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ABSTRACT Remaining useful life (RUL) is the premise and basis of the equipment health management
plan. As accurate as possible life prediction is of great significance to reliability and economy of equipment
maintenance. In this paper, a data-driven improved particle filter (PF) RUL prediction method is proposed.
A health indicator extraction method based on multi-feature fusion is introduced for the RUL prediction,
which can visually show the degradation trend of the healthy state of the equipment. The degradation model
and observation model of equipment health indicators are established, and the PF algorithm is used to track
parameters of the model. A quantum genetic algorithm is employed to improve the problem of particle
degradation in PF. On the basis of filter tracking, long short term memory (LSTM) network is used to predict
the trend of model coefficients, which further improves the accuracy of RUL prediction. The experiment
using the C-MAPSS data set shows the proposed method has a better prediction accuracy than other methods.

INDEX TERMS Remaining useful life, particle filter, quantum genetic algorithm, long short term memory.

I. INTRODUCTION
It is a key link for prognostics and health management to pre-
dict remaining useful life (RUL). The life prediction method
based on data-driven can real-time reflect the health status
of equipment. With the development of dynamic tracking
and deep learning algorithms, it has become a hotspot in the
research of condition-based maintenance (CBM). The first
step of equipment life prediction often requires the extraction
of indicators that can reflect the health of the equipment.
The first step to predicting the RUL of equipment is
extracting features which can reflect the health of the equip-
ment. The common feature types are time-domain feature,
frequency-domain feature and time-frequency domain fea-
ture [1]. For example, wavelet packet [2] and root mean
square [3] are commonly used features. Considering that sin-
gle or few features extracted from sensor data may lose effec-
tive information, many researchers proposed multi-feature
fusion methods. A health-weighted feature is constructed in
literature [4] and [5], which integrates the mutual informa-
tion of various features and has a good correlation with the
degradation process of machinery. In addition, image feature
extraction is also introduced into RUL prediction. A new fault
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diagnosis method for planetary gear based on image feature
extraction and bag-of-words model is proposed in the litera-
ture [6]. Mishra and Huhtala [7] realized the fault detection
accuracy of more than 90% of the elevator by extracting the
depth features of sensor signals.

Based on feature extraction, the next step of RUL predic-
tion is to track the changing trend of equipment health status.
The main methods are as follows. (1) Mathematical fitting
model. Jahani et al. [8] propose a B-spline based modeling
method for non-parametric degenerate signals. Wang et al. [9]
propose an improved RUL prediction wiener process model,
both drift and diffusion parameters of the model can adapt
to the updating of monitoring data. Bayesian methods are
also often used to predict RUL. A two-stage degradation
model is proposed in the literature [10], and the Bayesian
method is used to estimate the model parameters. In addi-
tion to these, Cox proportional hazard model [11], nonlinear
Wiener process model [12] and fractional Brownian motion
model [13] have also been introduced into RUL prediction.
(2) Dynamic tracking filter. Particle filter (PF) has been used
by many researchers as a method of RUL prediction, which
greatly improves the accuracy of life prediction. A genetic
PF method is proposed for predicting the life of lithium-ion
batteries [14]. Lei et al. [4] use the PF algorithm to predict
the rolling bearing RUL. Because of the particle degradation
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in the PF algorithm, many improved methods are proposed.
An improved particle filter algorithm is proposed in the litera-
ture [15]. An improved method of unscented particle filtering
(UPF) based on Markov chain Monte Carlo (MCMC) is
proposed in literature [16]. Cui ef al. [17] and Son et al. [18]
propose a new switching noiseless Kalman filter algorithm
respectively. A Wiener-Process-Model-Based Method is pro-
posed for RUL Prediction Considering Unit-to-Unit Variabil-
ity, and PF is used to update the model parameters [19].
An RUL prediction method based on the exponential model
and PF is proposed to overcome the problem of nonlin-
ear and non-gaussian characteristics in lithium-ion batter-
ies capacity degradation [20]. Aiming at the nonlinear and
non-gaussian characteristics of the system, a combination
method of unscented Kalman filter and PF is proposed in the
literature [21]. (3) Machine learning method. Machine learn-
ing is a method proposed in the field of speech recognition
and image recognition in recent years. Due to its excellent
self-learning function, it has also been introduced into the
RUL prediction by many researchers, one of the most is
the deep learning methods. A double convolutional neural
network architecture is presented to predicted RUL in liter-
ature [22]. This method does not need any feature extrac-
tor, only needs to input the original vibration signal, and
can predict RUL with high accuracy. A method for rapidly
evaluating the reliability and predicting remaining useful
life using a two-dimensional convolutional neural network
with signal conversion is proposed in the literature [23].
An automatic two-stage estimation method of bearing robust-
ness using deep neural networks (DNNs) is proposed in the
literature [1]. A long short-term memory (LSTM) structure
is proposed for predicting the robustness of short sequence
monitoring with random initial wear [24]. A data-driven
prediction method based on Elman neural network is pro-
posed by Yang et al. [25]. A method that uses deep learn-
ing tools and curve matching technology is proposed to
estimate the robustness of the system [26]. A framework
for estimating the RUL of mechanical systems is proposed,
which is composed of the multi-layer perceptron and mul-
tilayer perceptron and evolutionary algorithm for optimiz-
ing parameters [27]. Besides, there are many other machine
learning algorithms, such as neural networks [28]-[30],
capsule neural networks [31], dynamic Bayesian networks
[32] and so on.

Although the PF algorithm has a good trend tracking
advantage, particle degradation is an inevitable phenomenon
in the PF algorithm. Resampling attenuates the degradation
of the particle, but the degradation still exists, and resampling
also presents the problem of particle depletion and the oper-
ation of the restriction algorithm. Although there are many
improved PF algorithms, they are basically at the cost of
running time of the algorithm. A deep learning method can
automatically extract effective information in signals, but in
many cases, the signals contain a lot of noise. To achieve the
ideal prediction effect, the number of layers of learning net-
works needs to be increased and a lot of computing time needs
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to be consumed. Therefore, in this paper, an improved PF
algorithm based on quantum genetic algorithm is proposed
to track the trend of equipment degradation, and the LSTM
algorithm is employed into RUL prediction to improve the
efficiency and accuracy of RUL prediction. The innovation of
this paper is as follows. (1) An improved PF algorithm based
on a quantum genetic algorithm is proposed, which shortens
the running time of the algorithm and improves the tracking
accuracy. (2) LSTM algorithm is combined with the pro-
posed improved PF algorithm employed for RUL prediction.
Compared with using a filter algorithm or LSTM algorithm
alone to predict RUL, the prediction accuracy of the proposed
method is higher. The rest of this paper is arranged as fol-
lows. Section 2 presents the methodology used in this paper,
including the PF algorithm, quantum genetic algorithm and
improved PF algorithm based on quantum genetic algorithm.
Section 3 includes the experimental verification and analysis.
The proposed is applied to the C-MAPSS data set for units
RUL prediction. Section 4 is the conclusion of this paper.

Il. METHODOLOGY

A. PF MODELS

PF is widely used in the field of visual tracking, signal
processing, robotics, image processing, financial economy,
as well as target positioning navigation, tracking, and other
fields. In this paper, the PF model is applied to the RUL
prediction of aeroengine. Let the state equation of the system
be shown in equation (1).

X =f Kik—1, Wi) (D

where X; denotes the state of the system at time k, f(-)
denotes the mapping function, Wj denotes system process
noise. Assume that Wy obeys a Gaussian distribution with a
mean of 0 and a variance of Q, i.e. Wy ~ N (0,0).

Let the state observation equation of the system be shown
in equation (2).

Zi = h Xi, Vi) ()

where Z; denotes the measurement results of system state
features at time k, h (-) denotes the mapping function, and
Vi denotes the measurement noise.

The specific steps of PF algorithm are as follows:

(1) Initialization, k = 0, according to the prior density
p (xo) of the system state, collect particle sets {x}, wh}, i =
1,2,...,N.

(2) Importance sampling. for i = 1,2,--- ,N, Cex-
tract N particles from the proposal distribution x;'( ~
q (% xj_y s z1).-

(3) Update weights.

i i P (Zk |fc,i)p ()A‘llc |)Acli—1)
k= @ i
p(xk |xk,17Zl:k)

(4) Normalization of important weights.
. . N ,
@:@/ZM@ 4)
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(5) Resampling. The new particles were resampled based
on the weight of importance, with a mean weight of 1 / N.

(6) State estimation. The estimated state is obtained by the
weighted sum of weights and extracted particles.

N ...

Be=) . ok ()

Particle degradation is an inevitable phenomenon in the PF

algorithm. Resampling attenuates particle degradation, but

the degradation still exists, and resampling also presents the

problem of particle depletion and the parallel operation of the
restriction algorithm.

B. QUANTUM GENETIC ALGORITHM

Quantum genetic algorithm (QGA) is an algorithm combin-
ing the concepts of quantum computing with the genetic
algorithm, which can maintain good population diversity.
It applies the probability amplitude representation of quan-
tum bits to the coding of chromosomes so that one chro-
mosome can express the superposition of multiple states
and realize the chromosome update operation by using the
quantum revolving gate and quantum non-gate, to realize the
optimization of population.

The population of QGA consists of quantum chromosomes
encoded in quantum bits. Quantum bit is the smallest infor-
mation unit in QGA. Different from the classical bit, it can not
only be in the state 0 or 1, but also represent any superposition
state of the two. Therefore, QGA has a lot of diversity com-
pared with GA. For a population containing n individuals,
the length of a quantum chromosome m is expressed as

P@) = {p\.ph - .Ph} ©)

t t t
911 1% “m| G=1,2,....00) (]

m
BB B
where pj’. is an individual in generation t.; and B; are both
complex numbers, called probability amplitudes, denoting
the probability amplitudes of state 0 and state 1 respectively,
and satisfying the normalization condition that o> + 8% = 1.
And t is the number of generations.

Quantum gate is the executor of the ultimate evolutionary
operation in QGA. One of the keys of QGA is to construct
a suitable quantum gate. The update of the quantum bit
is realized through the quantum rotation gate. The specific
formula is as follow:

leoli]

cosO; —sinb;
sinb; cosb;

t

p; =

where U; = [ :| is the quantum rotation gate,

!
o; | . . -
|: ’,:| is the i-th quantum bit in the updated chromosome,
i
l

|:Z is the i-th quantum bit in the chromosome before the
l
update, and 0; is the rotation angle of the quantum gate.

In order to reduce the particle degradation of the PF

algorithm, QGA is introduced into PF in this paper. Each
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particle produced by PF is regarded as a chromosome, and
the sample set is optimized by QGA, and the sample set
{(x,’( a);() ,i=1,2,... ,N} consisting of the best samples
with weights can be obtained. At last, an estimated value of
the state can be obtained using E (Xj) = va: | ot

C. IMPROVED PF BASED ON QGA
(1) Initialize the population. Regard each particle in the sam-
ple set importance sampled by PF as an individual, code them
into chromosomes by a quantum code with length m, and they
form the initial population Q (7).

(2) Construct P (). According to the probability ampli-
tde [o7 |* and [B7]* (i =1,2, ..., m) of each individual in
Q (t), generate binary chromosome population set P (r) =

{67, b7, - b} b] is generated as:zRandomly generate a
number 6 between [0, 1], if 6 > |af |*, b] = 1, otherwise,
bl =0.

(3) Evaluate the quality of the particles using fitness func-
tion, and retain the optimal individual in the generation. The
fitness function is as:

f) = % (va_l X — N)Ez) )

where x; is the i-th individual of the population, X is the mean
value of all the individuals in the population, and N is the
number of individuals in the population.

(4) Measure each individual in the population Q (¢), and
calculate the fitness value of Q (¢).

(5) update the population Q (¢) to the offspring population
Q (¢ + 1) using the quantum rotation gate.

(6) Record the best individual and its fitness value.

(7) If meet the end condition, stop the optimization of
the population, otherwise, jump to step (4) to continue the
optimization of the population.

D. LSTM PREDICTION METHOD
LSTM is a special recurrent neural network (RNN). For a
given sequence x = (x1, x2, ...,X;), a prediction sequence

y = (y1,y2,...,yn) can be iterative calculated by equation
(10) and (11).
hy = f (Wanxy + Waphy—1 + bp) (10)
yr = Wiyh: + by (11)

where h = (hy, ho, ... ,hy) is the hidden layer sequence, Wy,
denotes the weight coefficient matrix from the input layer to
the hidden layer, Wy, denotes the weight coefficient matrix
from the hidden layer to the output layer, b; denotes the
offset vector of the hidden layer, b, denotes the bias vector
of the output layer, f denotes the activation function, which
is generally non-linear, such as tanh or ReL.U function.

The simple RNN is equivalent to the multilayer DNN
expanded on the time series. This model is easy to appear
gradient disappear or gradient explosion problem [33]. LSTM
model can learn long-term dependence information while
avoiding the gradient disappearance problem [34]. LSTM
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TABLE 1. Information about C-MAPSS data sets.

Data set C-MAPSS

FD0O1 FD002 FD003 FD004
Unit number of training set 100 260 100 249
Unit number of test set 100 259 100 248

adds a memory unit in the neural node of the RNN hidden
layer to record historical information, and three gates (input,
forget and output) are added to control the use of historical
information.

Let i, f, ¢, o denote input gate, forget gate, unit state
and output gate respectively. W is the corresponding weight
coefficient matrix, and b is the offset vector. & and tanh
denote sigmoid and hyperbolic tangent activation function
respectively. The forward calculation formula is as follows:

i; = sigmoid (Wyix; + Whily—1 + Weici—1 + bi) (12)
fr = sigmoid (fox, + Wiphi 1 + Werer—1 + bf) (13)

¢ = frep—1 + itanh (Wyexy + Wyehi—1 + be) (14)
oy = sigmoid (Wyox; + Wipohi—1 + Weocr + by) (15)
hy = ostanh (¢;) (16)

A detailed introduction of LSTM can be found in
reference [35].

Ill. EXPERIMENT AND ANALYSIS

A. EXPERIMENTAL DATA INTRODUCTION

C-MAPSS data set is used to verify the RUL prediction
method proposed in this paper. C-MAPSS data set is the data
generated by the simulation model developed by NASA based
on MATLAB/Simulink. The data set contains 4 sub-datasets,
composed of time series variables obtained from 21 sensors.
Each sub-data set contains the training data set and the test
data set. The training data set contains the life-span data of
each engine unit running to failure. It should be noted that
the initial state of each unit is different but can be considered
a healthy state. The working conditions and failure modes
of each sub-data set are different. The 4 sub-datasets are
respectively denoted as FD0O1, FD002, FD003, and FD004.
The specific information is shown in table 1.

In this paper, the training set of FDOO1 is the verification
object of the proposed method. The data set consists of
information collected by 21 sensors. Considering that the
information of some sensors has almost no change during the
whole life of the engine, which is of no value to the prediction
of engine life. After comparison, 14 sensors data are selected
from 21 sensors as the features of the engine. The numbers
of the 14 sensors are [2, 3,4, 7,8,9, 11, 12, 13, 14, 15, 17,
20, 21].

B. FEATURE FUSION

To describe the performance degradation trend of the aero-
engines, the establishment method of health indicator (HI) is
adopted from the literature [36]. The features vector of unit I
at time k is denoted as X}C = (x,‘;’] , x,’;’z, . ,x,’;’M). The HI
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of unit i at time k can be calculated using a linear weighted
model, as shown in equation (17).

. . 14 .
HI (XE2) =20+ " dutl, (17)

where A = (X, A1, ...,A14) denotes the weight vector. To
make the HI have a significant degeneration trend, the value
of HI is defined as shown in equation (18).

~i ,
HI (X %)
0, k <Ti5%
P (%m—m) . Ti5% <k < T195% (18)
. i
1, k>T,95%

where T; is the lifetime of unit i. It can be seen that the range
of HI value of unit during the whole life is [0,1]. When the unit
is new, HI = 0. As the unit’s service time increases, the HI
value increases, until the unit fails, HI = 1.

From the 100 units, select the first 40 units as training sam-
ples and the remaining 60 units as test samples. The features
and collection time of each training sample are substituted
into equation (17) and (18). An equation set about A is formed
by combining 40 training samples, and the value of A can be
calculated using the least square method. The HI of each test
sample can be calculated by substituting the A value and the
collected data of 60 test samples into equation (17). The HI
values of the 60 training units are shown in Figure 1.

HI

0 50 100 150 200 250 300 350 400
Time (cycles)

FIGURE 1. HI values of the 60 training units.

C. OBSERVATIONAL EQUATION

In this paper, the exponential distribution is selected as the
distribution model of the HI indicator, as shown in equa-
tion (19).

HI =axexp(bxn)+cx*exp(d=n) (19)

where n is the number of cycles. HI, a,b,c,d contain
Gaussian white noise, the mean is 0, and the variance is
unknown. The state of the prediction model is denoted as
equation (20).

X (n) =la(m),bn),cm),dml" (20)
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0.2

.
) 50 100 150 200 250 300
Timesicycles)

FIGURE 2. The tracking results of the 54th unit.

The state update equation can be expressed as
equation (21).

an+1)=a@m) +wsn), wa~N (0, 04)
b(n+1)=>bm) +wpn), wp~N (0,0p) 21
cn+1)=cm) +w:(), we~N (0,0¢)
din+1)=dmn) +wg (n), wg~N (0,04)

The observation equation is shown in equation (22).

HI (n)=a n) * exp (b (n) * n) + c (n) x exp (d (n) x n)+v (n)
(22)

where v (n) is the measured noise, which is the gaus-
sian white noise whose mean is 0 and variance is o,. i.e.
v(n) ~ N (0,0,).

D. HI TRACKING

In this paper, the 54th unit is selected to test the tracking
effect of the PF algorithm and the proposed method, and
the results are shown in figure 2. Before the state tracking,
40 training samples are substituted into equation (19) for
numerical fitting, and 40 groups of a, b, c, d can be obtained,
and the mean values of a, b, c, d are calculated. To improve
the tracking effect, the mean values of a, b, ¢, d are set as the
initial values to track the unit state indicators.

From figure 2, at the beginning of tracking, PF and
QGA-PF both have large tracking errors. This is because of
the initialization problem of a, b, ¢, d. The error of QGA-PF
is smaller relatively. The root mean square (RMSE) of
error between the tracing result and the measured value is
adopted to specifically compare the tracking accuracy of the
two methods, and the computational formula is shown as
equation (23).

RMSE =\/ % Z; (ﬁl,- - H1i>2 (23)

The experimental hardware is a desktop computer (Intel
Core 17-8700 processor, 16G memory), and the experimental
software environment is MATLAB 2018b. The particle num-
ber of PF is 100, the maximum iteration algebra of QGA is
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FIGURE 3. The trend of model coefficients.

100, and the length of quantum code is 10. The total running
time and RMSE of the two methods are shown in table 2.

TABLE 2. The tracking results of PF and QGA-PF.

Methods Running time  (s) RMSE
PF 909.68 0.07
QGA-PF 612.32 0.0594

It can be seen that the running speed and tracking error of
QGA-PF are both better than PF.

E. RUL PREDICTION

The classic RUL prediction method is to substitute the last
tracked a, b, c, d values into equation (19) to predict the trend
of unit HI. When HI reaches the predetermined threshold,
the elapsed time is RUL. The dynamic tracking result curve
of a, b, ¢, d in the state tracking process of unit 54 is shown
in figure 3.

As can be seen from figure 3, a, b, ¢, d are almost changing
over time. If only the values of a,b,c,d at the last time
point are used to predict the RUL of the unit, there may be
a larger error. Therefore, in this paper, LSTM is employed to
firstly predict the a, b, c, d values of future time, and then the
predicted values of a, b, ¢, d are substituted into equation (19)
to predict the RUL of the unit. The specific prediction process
is shown in figure 4.

The specific steps are as follows:

(1) Input the training sample set and use equation (19) for
data fitting to obtain the coefficients of each sample, i.e. the
values of a, b, ¢, d.

(2) Input test samples, take the mean values of a, b, c,d
obtained in step (1) as initial values, and use QGA-PF to track
the HI of the unit and get the sequences of coefficients.

(3) Input the coefficient sequences obtained into LSTM for
prediction.

(4) Input the predicted coefficients into equation (19) to
calculate the HI of the unit. Judge whether the HI has reached
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training
samples

¥

data fitting

the mean of
a,b,c,d is the
initial value

test L of QoA-PF

samples
T<
I«
the trace the trace the trace the trace
sequence sequence sequence sequence
ofa ofb of ¢ ofd
LSTM LSTM LSTM LSTM
the the the the
predicted predicted predicted predicted
value of a value of b value of ¢ value of d

HI=a*exp (b*n) +c*exp (d*n)

=the threshold?

output
RUL

v

end

FIGURE 4. RUL prediction process.

the threshold value. If it is greater than or equal to the
threshold value, the RUL of the unit is equal to the current
time minus the prediction start time. Otherwise, add the
prediction coefficients into the tracking sequences and turn
to step (3).

To test the prediction effect of the method proposed in this
paper, the observation time of HI = 0.5 is set as the beginning
time of prediction, the observation time of HI = 0.8 is set
as the end time of prediction, The time interval from the
beginning to the end is the RUL. The unit samples with the
maximum HI>0.8 are selected from 60 test samples for
the experiment. There are 52 units accords with the condition.
The 52 units are ranked in order of their actual RUL. PF,
PF-LSTM, LSTM, QGAPF, and QGAPF-LSTM are used to
respectively predict the RUL of each unit, and the results are
shown in figure 5. The method of PF prediction is to use the
coefficients obtained from the last tracking of PF and substi-
tute them into equation (19) for prediction. The approaches of
PF-LSTM and QGAPF-LSTM are to input the coefficients
after PF and QGAPF tracking into the LSTM network for
prediction respectively and calculate the corresponding HI by
substituting them into equation (19). The approach of LSTM
is to directly input the HI sequence before the prediction
beginning of each unit into the LSTM network for prediction.
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FIGURE 5. The RUL prediction results of the test samples.

It should be said that the parameters of all the LSTM networks
in this paper are set the same. The number of hidden units
is 100, and the maximum number of iterations is 100. The
RMSE:s of the above prediction methods are shown in table 3.

TABLE 3. The RUL prediction RMSE of the test samples.

Methods RMSEs
PF 11.3578
PF-LSTM 9.9024
LSTM 16.6034
QGAPF 9.6436
QGAPF-LSTM 7.8919

As can be seen from figure 5 and table 3, the prediction
accuracy of QGAPF is higher than PF, and the prediction
method combined with QGAPF and LSTM has a better pre-
diction accuracy.

IV. CONCLUSION

In this paper, A HI extraction method based on multi-
feature fusion is introduced for the RUL prediction. QGA is
employed to improve the problem of particle degradation in
PF. On the basis of filter tracking, LSTM is used to predict the
trend of model coefficients, which further improves the accu-
racy of RUL prediction. The experiment using the C-MAPSS
data set shows the proposed method has a better prediction
accuracy than other methods. Of course, there are still some
shortcomings in this paper that need further research and
improvement. For example, the computing speed of LSTM
is relatively slow, which requires further research on the
computing speed.

REFERENCES

[1] M. Xia, T. Li, T. Shu, J. Wan, C. W. de Silva, and Z. Wang, “A two-
stage approach for the remaining useful life prediction of bearings using
deep neural networks,” [EEE Trans. Ind. Informat., vol. 15, no. 6,
pp- 3703-3711, Jun. 2019.

[2] A. R. Bastami, A. Aasi, and H. A. Arghand, “Estimation of remaining
useful life of rolling element bearings using wavelet packet decomposition
and artificial neural network,” Iranian J. Sci. Technol., Trans. Elect. Eng.,
vol. 43, pp. 233-245, Jul. 2019.

VOLUME 7, 2019



Y. Ge et al.: Improved PF RUL Prediction Method Based on Quantum Genetics and LSTM

IEEE Access

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

N. Zhang, L. Wu, Z. Wang, and Y. Guan, “Bearing remaining useful
life prediction based on Naive Bayes and Weibull distributions,” Entropy,
vol. 20, no. 12, p. 944, Dec. 2018.

Y. Lei, N. Li, S. Gontarz, J. Lin, S. Radkowski, and J. Dybala, “A model-
based method for remaining useful life prediction of machinery,” IEEE
Trans. Rel., vol. 65, no. 3, pp. 1314-1326, Sep. 2016.

Y. C. Liu, X. F. Hu, and W. J. Zhang, “Remaining useful life predic-
tion based on health index similarity,” Rel. Eng. Syst. Saf., vol. 185,
pp. 502-510, May 2019.

H. Zheng, G. Cheng, Y. Li, and C. Liu, “A new fault diagnosis method
for planetary gear based on image feature extraction and bag-of-words
model,” Measurement, vol. 145, pp. 1-13, Oct. 2019.

K. M. Mishra and K. Huhtala, “Elevator fault detection using profile
extraction and deep autoencoder feature extraction for acceleration and
magnetic signals,” Appl. Sci., vol. 9, no. 15, p. 2990, Jul. 2019.

S. Jahani, R. Kontar, S. Zhou, and D. Veeramani, ‘“Remaining useful life
prediction based on degradation signals using monotonic B-splines with
infinite support,” IISE Trans., to be published.

H. Wang, X. Ma, and Y. Zhao, “An improved Wiener process model with
adaptive drift and diffusion for online remaining useful life prediction,”
Mech. Syst. Signal Process., vol. 127, pp. 370-387, Jul. 2019.

G. Prakash, S. Narasimhan, and M. D. Pandey, “A probabilistic approach
to remaining useful life prediction of rolling element bearings,” Struct.
Health Monit., vol. 18, no. 2, pp. 466—485, Mar. 2019.

J. Man and Q. Zhou, “Remaining useful life prediction for hard failures
using joint model with extended hazard,” Qual. Rel. Eng. Int., vol. 34,
no. 5, pp. 748-758, Jul. 2018.

J. Wen, H. Gao, and J. Zhang, “Bearing remaining useful life prediction
based on a nonlinear Wiener process model,” Shock Vib., vol. 2018,
Jun. 2018, Art. no. 4068431.

H. Zhang, M. Chen, X. Xi, and D. Zhou, ‘“‘Remaining useful life prediction
for degradation processes with long-range dependence,” IEEE Trans. Rel.,
vol. 66, no. 4, pp. 1368-1379, Dec. 2017.

L. Li, A. A. F. Saldivar, Y. Bai, and Y. Li, “Battery remaining useful life
prediction with inheritance particle filtering,” Energies, vol. 12, no. 14,
pp. 1-18, Jul. 2019.

C. Fangzhou, Q. Liyan, Q. Wei, and L. Hao, ““Enhanced particle filtering
for bearing remaining useful life prediction of wind turbine drivetrain
gearboxes,” IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4738-4748,
Aug. 2019.

X. Zhang, Q. Miao, and Z. Liu, “Remaining useful life prediction of
lithium-ion battery using an improved UPF method based on MCMC,”
Microelectron. Rel., vol. 75, pp. 288-295, Aug. 2017.

L. Cui, X. Wang, Y. Xu, H. Jiang, and J. Zhou, “A novel switching
unscented Kalman filter method for remaining useful life prediction of
rolling bearing,” Measurement, vol. 135, pp. 678—-684, Mar. 2019.

J. Son, S. Zhou, C. Sankavaram, X. Du, and Y. Zhang, ‘“Remaining
useful life prediction based on noisy condition monitoring signals using
constrained Kalman filter,” Rel. Eng. Syst. Saf., vol. 152, pp. 38-50,
Aug. 2016.

N. Li, Y. Lei, T. Yan, N. Li, and T. Han, “A Wiener-process-model-
based method for remaining useful life prediction considering unit-to-unit
variability,” IEEE Trans. Ind. Electron., vol. 66, no. 3, pp. 2092-2101,
Mar. 2019.

L. Zhang, Z. Mu, and C. Sun, “Remaining useful life prediction for
lithium-ion batteries based on exponential model and particle filter,” IEEE
Access, vol. 6, pp. 17729-17740, Mar. 2018.

Y. Hu, S. Liu, H. Lu, and H. Zhang, “Online remaining useful life prog-
nostics using an integrated particle filter,” Proc. Inst. Mech. Eng. O, J. Risk
Rel., vol. 232, no. 6, pp. 587-597, Dec. 2018.

B. Yang, R. Liu, and E. Zio, “Remaining useful life prediction based
on a double-convolutional neural network architecture,” IEEE Trans. Ind.
Electron., vol. 66, no. 12, pp. 9521-9530, Dec. 2019.

Q. Wang, B. Zhao, H. Ma, J. Chang, and G. Mao, “A method for
rapidly evaluating reliability and predicting remaining useful life using
two-dimensional convolutional neural network with signal conversion,”
J. Mech. Sci. Technol., vol. 33, no. 6, pp. 2561-2571, Jun. 2019.

A. Elsheikh, S. Yacout, and M.-S. Ouali, “Bidirectional handshaking
LSTM for remaining useful life prediction,” Neurocomputing, vol. 323,
pp. 148-156, Jan. 2019.

L. Yang, F. Wang, J. Zhang, and W. Ren, ‘“‘Remaining useful life prediction
of ultrasonic motor based on Elman neural network with improved particle
swarm optimization,” Measurement, vol. 143, pp. 27-38, Sep. 2019.

VOLUME 7, 2019

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

W. Yu, I. Y. Kim, and C. Mechefske, “Remaining useful life estimation
using a bidirectional recurrent neural network based autoencoder scheme,”
Mech. Syst. Signal Proc., vol. 129, pp. 764-780, Aug. 2019.

D. Laredo, Z. Chen, O. Schiitze, and J.-Q. Sun, “A neural network-
evolutionary computational framework for remaining useful life estimation
of mechanical systems,” Neural Netw., vol. 116, pp. 178-187, Aug. 2019.
X. Li, F. Elasha, S. Shanbr, and D. Mba, “Remaining useful life prediction
of rolling element bearings using supervised machine learning,” Energies,
vol. 12, no. 14, p. 2705, Jul. 2019.

Y. Shen, L. Shen, and W. Xu, “A Wiener-based degradation model with
logistic distributed measurement errors and remaining useful life estima-
tion,” Qual. Rel. Eng. Int., vol. 34, no. 6, pp. 1289-1303, May 2018.

S. Zhao, Y. Zhang, S. Wang, B. Zhou, and C. Cheng, “A recurrent neural
network approach for remaining useful life prediction utilizing a novel
trend features construction method,” Measurement, vol. 146, pp. 279-288,
Nov. 2019.

A. R.-T. Palazuelos, E. L. Droguett, and R. Pascual, “A novel deep
capsule neural network for remaining useful life estimation,” Proc.
Inst. Mech. Eng. Part O-J. Risk Rel., to be published, doi: 10.1177/
1748006X19866546.

J. S. Nielsen and J. D. Sgrensen, ‘“‘Bayesian estimation of remaining useful
life for wind turbine blades,” Energies, vol. 10, no. 5, p. 664, May 2017.
R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proc. 30th Int. Conf. Mach. Learn. (ICML).
Atlanta, GA, USA: IMLS, Jun. 2013, pp. 1310-1318.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

Y. Ge, L. Guo, and Y. Dou, ‘“Remaining useful life prediction of machinery
based on K-S distance and LSTM neural network,” Int. J. Performability
Eng., vol. 15, no. 3, pp. 895-901, 2019.

M. S. Hamada, A. G. Wilson, B. P. Weaver, R. W. Griffiths, and H. F. Martz,
“Bayesian binomial assurance tests for system reliability using component
data,” J. Qual. Technol., vol. 46, no. 1, pp. 24-32, 2014.

YANG GE received the B.S. degree in mecha-
tronic engineering from the North University of
China, in 2004, and the M.S. and Ph.D. degrees
from Army Engineering University, in 2010 and
2016, respectively. He is currently a Lecturer with
the Changshu Institute of Technology. His current
research interests include fault diagnosis, signal
processing, and machine learning.

LINING SUN received the B.S., M.S., and
Ph.D. degrees in mechanical engineering from the
Harbin Institute of Technology, in 1985, 1988, and
1993, respectively. He is currently a Professor with
Soochow University. His current research inter-
ests include nanoscale micro-actuated and micro-
operated robot, high speed and high precision
mechanism, industrial robot technology, parallel
robot, medical robot, miniature robot, humanoid
arm, and robot mechanism and control.

JIAXIN MA was born in Suzhou, Jiangsu, China,
in 1988. He received the B.S. degree from the
School of Environment and Safety Engineer-
ing, Jiangsu University, in 2010, and the M.S.
and Ph.D. degrees from the School of Mechan-
ical Engineering, Southeast University, China,
in 2012 and 2019, respectively. His main research
interests include fault diagnosis, structural damage
identification, and time series analysis and nonlin-
ear system identification.

160247


http://dx.doi.org/10.1177/1748006X19866546
http://dx.doi.org/10.1177/1748006X19866546

	INTRODUCTION
	METHODOLOGY
	PF MODELS
	QUANTUM GENETIC ALGORITHM
	IMPROVED PF BASED ON QGA
	LSTM PREDICTION METHOD

	EXPERIMENT AND ANALYSIS
	EXPERIMENTAL DATA INTRODUCTION
	FEATURE FUSION
	OBSERVATIONAL EQUATION
	HI TRACKING
	RUL PREDICTION

	CONCLUSION
	REFERENCES
	Biographies
	YANG GE
	LINING SUN
	JIAXIN MA


