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ABSTRACT Unpredictable texture structure and motion blur continuously exist in mobile platform visual
imagery and seriously reduce the similarity between images. Thus, accurate, stable, and well-distributed
matches to follow the accurate pose estimation of the platform are difficult to obtain. To solve such problems,
an effective image matching method for mobile platform visual imagery is presented in this study. The
proposed method includes three steps, namely, standard initial matching, transformation matrices evaluation
and matching propagation. Firstly, an oriented FAST and rotated BRIEF (ORB) method was used to obtain
the number of matches and the initial projective transformation relationship between an image pair. Secondly,
an evaluation function was set to choose the suitable rotation matrix for the image scene. Finally, geometric
correspondence matching was utilized to propagate matches and produce additional reliable matching
results. The geometric correspondence matching used the geometric relationship between the image pair and
found more suitable matches than the standard ORB matching. Comprehensive experiments on TUM and
ICL-NUIM dataset images showed that the proposed algorithm performs better in terms of correct matches,
satisfactory matching rate, and higher matching accuracy than the standard ORB and ORB-slam2 initial
match methods.

INDEX TERMS Mobile platform visual imagery, image matching, ORB, propagation matching, geometric
correspondence matching.

I. INTRODUCTION
Image matching is the process of finding corresponding
points on multi-view images of the same area [1]. This pro-
cess is not only the premise of automatic image registra-
tion [2], [3] but also the basis for image sensors to acquire
their own pose and for track trajectory, positioning [4]–[6],
target recognition [7], and 3D reconstruction [8]. With
the diversification and miniaturization of mobile platforms,
the demand for fast and stable visual image matching
algorithms is rapidly increasing.

Given the requirement for real-time performance, the
corresponding points between the mobile platform visual
images are difficult to match. This is because the algorithms
require time to avoid the influences from the geometric
distortion caused by distance transformation and viewing
angle conversion. The algorithms also require time to avoid
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the photometric distortions, such as illumination and sea-
sonal changes, and it’s hard to find an effective way to
avoid costing time. The standard oriented FAST and rotated
BRIEF (ORB) feature matching algorithm [9] based on FAST
corner detection [10], described by the binary robust inde-
pendent elementary feature (BRIEF) descriptor [11], [12],
and matched by Hamming distance can quickly obtain a
matching result of two images without GPU acceleration
given its high computational efficiency. Therefore, the ORB
algorithm is widely used in systems, such as visual odome-
ters which require high real-time algorithms, or hardware
devices, such as mobile phones that have low energy effi-
ciency. However, the ORB algorithm becomes prone to mis-
match when the images acquired by the sensor is blurred
due to the rapid motion of the mobile platform and overly
monotonous or complicated texture structure in the scene.
The matching quality of the image pairs will directly affect
the autonomous navigation and modeling quality of the sub-
sequent mobile platform. To improve the performance of the
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FIGURE 1. The framework of geometric correspondence - oriented FAST and rotated BRIEF (GC-ORB).

ORB algorithm, researchers have mainly applied the follow-
ing approaches: (1) improving the feature point extraction
strategy [7], [13]–[19], (2) enhancing the feature descriptor
[20]–[22], and (3) upgrading the strategy of matching feature
points [23]–[28]. For example, to improve the distribution
uniformity of feature points, enhance thematching efficiency,
and increase the correct matching rate, the ORB-slam2 [29]
initial matching algorithm boosts the feature point match-
ing efficiency; this improvement is achieved by rasterizing
the entire image and modifying the minimum Hamming
matching distance to 0.7–0.9 times the sub-optimal match-
ing distance; moreover, the histogram statistics are used to
describe the sub-rotation main direction angle, and only the
top three direction feature points are selected in the statistics
to improve the correct matching rate.

Scholars have proposed multiple enhancement match-
ing strategies for multiple feature matching algorithms
to improve the matching results of the feature points.
Yu et al. [23] used the K-value nearest neighbor algorithm
for coarse matching and applied the random sample consen-
sus (RANSAC) algorithm for fine matching and removing
the wrong matching point pairs. Xin et al. [24] enhanced
the ORB algorithm through the progressive sample consen-
sus (PROSAC) algorithm. In comparison with the traditional
RANSAC algorithm, the PROSAC algorithm considers the
correlation problem of sampling points and thus improves the
robustness and efficiency of the ORB algorithm. Geng [30]
proposed the use of the nearest six matches around the can-
didate points to calculate the affine transform in the local
region to predict the match and then compute the normal-
ized correlation coefficient (NCC) between the candidate
point and the point around the predicted position. If the
NCC of the point with the highest value is greater than the
predetermined value, the points were identified as matching
point pairs. Liu et al. [31] determined the homographymatrix
between two images in accordancewith the existingUR-SIFT

matching point pairs and obtained new exact matching
points through geometric correspondence matching based
on the homography matrix; in addition, these researchers
applied probability relaxation to ascertain the correct point
pairs which were unsuccessfully matched previously. The
algorithm improved the matching accuracy in multi-source
remote sensing image matching and significantly increased
the number of correct matching point pairs.

Based on these previous works, the present study proposes
an enhanced matching algorithm called geometric correspon-
dence – oriented FAST and rotated BRIEF (GC-ORB) to be
applied to mobile platform visual images. Firstly, the pro-
posed algorithm extracts high-quality FAST key points at var-
ious scales using image pyramids and calculates the BRIEF
descriptors. An initial matching is performed, and the rotation
matrices between the image pair are obtained. Secondly,
the obtained fundamental and homography matrices are eval-
uated by the evaluation function. Finally, the rotation matrix
which is suitable for the image scene is selected for the
geometric correspondence matching of all feature points.
The selection aims to obtain as many correct matches as
possible and to delete the mismatched points to make the final
match. Figure 1 illustrates all the steps of the entire algorithm.

II. METHODOLOGY
The ORB is a feature extraction algorithm based on the FAST
feature points and their BRIEF descriptors. The algorithm can
acquire enough feature points from two frames of images effi-
ciently and quickly match the homonymous points. However,
the matching results of this algorithm often have mismatches.
In order to solve the mismatching problem caused by image
noise, dynamic blurring or texture with monotonous line
features in ORB algorithm, this paper proposes a strategy
to improve the matching quality of the algorithm by adding
two steps: transformation matrix evaluation and geometric
correspondence matching.

160524 VOLUME 7, 2019



Y. Chen et al.: Multi-Stage Matching Approach for Mobile Platform Visual Imagery

A. STANDARD ORB INITIAL MATCHING
1) FAST FEATURE EXTRACTION
This algorithm aims to obtain the numbers of relatively accu-
rate features across the entire range of the image as soon as
possible. The specific steps are presented as follows:

1) Extract the number of FAST feature points by roughly
comparing the gray brightness difference around all the
pixels. Use each point on the image (with the brightness
similar to Ip) as a center, pick 16 pixels on a circle (with
a radius of 3), and choose the point as suitable if 12 or
more of the 16 pixels are lighter than 1.2Ip or darker
than 0.8Ip.

2) Remove local clustered feature points through
non-maximum suppression, and only keep the points
that can respond to the maxima in a certain area.

3) Determine the approximate total number N of the fea-
ture points. The expected value is typically set as 500.
Calculate the Harris response values for the original
corner points, and select the top N corner points with
the largest response value as the final corner point set.

4) Maintain the scale invariance by building an image
pyramid and testing the corner points on each level of
the pyramid.

5) Keep the rotation invariance using the intensity cen-
troid. In each small image block, define the moment
of the image block, as shown in Equation (1).

mpq =
∑
x,y∈r

xpyqI (x, y) (1)

In addition, I (x, y) is the image grayscale of the image
block, p, q = {0, 1} and the centroid C of the moment is

C =
(
Cx ,Cy

)
=

(
m10

m00
,
m01

m00

)
. (2)

The main direction of feature points is defined as
Equation (3):

θ = arctan
(
m01

m00
/
m10

m00

)
= arctan (m01/m10) (3)

2) BRIEF DESCRIPTOR CALCULATION
The standard ORB algorithm uses BRIEF to generate feature
descriptors, which describe image areas in the binary mode.

This feature can dramatically reduce the contrast among
pixels. τ is defined as the test criteria of an S × S size image
area P.

τ (p; x, y) =

{
1, p (x) < p (y)
0, p (x) ≥ p (y) ,

(4)

where p (x) and p (y) are the grayscale at pixels x and y on
area P, respectively. When n pairs of test points are chosen,
the n-dimensional binary bit string descriptors can be gener-
ated with the binary test criteria τ using Equation (5).

fn (p) =
∑
1≤i≤n

2i−1τ (p; xi, yi) (5)

The selection of n requires a comprehensive comparison of
computational speed, recognition rate, and storage efficiency.
Generally, 64,128,256 is selected.

The abovementioned generated feature descriptors lack
directivity and require the feature point centroid direction
calculated in Equation (3) as the main direction of the BRIEF.
For any n sets of binary criteria at x and y, a 2 × n matrix is
generated as follows.

M =
[
x1 x2 . . . xn
y1 y2 . . . yn

]
(6)

The rotation matrix Rθ corresponds to the centroid direc-
tion of the feature points, and a directed formMθ ofM is set as
Mθ = RθM . The BRIEF with rotation invariant is expressed
in Equation (7).

gn (p, θ) = fn (p) | (xi, yi) ∈ Mθ (7)

3) INITIAL MATCHING
The similarity between the feature points in the ORB algo-
rithm is reflected by the size of the Hamming distance [32];
that is, a small distance indicates high similarity. Further-
more, the bidirectional fast library for approximate nearest
neighbors (FLANN) method [33] can be adopted to obtain
the initial matches. The RANSAC algorithm [34] is used to
refine the obtained matches. The final refined matches can be
utilized to acquire the transformation matrixes F (fundamen-
tal matrix) and H (homography matrix) between the image
pair.

B. TRANSFORMATION MATRIXES EVALUATION
Both the fundamental matrix F and homography matrix H
can describe the projection transformation between the image
pair. The former is defined by the epipolar constraint that
can generate a clear spatial relationship between twomatched
points, while the latter is more suitable for describing
the mapping relationship between two planes. Therefore,
the pixel positional relationship between one image pair can
be represented by the suitable F matrix and H matrix in
accordance with the stereoscopic degree of the scene in the
image.

The fundamental matrix F reflects the intrinsic projective
geometry of the image pairs and depends only on the camera’s
internal parameters K and external parameters R and t .

F = K−T t∧RK−1 (8)

The projective geometry between a pair of image feature
points can be expressed as Equations (9), (10), and (11).

p1 = KP, p2 = K (RP+ t) , (9)

pT2K
−T t∧RK−1p1 = 0, (10)

pT2 Fp1 = 0, (11)

where p1 (x1, y1) is the coordinates of a point on the input
image, p2 (x2, y2) is the coordinates of its corresponding point
on the reference image, and P = [X ,Y ,Z ]T is the spatial
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position of the same point in the input frame coordinate
system.

The homography matrix H is typically used to describe
the transformation relationship between image pairs from
points on a common plane. The relationship between a pair
of the corresponding image feature points can be expressed
as Equations (12) and (13).

p2 = Hp1, (12) x2
y2
1

 =
 h11 h12 h13
h21 h22 h23
h31 h32 h33

 x1
y1
1

 , (13)

where hij represents the parameters of the homographymatrix
H from the reference image to the input image.

To evaluate the calculated fundamental and homogra-
phy matrices, the evaluation function is proposed in the
ORB-slam2 algorithm [29], as expressed in Equations (14)
and (15); SF and SH correspond to the evaluation scores of the
fundamental and homography matrices, and SM is the unified
representation of SF and SH .

SM =
∑
i

(
ρM

(
d2cr

(
x ic, x

i
r ,M

))
+ρM

(
d2rc
(
x ic, x

i
r ,M

)))
,

(14)

ρM

(
d2
)
=

{
τ − d2 d2 < TM
0 d2 ≥ TM ,

(15)

where d2cr and d
2
rc represent the symmetric conversion errors,

respectively, d2cr is the error from the current image to the
reference image, and d2rc is the error from the reference image
to the current image. TM is the outlier rejection threshold
based on the χ2 test at 95%, assuming a standard deviation
of 1pixel in the measurement error [29].

TH = 5.99, TF = 3.84

τ = TH (16)

When the scene has few planars and a large parallax,
the fundamental matrix F is used to calculate the correlation
coefficient of the feature point pairs in the two images. Con-
versely, when the scene contains various planes (or approx-
imate planes) and the parallax is small, the homography
matrix H is applied for the calculation. This study uses the
evaluation mechanism proposed in ORB-slam2 [29] as Equa-
tion (17) to select the matrix model.

RH =
SH

SH + SF
(17)

C. GEOMETRIC CORRESPONDENCE MATCHING
Generally, the standard ORB algorithm can only successfully
match most feature points in image matching. The similarity
of the descriptors may cause to mismatch results, and some
high-quality feature points may fail to match. Therefore,
to guarantee the quality of the matching results, the geometric

FIGURE 2. FAST feature point [10].

correspondence matching strategy is adopted in this contribu-
tion to eliminate wrong matching points and identify as many
correct matching points as possible.

The initial match only uses the local information around
the feature points and ignores the overall information in
the image. In the present study, the projection transfor-
mation relationship of two images is firstly calculated by
initial matching, and then the modified NCC method is
applied for further feature matching. Traditional rectangular
window-based NCC methods are not fixed for rotation and
scale changes, but the visual image of themobile platform fre-
quently has rotation and scale changes. Therefore, we modify
the traditional NCC method to improve its robustness in
the presence of such a geometric distortion by distorting
the correlation window. Specifically, we open a rectangular
window in the reference image and project it onto the input
image using a transformation matrix obtained in the initial
match. This result may be an irregular quadrilateral. More-
over, we use bilinear interpolation to resample the irregular
quadrilateral to the same size as the rectangular window.
Finally, the correlation coefficient of the rectangular window
is calculated in accordance with the standard NCC. The cal-
culation steps are presented as follows:

1) Calculate the position at the input image of the initial
feature points that were extracted from the reference
image through the fundamental matrix F or the homog-
raphy matrix H using Equations (11) or (13) in accor-
dance with the matrix at that situation. The selection of
the transformation matrix depends on the result of the
Equation (17), IfRH > 0.45, the homographymatrixH
is adopted to acquire the correlation coefficient of the
feature points. If RH ≤ 0.45, we choose the fundamen-
tal matrix F . As is shown in Figure 3, a point P on the
reference image can be found to have a corresponding
point P′ on the input image. Due to the deviation in the
homography matrix H and the fundamental matrix F ,
the point closest to P′ may not be the corresponding
point to P. Thus, the feature points within the n pixels
of the retention distance with P′ are chosen. If feature
points, such as {Q1,Q2, · · · ,Qn}, are presented and
{Q1,Q2, · · · ,Qn} is calculated using Equation (18), as
shown at the bottom of the next page, and the results are
sorted in ascending order. If the correlation coefficient
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FIGURE 3. Geometric correspondence matching. P is a seed point, P ′ is its predicted point, Qj is the
matched point, and the other points marked by a yellow circle are those points whose distance to P are
within n pixels.

between Qj and P is the largest one and is greater than
r , then the inverse matrix H ′ or F ′ of the homography
matrixH or the fundamental matrix F are subsequently
calculated. Next, the value of the corresponding point
Q′j of Qj on the reference image using Equation (13)
or (11) are calculated. If the distance between P and
Q′j is within n pixels on the reference image and P is
the largest correlation coefficient point and is greater
than r , then P and Qj are preliminarily determined as a
pair of feature points. In Equation (18), w and h are the
width and the height of the matching window, respec-
tively; gi,j is the gray value of the point (i, j) on the
reference image; p (c, r) is the correlation coefficient
of the reference and input images.

2) Error match elimination is conducted by recalculating
the fundamental matrix F1 or the homography matrix
H1 through the combination of the matching points
obtained in the previous step and in the initial matching.
Subsequently, the root mean square error (RMSE) is
applied to eliminate the wrong matches. If the RMSE
is larger than r2 pixels, then we delete the largest
error point by point until the requirements are sat-
isfied. Finally, the mean square errors σx and σy in
the horizontal and vertical directions are calculated,
correspondingly. If the horizontal error of the point is
greater than Ex or the vertical error is greater than Ey,
then the point is removed.

3) With the retained F1 or H1 matches as the input,
the previous steps are repeated to increase the number
of correct matches. In general, after several iterations,
the number of matching results remains essentially

the same. Given the time requirement, we double the
maximum number of repetitions.

III. EXPERIMENTS AND ANALYSIS
In this study, the standard ORB algorithm and the initial
matching algorithm in ORB-slam2 are compared with our
proposed GC-ORB algorithm. The specific process of the
ORB-slam2 initial matching algorithm is presented as fol-
lows: This method rasterizes the entire image to improve
the match efficiency and modifies the minimum Hamming
matching distance to 0.7–0.9 times of the sub-optimal match-
ing distance. Moreover, this method uses the histogram statis-
tics to describe the change in the main direction angle in
the rotation of the descriptors and selects only the top three
feature points of statistical ranking to improve the matching
accuracy of the algorithm.
The testing environment for this experiment is conducted

in the personal computer involving Intel Core i7 CPU
2.75 GHz, and 16 GB memory. All three algorithms were
programmed using C++ with the OpenCV3.4.3 in the
Ubuntu16.04 environment.

A. THE DESCRIPTION OF EXPERIMENTAL DATASETS
To evaluate the performance of the algorithm, three sets of
RGB-D images from two public datasets, namely, ICL-NUIM
and TUM are used. The RGB-D datasets contain more accu-
rate depth information than the triangulation algorithm, with
a pose supported by the datasets that can help to verify the
matching accuracy of the three algorithms.
The TUM datasets capture color and depth images through

the Microsoft Kinect sensor and also contain the pose. The

p(c, r) =

w∑
i=1

h∑
j=1

gi,j · g′i+r,j+c −
1
w·h

(
w∑
i=1

h∑
j=1

gi,j

)(
w∑
i=1

h∑
j=1

g′i+r,j+c

)
√√√√√
 w∑
i=1

h∑
j=1

g2i,j −
1
w·h

(
w∑
i=1

h∑
j=1

gi,j

)2
 w∑

i=1

h∑
j=1

g′2i+r,j+c −
1
w·h

(
w∑
i=1

h∑
j=1

g′i+r,j+c

)2


(18)
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TABLE 1. Experimental image pairs.

collection rate of the data is 30 Hz, and the sensor resolution
is 640× 840 pixels. The ground truth is obtained through the
eight-lens high-precision motion capture system.

The ICL-NUIM datasets are obtained from Imperial Col-
lege London. This dataset is designed to provide accurate
RGBD data for visual odometers and SLAM algorithms,
thereby providing different scenes with ground truth collected
usingMicrosoft Kinect sensors. The collection rate of the data
is 30 Hz, and the sensor resolution is 640 × 840.

The two datasets in the TUM dataset contain an empty
shaded scene and a desktop with a complex texture scene,
thus providing complex and monotonous scene textures. The
ICL-NUIM dataset offers noise-free scenes.We use three sets
of image pairs from different scenarios (Table 1) to evaluate
the performance of the algorithm in different scenarios.

The groundtruth of the datasets exists between adjacent
frames or two frames with the specified interval. It contains
pose and depth information that are the essential basis for
assessing the quality of experimental results. Table 2 contains
the pose relationship between the two images of the three
image pairs. All the pose information is represented by the
quaternion. The depth images, due to their weak discrimina-
tion, are not shown in this paper.

B. THE PARAMETER SETTINGS
1) PARAMETERS IN THE INITIAL ORB FEATURE EXTRACTION
AND MATCH
The number of initial extracting feature points is set as a
maximum of 500 points. The scale between the pyramid
images is 1.2f (float). The number of layers in the Gaussian
pyramid is 8, and the index value of the first level is 0. The
edge threshold is set as 31 pixels, and the number of point
pairs for producing BRIEF descriptors is set as 2. The feature
point field size of the BRIEF descriptor is set as 31.

2) PARAMETERS IN THE FUNDAMENTAL AND
HOMOGRAPHY MATRIXES
The symmetric transformation error TF of the fundamental
matrix is 3.82, and the symmetric transformation error TH of
the homography matrix is 5.99. The conversion threshold RH
between the fundamental and homography matrices is set to
0.45. When RH > 0.45, the homography matrix is chosen for
the geometric correspondence matching. Conversely, when

RH ≤ 0.45, the fundamental matrix is selected for such a
matching algorithm.

3) PARAMETERS IN THE GEOMETRIC CORRESPONDING
MATCHING
In the preliminary experiment, the correct values of n and
r are identified by first assigning different values to n from
0.5 to 3.0 in increments of 0.5 and similarly from 0.6 to 0.9.
The value of r is evaluated in increments of 0.1. The results
of several experiments show that the cost function of the
final transformation matrixes can constantly be maintained
within 1.5 pixels when n = 1 and r = 0.8. Thus, thematching
points can be considered correct matches. In the next step, r1
is set as 1 to effectively eliminates false matches. Ex and Ey
are set as 3σx and 3σy. If the matching horizontal or vertical
error is greater than 3σx and 3σy, then this result can be
regarded as a mismatch. This method may eliminate some
correct matches and ensure the high precision of the matching
points.

C. THE EVALUATION CRITERIA AND IMPLEMENTATION
DETAILS
The matching quality of the algorithm is evaluated using the
following factors: the number of correct matches, the correct
matching rate, the matching accuracy, and the time consump-
tion.

1) THE NUMBER OF CORRECT MATCHES
For all the matched feature point pairs, if any of them has
a residual error higher than 1.7 pixels, then this condition is
considered as an error match; otherwise, a correct match is
obtained.

2) THE CORRECT MATCHING RATE
The number of the correct matching point pairs divided by
the number of all matching feature point pairs is the correct
matching rate.

3) THE MATCHING ACCURACY
The evaluation of matching accuracy generally requires
ground truth. For image matching, the result of the man-
ual measurement is commonly used as a reference value.
However, the accuracy of counting such numerous feature
points manually and maintaining the quality of the results
depend on the accuracy of the individual surveyor. This
facet is subjective and varied from person to person. There-
fore, a more practical and objective approach is required.
In this study, a matching accuracy evaluation method based
on RMSE is adopted. We use feature matching to match the
image pairs, and each point has a residual from which the
RMSE is calculated. Theoretically, the RMSE consists of the
following three parts: the image matching error, the image
modeling error, and the image internal geometric distortion.
The image matching error is the major component of the
RMSE error. The two other errors are secondary components
and can be ignored for images with improved geometric

160528 VOLUME 7, 2019



Y. Chen et al.: Multi-Stage Matching Approach for Mobile Platform Visual Imagery

TABLE 2. Pose information between image pairs.

TABLE 3. Experimental results of standard oriented fast and rotated BRIEF (ORB), ORB-slam2 initial matching algorithm and the proposed method,
geometric correspondence - oriented FAST and rotated BRIEF (GC-ORB).

quality. Therefore, the RMSE can partially objectively reflect
the image matching accuracy, although the actual positional
accuracy of the matching points can be better than the RMSE.

4) THE TIME CONSUMPTION
The algorithm initially extracts the feature points and then
provides the descriptors for the feature points; finally,
the algorithm outputs the matching point pairs. The time con-
sumed from all the steps is the algorithm time consumption.
In general, when the time is less than 0.05s, the algorithm can
satisfy the real-time requirements. The time consumption of
the algorithm also depends on the hardware conditions of the
running platform, thus possibly reflecting the efficiency of
the algorithm slightly.

5) THE COMPARATIVE RESULTS AND ANALYSIS
Table 3 lists the number of feature points, the correct match-
ing points, the correct matching rate, the matching accuracy
RMSE and the matching time of the standard ORB algorithm,
the ORB-slam2 initial matching algorithm, and the GC-ORB
algorithm, respectively.

The experimental results listed in Table 3 indicate that
the ORB-slam2 initial matching algorithm matches only a
few feature point pairs after extracting a substantially similar
number of feature points. This result is due to the algorithm
performs histogram statistics in accordance with the direction
of the sub-rotation, and only the top three main direction
points are retained when filtering feature points. This screen-
ing mechanism eliminates many feature point pairs. If the
other matching methods are not used, the attitude information

between the image pair may be restored with numerous
errors. Conversely, the GC-ORB algorithm proposed in this
study eliminates mismatched pairs through the geometric cor-
respondence between the image and the surrounding match-
ing points. The standard ORB is characterized by fast speed,
with an advantage to ensure satisfactory real-time perfor-
mance for mobile devices in image acquisition and the feature
point method. The GC-ORB algorithm sacrifices part of the
speed and improves the matching accuracy to maintain the
real-time performance of the algorithm. In addition, the pro-
posed algorithm maintains or slightly increases the number
of accurate matching point pairs. Based on the same or even
highermatching accuracy, the number ofmatching point pairs
is several times higher in the GC-ORB algorithm than that in
the initial matching algorithm in ORB-slam2.

To some extent, the RMSE denotes that the standard
ORB algorithm has some mismatch results. Although ORB-
slam2 removes some mismatched points in accordance with
the main direction of the descriptor rotation, the FAST feature
points are accompanied by many edge features. In various
scenarios, the large-scale edge features of objects have sim-
ilar situations, while the descriptors cannot distinguish the
differences, thereby causing multiple feature points extracted
on the same edge of the object to match incorrectly. Given
that the ORB-slam2 initial algorithm is strictly limited by
the threshold, only few extracted feature point pairs are few.
Thus, the large errors in the individual point pairs may result
in a significant RMSE value. The experimental results show
that the RMSE of the GC-ORB matching can constantly
maintain high precision.
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FIGURE 4. Experimental visual image pairs. (a-b): empty shaded scene
from TUM; (c-d): complex texture with motion blur from TUM; (e-f):
regular scene without noise from ICL-NUIM.

In terms of the time consumption, the GC-ORB is two
to three times slower than the standard ORB and ORB-
slam2 initial matching algorithms but the time consumption
can be maintained under 0.05s. The GC-ORB algorithm
exerts time in the geometric correspondence matching, a fac-
tor which is chiefly affected by the number ofmatching points
obtained in the initial matching. With the adjustment in the
threshold number of feature point extraction, the time con-
sumption of the GC-ORB algorithm increases rapidly (later
demonstrated in Figure 11). However, the time consumption
of the algorithm also depends on the performance of hard-
ware devices and the optimization of the algorithm. With the
development of hardware platforms in the future, the time
consumption of the GC-ORB algorithm can be decreased on
improved platforms.

In this study, when the matching results of the
GC-ORB algorithm in each group of images are displayed,
the GC-ORB matching points are shown on the same pair of
images to cover the ORB matching point pairs, and the ORB
matching points are also shown on the same images to cover
the GC-ORB matching point pairs. The former can reflect
the points (white points) eliminated by the GC-ORB from
the final result, and the latter can reflect the additional points
(yellow points) added by the GC-ORB at the subsequent
algorithm steps.

Figure 5 demonstrates the matching results of the first pair
of TUM data with large shadow areas collected at an open

FIGURE 5. Matching results for the first experimental image pair: Left and
Right images are both from TUM datasets.

field. The texture structure in the image is relatively simple.
Empty patch features and a grid consisting of numerous line
features are included in the image. In Figure 4, the ORB
algorithm has good distribution in the shadow texture part
because the shadow portion of the image has favorable line
feature textures. The selection of FAST feature points only
compares the brightness difference among pixels. Thus, when
the algorithm extracts the feature points, the FAST corner
points gather many line features. For the patch area with
uniform brightness and color, only a few or even no fea-
ture points are obtained. However, the FAST feature points
clustered on the line features are overly similar in bright-
ness and grayscale. This outcome is typical when using the
ORB algorithm for feature extraction and matching, espe-
cially when many or long line features are found in the
image. The ORB-slam2 initial matching algorithm removes
most mismatched points through the rotation direction of the
feature point descriptor but still cannot guarantee the eradi-
cation of all mismatched points, as exhibited in the match-
ing results in Figures 5, 6, and 7. Through the geometric
relationship between image pairs, GC-ORB removes nearly
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FIGURE 6. Matching results for the second experimental image pair: Left
and Right images are both from TUM datasets.

all mismatched points from the matching pairs of points
extracted by the standard ORB algorithm and identifies new
matching points. The results show that GC-ORB achieves
a more accurate match than ORB based on maintaining
the number of matching points and adds numerous accurate
matches based on maintaining or exceeding the accuracy of
the ORB-slam2 initial matching. Thus, the GC-ORB can be
applied to an open area where the texture is monotonous.

Figure 6 displays the matching results of a second pair
of TUM data images with large complex objects collected
in a small office space. Many kinds of objects are found in
the image, and the texture structure is complex. Given the
close distance between the lens and the object, a dynamic
blur occurs in the collected image. This phenomenon results
in a large displacement deviation between the point pairs of
the three matched methods. Moreover, the RMSE of the three
algorithms exceeds two pixels. The matching accuracy in this
experiment is evaluated on the basis of the displacement devi-
ation between the matching and the true points. Therefore,
under our experimental conditions and evaluation criteria,
the matching accuracy of the three algorithms in the second

FIGURE 7. Matching results for the third experimental image pair: Left
and Right images are both form ICL-NUIM datasets.

pair of images has decreased. In a scene with complex texture
structure, ORB has a good distribution but is influenced by
the presence of line features in the scene, and the phenomena
of feature point gathering and mismatching still exist. The
result of the ORB-salm2 initial matching algorithm is also
affected by the same factor and has some mismatched point
pairs. GC-ORB eliminates mismatched points based on the
ORB, improves the correct matching rate and accuracy, and
reduces the RMSE of the overall point cloud. Thus, the GC-
ORB method is applicable to complex scene regions and
can be used in the case of dynamic blurring of acquired
images. Relatively improved results are obtained through this
technique.

Figure 7 illustrates the matching results of the third pair of
ICL-NUIM data images collected in a noise-free indoor field.
The results include shadows, desktops, ceilings, and other
textures. The standard ORB and ORB-slam2 initial matching
algorithms still havemismatches on themetal edge of the ceil-
ing and on the shadow of the carpet. Conversely, the GC-ORB
eliminates these mismatches. In general, GC-ORB has a
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FIGURE 8. Correct matching rate of three algorithms in three test image
pairs form 100 feature points to 1000 feature points: (a) empty shaded
scene from TUM datasets; (b) complex texture with motion blur from TUM
datasets; (c) regular scene without noise from ICL-NUIM datasets.

higher matching accuracy than ORB and ORB-slam2 initial
matching algorithms, thereby indicating that the method can
be applied to various indoor scenes.

Based on existing experiments, the threshold number of
feature points is set to 100 increments from 100 to 1000. The
correct matching rate, RMSE, matching number, and time
consumption are compared to determine the difference of the
number of feature points extracted through the algorithms.

Figure 8 gives the variation in the correct matching rate of
the three algorithms for the three pairs of data with different
numbers of feature points as the initial state. The comparison
of the three algorithms can basically maintain the stability of
the correct rate when the feature points are increased, and the
correct rate of the GC-ORB algorithm outperforms those of
the two other algorithms.

Figure 9 demonstrates the variation in the RMSE for the
three algorithms with the increase in the number of feature
points. Among these three sets of data, the GC-ORB algo-
rithmmaintains the highest precision. In the second set of data
exhibited in Figure 9 (b), the texture structure is complex, and
the line features present numerous cases with small sizes. The
initial matching points obtained through the ORB algorithm
are evenly distributed, and the number of extrememismatches
is relatively small. Thus, with the increase of the number of
feature points, these three algorithms can ensure smoothness.
Under the condition of 900 feature points, the ORB algorithm
may match the wrong point pairs with large differences in
individual positions, thereby resulting in a sharp increase in
the RMSE. The general trend shown by the three datasets
indicates that the RMSE of the ORB and ORB-slam2 initial
matching algorithms will gradually increase with the num-
ber of initial feature points. Since the GC-ORB algorithm
removes the point pairs with large position distances in the

FIGURE 9. RMSE of three algorithms in three test image pairs form
100 feature points to 1000 feature points: (a) empty shaded scene from
TUM datasets; (b) complex texture with motion blur from TUM datasets;
(c) regular scene without noise from ICL-NUIM datasets.

FIGURE 10. The match number of three algorithms in three test image
pairs form 100 feature points to 1000 feature points: (a) empty shaded
scene from TUM datasets; (b) complex texture with motion blur from TUM
datasets; (c) regular scene without noise from ICL-NUIM datasets.

matching step, the change in the number of feature points
slightly affects its RMSE of the matching results.

Figure 10 displays the variation in the number of match-
ing results when the number of feature points in the three
algorithms increases. The three sets of image line graphs
show that the matching result obtained through the GC-ORB
algorithm can maintain the highest number among the three
algorithms with the increase in the number of feature points.
In the subsequent algorithm of slam, the number of fea-
ture point matching results may affect the smoothness of
the recovery trajectory. High matching results and uniform
distributions imply a smooth trajectory result of the mobile
platform.
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FIGURE 11. Time-consuming of three algorithms in three test image pairs
form 100 feature points to 1000 feature points: (a) empty shaded scene
from TUM datasets; (b) complex texture with motion blur from TUM
datasets; (c) regular scene without noise from ICL-NUIM datasets.

Figure 11 illustrates the time consumption changes of
these three algorithms with the increase in the number of
feature points. The three sets of data line graphs indicate
that the GC-ORB algorithm can be kept within 0.05 s while
maintaining the 500 feature points, a situation which can
satisfy the requirements of real-time performance. When the
number of feature points exceeds 600, the time consump-
tion of the algorithm is significantly increased because the
algorithm must count the displacement errors of all pairs of
initial matching feature points in the geometricmatching step.
A high number of pairs suggests that the algorithm is time-
consuming. However, the GC-ORB algorithm can essentially
keep the time within 0.1s. Thus, the GC-ORB algorithm can
be considered for the extraction and matching of keyframe
feature points.

IV. DISCUSSION
This study presents GC-ORB, which is an effective mobile
platform image matching method, and evaluates its perfor-
mance using three sets of data sources in varied scenes.
In accordance with the evaluation index of the matching
number, the correct matching rate, the RMSE, and the time
consumption, two common methods (i.e., the standard ORB
and the ORB-slam2 initial matching algorithms) are com-
pared and analyzed in relation to the GC-ORB method. The
experimental results show that, based on real-time require-
ments, the GC-ORB algorithm has higher correct matching
rate and matching accuracy in accordance with the number of
similar matches than the original ORB algorithm. Moreover,
the GC-ORB algorithm has more matching pairs based on
similarity and a higher correct matching rate and matching
accuracy than the ORB-slam2 initial matching algorithm.

Although the original ORB algorithm can extract sufficient
feature points independently and quickly, the matching

results of the ORB constantly aggregate and produce mis-
matches on the line features with similar textures given
the characteristics of FAST corner points. The number of
mismatches depends on the number and length of line fea-
tures in the scene. Mismatching affects the attitude recov-
ery and tracking of the mobile platform in the late stage.
The ORB-slam2 initial matching algorithm improves fea-
ture point matching efficiency by rasterizing the entire
image, modifies the minimum Hamming matching distance
to 0.7–0.9 times the sub-optimal matching distance, uses his-
togram statistics to describe the sub-rotation main direction
angle change value, and selects only the top three feature
points of the statistical ranking to increase the matching
precision of the feature points. However, given the similar
line characteristics of the texture, a mismatch still occurs
in the small number of high-precision matching point pairs
matched by the ORB-slam2 initial matching algorithm. Con-
sidering that the extracted matching points are even and rare,
the mismatched points in the algorithm significantly affect
the correct matching rate and matching accuracy. The pose
recovery of the mobile platform will be increasingly affected
and may cause the platform to obtain a path that is insuffi-
ciently smooth or one that loses tracking.

To obtain sufficient matching and satisfactory distribution,
we first use the FAST operator to extract sufficient feature
points quickly, thereby laying a good foundation for the
subsequent stage of feature matching. In the initial matching,
we generate many matching point pairs and the fundamental
and the homography matrices between image pairs. Further-
more, we use the evaluation function to filter the matrix that is
suitable for the current scene. To maximize the FAST corner
points, this study performs the geometric correspondence
matching based on the selected transformation matrix using
the geometric relationship between image pairs rather than
partial image information. This process constrains the corre-
sponding points in a small search area to find increasingly
accurate matching points. These matching points are evenly
distributed and highly reliable and have robust-to-weak tex-
tures or motion-blurred images.

To ensure high accuracy, the GC-ORB implements multi-
ple constraints throughout the matching process. In the initial
matching process, FLANN, Hamming distance with filtering
threshold, and RANSACwith a strict value are used to ensure
that the initial matching is correct. In the geometric corre-
spondence matching process, we use RMSE in the global, X,
and Y directions to eliminate mismatches.

Our experimental image pairs cover different scenes,
including open, shaded, complex indoor, close-range
dynamic blurred, and normal indoor scenes. The GC-ORB
performs well on all scene images. In summary, the GC-ORB
is effective and stable for feature matching of visual images
acquired on small mobile platforms.

V. CONCLUSION
This study proposes a multi-level matching method for visual
images acquired using mobile platforms. The suggested
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method includes the following steps: FAST feature point
extraction, initial matching, transformation matrices evalu-
ation, and geometric correspondence matching. The main
contribution of this study is to propose a matching selec-
tion strategy. Geometric correspondence matching uses the
geometric transformation information between images to
identify matches that satisfy geometric transformations.
Comprehensive experiments on visual images with different
angles of view, ambiguity, and texture complexity show that
the method improves the correct matching rate and accuracy
while maintains a real-time performance.

The method proposed in this study can be applied to
various visual image applications that require feature point
matching. For future work, different visual images will be
adopted to evaluate the robustness of the suggested tech-
nique, and we will aim to optimize the algorithm content and
enhance the efficiency of the algorithm.
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