: intervals of molecular area (nm). (c) Area distribution box plots of the IRES molecule computed for each
group of molecules classified by GCS_8 (0 mM Mg2+), GCS_6 (2 mM Mg2*), GCS_5 (4 mM Mg2t), GCS_3 (6 mM Mg2+), and GCS_2 (10 mM Mg2+), where
each box color corresponds to those in Fig. 9. Boxes represent 25-75 percentile range, vertical lines span 10-90 percentile range and horizontal bars

within the boxes represent the median.

Euclidean distances between each pair of consecutive coor-
dinates is computed. This length, expressed in pixels, is then
transformed to nm using the nm/pixel ratio corresponding to
the resolution of each AFM image. However, as previously
commented, we are aware that the tip convolution can arti-
factually increase the length and width of any feature imaged
by AFM. Fig. 11 summarizes the main quantitative results
regarding the length distribution of the imaged molecules.
The box plot (Fig. 11a) evidences a progressive reduction of
the HCV IRES length as a result of the increase in the Mg+
concentration used in the folding buffer, which is reflected
in the corresponding computed median and average values.
Also, the Mg?* -induced homogenization of the RNA confor-
mations (already commented in Fig. 9) becomes evident in
the length distribution graphs corresponding to each group of
molecules (Figs. 11b and 11c¢). In turn, Fig. 12 shows quanti-
tative results of the area distribution of the imaged molecules.
The decrease in the measured molecular surface and the
homogeneization of its distribution as a function of the Mg+
concentration is evident. Indeed, the box plot (Fig. 12a)
shows that the distribution of the molecular areas is reflecting
more clearly than that of the molecular lengths (Fig. 11a)
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a Mg?t-induced switch from extended to compact
morphologies at 4 mM concentration. Therefore, most of
our previous results, derived from the manual analysis of a
number of AFM images of HCV IRES molecules [22] are
supported by the quantitative data derived from the automatic
process of particle isolation and clustering presented in this
work.

However, one of the key advantages of the automatic
method reported here is that it saves a considerable amount of
time compared with the manual procedure previously used.
Thus, one researcher took around 170 hours to manually
analyse the 5 images included in this paper (150 hours for
particle isolation and 20 hours for structure comparison),
while the automatic process only took 7 hours of computer
time (2 minutes for particle isolation and the remaining time
for cluster analysis).

IV. CONCLUSION

We have developed a new morphology clustering software
for microscopy images of biomolecules, based on particle
isolation and GCS networks. It has been successfully tested
using AFM images of functionally relevant RNA molecules
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(in particular, an HCV genomic region that contains the
viral IRES element) and its results have been compared
with the previously obtained ones, derived from our manual
analysis of the data. The software application implemented
reduces the analysis time by a factor of 24 and requires
low intervention from the end user, being the entire process
highly automated. In this sense, the inputs that must be
established are the resolution of the AFM image used as well
as the range of area sizes of the particles to be isolated (in
the case of IRES HCV molecules it has been established
in 100-500 nm?2, but it must be adapted to the analyzed
molecule in other cases). On the other hand, in the clustering
phase the user intervention is only necessary to validate the
GCS network finally selected by the software (i.e., the one
with the lowest DBI index value), which is supported by
the application through the very intuitive direct visualiza-
tion maps (that show the synaptic vectors in image format).
Although in the experiments carried out the number of dif-
ferent morphologies present in the AFM images has been
selected in the range from 2 to 10, this factor can be cus-
tomized to evaluate a larger range, simply by indicating the
maximum number of clusters to be identified. Such an option
will be relevant when the GCS network with the highest num-
ber of clusters analyzed obtains the best DBI and its direct
visualization map shows disparity of morphologies within
one or more subgrids of neurons, thus indicating that the
number of clusters is not sufficient and should be expanded.
Further improvements of the software developed in this work
will include the capabilities to take into account the influence
of the AFM tip convolution, as well as the possibility to
faithfully compute the height of the imaged molecules. It
should be noted that this software could also be applied to
images obtained using other AFM modes, such as advanced
nanomechanical, PeakForce QNM or electrical ones. How-
ever, the usefulness of our method goes above and beyond
AFM, as it could be applied to other types of microscopy
techniques that provide images with nanoscale resolution of
the samples, such as scanning electron microscopy (SEM).
Additionally, the automatic process of particle isolation and
clustering of biomolecules developed here might constitute
the first step towards the reconstruction of a 3D structural
model of the biological entities under study.
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