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ABSTRACT In this manuscript, we propose an approach that allows a team of robots to create new
(emergent) behaviors at execution time. Basically, we improve the approach called N-Learning used for self-
programming of robots in a team, by modifying and extending its functioning structure. The basic capability
of behavior sharing is increased by the catching of emergent behaviors at run time. With this, all robots are
able not only to share existing knowledge, here represented by blocks of codes containing desired behaviors
but also to creating new behaviors as well. Experiments with real robots are presented in order to validate
our approach. The experiments demonstrate that after the human-robot interaction with one robot using
Program by Demonstration, this robot generates a new behavior at run time and teaches a second robot that
performs the same learned behavior through this improved version of the N-learning system.

INDEX TERMS Multirobot leaning, behavior-based robotics, knowledge transference, emergent behavior.

I. INTRODUCTION
Brooks [1] was the first researcher to propose the concept
of behavior-based robotics (BBR). This paradigm can be
understood as a framework that uses a set of behaviors used
by a group of robots. In BBR, a behavior selector chooses the
appropriate behavior according to the current situation. The
advantage of our approach is that the proposed architecture is
modular-based, solving each problem separately by applying
one or more behaviors. A behavior can be external when
interacting directly with the environment, or internal when
resulting in changes in the internal structures of a robot [2].
With this definition, we can create behaviors focusing on
cognitive tasks [3].

The first time that the transferring (learning and teach-
ing) of pre-programmed behaviors was proposed was in
the work of Costa et al. [4], through the approach called
N-learning. In the N-learning approach, behaviors are blocks
of code with information about the execution of a specific
maneuver or action, which can be shared throughout the
multirobot team at execution time. The main objective of the
approach is to enable a group of robots to share knowledge
through their interactions. The knowledge is represented here
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as one ormore behaviors that enable the robot team to adapt to
situations that are not previously taught in its initial program-
ming. According to the authors [4], N-learning allows a robot
to share one or more behaviors that it contains to another
mate, which in turn eliminates the need for programming
all robots within a team with the needed behaviors. These
behaviors can be transferred in a distributed fashion using the
interaction between the robots in a group at run time. This
marks the main advantage of their approach.

Our approach is not like machine learning approaches.
As previously stated in [4], the N-Learning approach is a
knowledge transference algorithm, not a machine learning
algorithm. The process of learning is through the transference
of blocks of code, and it does not use update processes to
learn a behavior. However, machine learning approaches can
be used together with N-Learning.

Hence, in the current work, we propose an extension of that
previous work [4], in which the N-learning (now extended)
is able to acquire new behaviors in execution time besides
only using previously set behaviors as in that work, thus
allowing the multirobot system (MRS) to eventually learn
new, emergent behaviors. Therefore, we borrow some theory
and implementations from the previous works, for the bet-
ter understanding and implementation of the current work.
This new version of N-Learning (extended) is useful for
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multirobot systems due to the free and autonomous share of
knowledge (behaviors) between the agents of a multirobot
system. Furthermore, the behaviors can be acquired at execu-
tion time, by demand, and in a decentralized manner. There-
fore, learning occurs progressively and increases the global
behavioral capacity of the robotic team. N-learning, which
will be shortly described further, embeds a robot with a main
structure called the behavior manager that is responsible for
choosing which set of behaviors that are to be executed, for
managing all sets of behaviors, for sharing behaviors, and for
creating new behaviors at execution time. The advantages of
our proposed approach over the traditional N-Learning are:
• There is no need to share all behaviors from one robot
to another, but rather only the ones needed;

• it is scalable and also avoids implementation errors;
• the extension of N-learning also uses graphs as the
underlying structure to represent behaviors computa-
tionally and, therefore, is compatible with ROS [5];

• behaviors can be created at execution time.
As an example, it is plausible to have a situation where

a heterogeneous group of robots pre-programmed with dif-
ferent sets of behaviors that are used to a specific task, e.g.
surveillance and cleaning, need to exchange some of these
behaviors to surpass an unexpected problem. Another use-
ful situation is when a robot of a multirobot team breaks.
Through the use of N-learning, another robot can assume
the task from the broken robot by learning the behaviors
to perform the task of the broken robot. In any multirobot
systems designed to perform different tasks simultaneously,
one would eventually need to pre-program a new robot with
a specific set of skills. Through N-learning, we enable the
team of robots to propagate new or previously programmed,
behaviors at run time to any robot. Thus, the main contribu-
tions of this work is twofold: first comes the extension of
the N-Learning for allowing the creation of new behaviors
at execution time, by one or several robots, and that can be
shared between the other robots of the team; and second it
comes the coupling of the N-Learning with the Program by
Demonstration approach as a manner of teaching new
behaviors.

Here, at a low-level, we use the motion control behavior
based on nonlinear model predictive control, as developed
by Nascimento et al. [6]. Some other approaches as the
ones based on control schemes using time delay estima-
tion (TDE) could be used [7]–[9], however, our approach
is devoted to the manipulation of multi-mobile-robot sys-
tems (MMRS). In TDE, the designed control scheme tries
to obtain the estimation of system dynamics, and therefore
no system dynamic model information is required. Other
schemes as AST and FONTSM [10] are also applied in TDE
to ensure good control performance in both reaching and
sliding mode phases, not present here. It is known that TDE
with AST is more suitable for applications in control of cable-
driven manipulators, presenting good robustness and high
control precision are obtained in the reaching phase, while the
boundary information of the lumped uncertainties will be no

longer required [10]. The above control based on nonlinear
model predictive control resolves the problem in our work
as we have nonholonomic robots that perform in an indoor
environment.

Nonetheless, to program all the robots in a multirobot
system with all possible behaviors and skills is unfeasible.
This is because the decision for new objectives generally
occurs at execution time. Much of it comes from the theory of
multi-agent systems but can be used unrestrictedly in robotic
systems. Panait and Luke [11] presented, in their survey,
the definition of multi-agent learning as being an application
for learning machines to solve problems involving multiple
agents. They present three types of non-collaborative learning
approaches: supervised learning, unsupervised learning, and
reward-based learning. The implementation of somemachine
learning methods with several agents involved is not trivial.
Supervised learning, for example, has greater difficulty in
developing a development of an element that can provide
the correct response to the various agents of the team. For
this reason, the reward method is preferable. The method
of using the reward can be divided into two main parts:
reinforcement learning and stochastic search. Reinforcement
learning involves the use of reward functions as values of
agent attitudes. Whereas a stochastic search involves the use
of evolutionary algorithms.

Team learning and concurrent learning are two categories
of learning for multi-agent systems [12]. In team learning,
a single agent learns and improves interactively the behav-
ior of the whole team. Whereas concurrent learning allows
each agent to learn freely by themselves independent of the
teammates. There are several domains for the application of
collaborative learning. The following are some of the inher-
ent problems of embedded agents presented in the work of
Panait and Luke [11]:
• In the plunder problem, items are scattered on a map and
the devices are transported to a certain location. Usually,
the evaluation of the team is given by the time required
to ship all items.

• In the warehouse problem, boxes are scattered on a
map with obstacles (two-dimensional). Agents should
organize the boxes in a predefined manner by pushing
them.

• The robot soccer is a problem that consists of two multi-
robot teams competing to evaluate which can score more
goals. There are several variations with this problem,
where most of them can be found in RoboCup.

• In cooperative navigation, a group of robots must walk
through a site in a minimal amount of time, without
colliding with obstacles or other robots.

• Cooperative target observation: a team of robots must
track multiple mobile targets.

In all the above-mentioned problems, the use of N-learning
is advantageous. A multirobot system heterogeneity can be
used alongside N-learning by sharing different behaviors
(or creating new ones) demanded by the raising of unexpected
problems [4]. Most of the problems above can use solutions
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such as the Program by Demonstration (PbD) approach. Pro-
gram by Demonstration is a technique used to teach robots
new behaviors by demonstrating the task instead of repro-
gramming the robot by machine commands [13], [14]. The
technique can be used both to learn how to perform a task
done by a human or by a robot. The robot uses the sensors
to analyze the task performed by an agent (a robot or a
human) in a first step. Then, with the end of the analysis,
the robot can replicate the behavior it observed [15]. There
are, however, some limitations regarding this technique, for
example, the robot can not completely learn new behaviors.
The robot can only combine a set of behaviors that it has to
replicate the attitude it has been taught. For example, a robot
that analyzes how a robotic arm moves, could perform a
similar movement, but using the behaviors that it had when it
was programmed.

A recent example is the work of Park et al. [14]. The
authors address the problem associated with path planning
and impedance control that allows robots to manipulate
physical interactions delicately. They proposed a path and
impedance planning method for impedance control in a robot
based on programming by demonstration through telema-
nipulation using a surface electromyogram. Park et al. [14]
considered a task that requires quick and precise adjustment
of path and impedance, that is, ball trapping. They imple-
mented a teleoperated robot that can deliver an operator’s
impedance as well as a position during the ball trapping
task to the slave side. The operators were asked to perform
demonstrations of ball-trapping tasks using the implemented
teleoperated robot, where the slave side is a vertical robot
with one degree of freedom. The result showed that using the
human demonstration, the robot could learn how to catch a
dropped ball without rebounding.

Learning theories are used to explain how humans learn.
Some known theorists are Piaget [16] and Vygotsky [17].
Maia and Gonçalves [18] made a connection between these
theories and the multirobot systems (MRS) and multi-agent
systems (MAS). Their approach was interesting for the
N-Learning [4] and is also for our work, and we use here part
of what was formalized by them. Among the important con-
cepts that Maia and Gonçalves [18] addressed in their work,
we can cite the Proximal Development Zone (ZPD), the Level
of Real Development (LRD) and the Level of Potential Devel-
opment (LPD). The LRD is the knowledge that an individual
already possesses, it is his ability to solve problems. The
LPD consists of the knowledge that the individual can learn
and already has. ZPD is the knowledge that an individual
can learn. In the direct application of these concepts onto
robotics, LRD is the ability to solve a problem with the
knowledge itself autonomously [18]. LPD is the difference
between the ability to perform a task autonomously and the
ability to perform it. ZPD is what the agent can perform.
Maia and Gonçalves [18] also presented the mathematical
formulation of these concepts in their work. Starting from
the theory of Piaget [16], they explain the assimilation and
accommodation in robotics. Assimilation as the acquisition

of knowledge in a database, and accommodation as the devel-
opment of a previously known task. Based on the mathemat-
ical formulation of these theories, Maia and Gonçalves [18]
created the Intellectual Development Model for Multi-Robot
Systems formalism (IDeM-MRS). In it are contained all the
representations of robots, the environment, social theories,
as well as their connections with an MRS. It was also defined
as a set of states (through a state machine) that establishes the
ability of a robot to perform a certain task based on its partial
knowledge, total knowledge and ability to (physically) solve
the task. Finally, the structure of this paper is as follows. The
N-learning approach is described in the next section. Further,
we describe the proposed extension in detail and show the
results obtained with real robot experiments. Finally, we dis-
cuss the method and the conclusions are presented, at the end
of the manuscript.

II. THE N-LEARNING APPROACH
As aforementioned, the N-learning formalism [4] was
inspired by the work of Maia and Gonçalves [18], for allow-
ing modeling of behavior-based robotics. Therefore, we com-
pile here (from those works) the necessary theory for the
understanding of the current work. Formally, N-Learning
starts with a set R of robots that are available in the environ-
ment as depicted in Eq. (1). In the equation, n ≥ 1 and n ∈ N.
A robot r ∈ R has an associated graph to represent the behav-
iors that it has in the instant of observation t , as described
by Eq. (2). N (r) is not an empty set and it has all graph nodes.
The E(r) set is composed of unordered pairs, which represent
the edges between the nodes of the set E(r).

R = {r1, r2, . . . , rn} (1)

S(r) = {N (r),E(r)} (2)

Thus, a behavior can be defined as described in Def. 1.
Definition 1 (Behavior): Set of actions and/or tasks that

can be executed by a robot to partly achieve some goal
towards some mission objective.

An example is the set of instructions to be executed (as a
behavior) for a robot to avoid some kind of obstacle. Notice
that in this situation it must use some atomic actions such
as stop, forward, and do some tasks such as go around the
obstacle, and go in a different direction. As previously stated,
the N-learning approach allows the execution of internal
and external behaviors [2]. Internal behaviors are those that
update the internal state of the robot, allowing it to per-
form some processing or decision making. With the external
behaviors, the robot can actuate on the real world moving
objects or so by using actuators.

The set of Eq. (3), where i ≥ 1 and i ∈ N, contains all
of the behaviors that are available at a given time within the
multirobot system. The parameter i should be increased if
new behaviors emerge in the system. Notice that these emer-
gent behaviors can be generated by local interactions between
the robots or between robots and a human, at execution time.
The formalization of emergent behavior inside the N-learning
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can be found in Def. 2. With this, the number of elements in
N (r) is increased by the acquisition of behaviors by a specific
teammate r .

B = {b1, b2, . . . , bi} (3)

Definition 2 (Emergent behavior): A behavior that is cre-
ated or acquired during run time and that is generated by
another behavior.

If some robot r has in its set the behaviors b(r) = b1, b2,
a new behavior can be created at execution time by the robot
as a result of execution of b1 or b2. To this end, the robot r
has a new set b(r) = b1, b2, b3, where the behavior b3 can
be shared with its mates. This can be used for example in
applications where a robotic arm learns some movement at
run time using the programming by demonstration, where a
human performs some movement and the robot learns and
repeats the same movement, just by observing. After the
acquisition of the new movement, a new behavior can be
created for it and shared with the other team members. Thus,
the other robots of the team will not need to learn the same
movement again using the program by demonstration (PbD)
approach, this can be done simply by sharing the just acquired
behavior.

Another matter that is also necessary to introduce here is
a universal definition of composite behavior. Some works
present it as a more complex behavior in a single behav-
ior [19]. Other authors present it as the same behavior through
a set of simpler behaviors that are simultaneous or serially
executed. Nonetheless, due to the relations of dependencies
between the behaviors, the N-learning paradigm can use both
approaches. It is just a matter of establishing a dependency
whenever one behavior uses another one. Therefore, from the
Definition 1, the composite behavior Definition (3) can be
presented as:
Definition 3 (Composite Behavior): A behavior that uses

one or more nested behaviors as its actions.
Notice that logical dependencies represent the missing

requirements for the composite behaviors. Thus, to perform
a behavior, these logical dependencies must be satisfied.
They are represented by a behavior b ∈ B as LD(b) =
{b1, b2, . . . , bm}, where m ≥ 1, b /∈ LD(b) and m ∈ N.
If b does not have dependencies, then LD(b) = ∅.
By working with the sharing of knowledge, and by assum-

ing that knowledge is acquired by the robots, we thus intro-
duce Definition 4. Thus, behaviors can also be understood as
the exchange of information between robots. That is to say
that behaviors can also be understood as knowledge.
Definition 4 (Knowledge): Information that is acquired by

a robot or that is present in the robot memory at the execution
start.

In Eq. (2), the set of nodesN (r) represents all of the behav-
iors that are present at a given time in the robot r , internal
and external ones. All robots must have some basic structure
that is responsible for managing behaviors and acquiring new
ones. This structure is named here as the behavior manager,
and its essence is presented in Definition 5. This higher-level

behavior has a functioning that is similar to the basics of a
micro-program of an operational system (the brain basics).
And a robot without it cannot communicate with its partners
through the N-learning, being not possible to learn and/or
else to teach. Further, the behavior manager will always be
represented, in this work, as the b1 behavior and also be
set as a mandatory behavior ∀r ∈ R, b1 ∈ N (r). The
behavior manager defines to which robot it refers by using
a brs notation, where s is the behavior and r is the robot id.
Definition 5 (Behavior Manager): The main structure of

the N-learning that manages a set of behaviors, eventually
acquiring new behaviors and mostly selecting the behaviors
to be performed.

Notice that behaviors have some physical features
(or resources) that must be available for them to be per-
formed. In the N-Learning (and also in this proposed work)
the conditions (and resources) of the robots can be as avail-
able. Notice that some behaviors would not be performed if
the robots do not have certain resources. Furthermore, with
some deficits, the robots would not be allowed to perform
certain behaviors, and thus a verification step is implemented
to look for the necessary resources and conditions required
by each behavior to be run. The physical features can specify
some hardware that is necessary for the behavior execution,
and are represented for a robot ri, i = 1, . . . k as F(ri) =
{f 1, f 2, . . . , fj}, where j ≥ 1 and j ∈ N. When the robot r
decides to perform a behavior b ∈ N (r), it must know if
the physical requirements are met. The requirements of b are
represented in the set of Eq. (4), where fi, i = 1, . . . k is a
physical requirement and k ≥ 1 and k ∈ N. Then, to perform
b: ∀f ∈ PR(b), f ∈ F(r).

PR(b) = {f1, f2, . . . , fk} (4)

The physical features available in the system are all
included in the set presented in Eq. (5), where fl is an available
feature and l ≥ 1 and k ∈ N. Each physical feature of a robot
ri, i = 1, . . . , k must be in FE and, then, F(ri) ⊂ FE .

FE = {f1, f2, . . . , fl} (5)

Figure 1 shows an example of the behaviors in a robot.
To improve comprehension, we include all the behaviors (B)
of the multirobot system in the graph. White nodes represent
behaviors that are part of the graph in N (ri), i = 1, . . . , k .
The disconnected nodes are behaviors that can be learned by
ri, i = 1, .., k . Green nodes are behaviors that are known.
Orange nodes are behaviors in the multirobot system that are
unknown by the robot. It is possible to check the following
configuration for the graph:
• R = {r1}
• N (r1) = {b1, b2, b3, b4, b5, b6, b9}
• E(r1) = {b1 b2, b1 b3, b1 b4, b1 b5, b1 b6, b1 b9, b2
b3, . . . b2 b9, b3 b4, b4 b5, b6 b7}

• B = {b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}
• FE = ∅
The behavior b5 in Figure 1 does not have logical depen-

dencies. In contrast, b2 has four dependencies, represented as
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FIGURE 1. Behaviors of the robot r1. The composite nodes with missing
dependencies are the white ones. The yellow node is the behavior
manager (b1). The gray node is the composite behavior with missing
dependencies. The green and orange behaviors are not part of N(rn) and
represent missing dependencies and unknown behaviors, respectively.

LD(b2) = {b3, b4, b5, b9}. In the graphical view, it is possible
to note that dependencies are the successors nodes.

A behavior bn with unsatisfied dependence is part of the
set N (rn), but one or more of dependencies in LD(bn) are
not in N (rn). Therefore, it cannot be performed by the robot.
An example in Figure 1 is the gray node b6. It has a depen-
dence to b7 but b7 /∈ N (rn); then, robot rn knows about the
existence but does not have it. The missing dependencies are
represented by the setMD(bn) = b1, b2, . . . , bl , where l ≥ 1
and l ∈ N. It represents all requirements of bn that are not
present in the robot, which means that the behavior bn cannot
be performed untilMD(bn) = ∅

A. SHARING BEHAVIORS
When an unknown behavior bn ∈ MD is necessary, a robot rn
can ask teammates for it. An example is provided in Figure 2a.
The robot r1 has the behavior b4 in MD and needs it to
perform b3. It sends a message to all robots in R asking for b4.
If any robot in R has b4, it can teach r1. In Figure 2b, the graph
of r2 shows that it has b4. Then, the robot can teach r1 based
on its decision.

Learning is the process where a robot rn receives a behav-
ior bn from the robot rm, with m 6= n. This operation can be
performed if bn ∈ N (rn) and bn /∈ N (rm). In the case where
the robot decides to teach many robots, ∀r in RL, κ /∈ N (r),
where RL is the set of all robots that are learning. Figure 2c
shows an example of behaviors learning. The robot r1 learns
b4 from r2. After learning, b4 /∈ MD(rn) and b4 become
part of N (rn). In this case, no changes are performed in the
robot r2.

B. FREEWILL
Freewill means the capacity of choosing. In our approach,
choosing allows the robot to change the current strategy

FIGURE 2. Representation of the behavior sharing between robots.
Robot r1 (a) knows that there is a behavior b4 that it does not have.
Robot r2 (b) has the behavior b4, and it is able to share it with its
teammates. Finally, r1 receives the behavior b4 (c).

used. It, in turn, allows the robot to define the behaviors
it must acquire, to transfer some of the behaviors to its
mates, or to select the behaviors it will execute. This fea-
ture is only possible because each robot uses a function 0
as depicted bellow to measure the usability of the current
strategy.

F = 0(θ, φ, η) (6)

This function uses three variables in which θ +φ+ η = 1.
The θ , φ, and η variables represent the possibilities of teach-
ing, executing or requesting a behavior, respectively. These
parameters are then used within a complex function 0 that
enables the robots to increase their autonomy. This function
also allows the use of high-level artificial intelligence (AI)
algorithms. The AI algorithm is not the focus of this work
but it is the topic of another research that is currently being
performed by our group.

Therefore, the value of F gives the robot the direction of
what action it must take, resulting in which strategy it must
choose (i.e. sharing or receiving knowledge, executing the
behavior, etc.). The use of F is advantageous in situations that
the robot must change its course of action. For example when
it reaches a depleted battery status or when it becomes hav-
ing dangerous behavior due to malfunction actuators. Nev-
ertheless, F is not always taking into account. The extended
N-learning constrains its use in some cases. An example is
when F informs the robot it must share a behavior that it does
not have.

The introduction of Freewill is a start point in this work.
We use a simple function 0 but it can be improved with more
complex approaches. However, we are not focusing on this
function here.
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III. EMERGENT, GENERATOR AND MODEL BEHAVIORS
From Definition 2, one can notice that emerging behaviors
are those that arise at run time. Mainly, these behaviors are
due to the combination of behaviors in the robot. An example
occurs with the Programming by Demonstration (PbD) tech-
nique, in which the robot observes the behavior of a human
(or another robot) and tries to replicate such behavior.
An example would be a robot with a robotic arm that observes
the trajectory made by the arm of a human. Then, it will
have a set of points to replicate the movement in the robotic
arm. Using primitive behaviors that are already previously
programmed, the robot can perform a combination of such
behaviors to perform the same trajectory using a single con-
trol behavior to move the arm through the points. The pre-
viously proposed N-learning alone cannot act in this kind of
scenario, because in this case knowledge is not passed from
one robot to another [4], being this a drawback.

In the second scenario, we can use two robotic arms. The
first robot observes the trajectory of the second robot and then
replicates the movement. The Program by Demonstration
would also work and the second robot could learn how to
perform the movement. In this scenario, N-learning is also
applicable. However, a possible question is whether it would
be simpler to transfer to the second robot only one vector of
coordinates, or the whole behavior. In a situation where the
robotic arm performs the trajectory based on constraints, i.e.
to avoid an obstacle during the movement, PbD would not be
enough. In these cases, N-learning is a better alternative since
it allows the transfer of behavior along with non-observable
(internal) behaviors, including the conditions for changing
the trajectory.

A third possible scenario occurs with a human teaching a
robot (Fig. 3a). The robot would then share the knowledge
gainedwith its teammates. Themore robots using Program by
Demonstration (PbD), the more time is required for teaching
to all team members. By using PbD, the robot must first
observe individually the teacher (a human or robot) acting
(Fig. 3b). This repeated observation behavior causes a loss of
time. In contrast, N-Learning is very useful in this situation if
combinedwith Program byDemonstration. This combination
is possible and it can create a behavior that is based on
PbD and that uses N-Learning to disseminate the knowledge
learned with the human to the whole team (Fig. 3c). Let us
now create two important definitions.
Definition 6 (Behavior Generator): A behavior generator

is a behavior responsible for generating new behaviors in the
environment.

The Behavior Generator has a list of instructions that dic-
tate which are the necessary tasks and in which manner the
tasks must be arranged for the construction of new behaviors.
A more complex Behavior Generator that is capable of taking
into account which sensors are being used in a robot to
learn a specific task through PbD will be studied in future
works. It will be based on these sensors to dictate the order
in which the tasks must be arranged in the creation of new
behaviors.

FIGURE 3. Example of the difference between the PbD and the N-learning
approaches.

Definition 7 (Model Behavior): Model behavior is the
behavior used as the basis for generating new behaviors.

The model behavior is made specifically for each mission.
Its specificity is due to the singleness of each mission which
determines the uniqueness of each required new behavior.
In turn, each new behavior is the set of pre-programmed tasks
(functions) that are used by the Behavior Generator for the
creation of new behaviors. One branch of future studies will
also generalize the Model Behavior. In our case, the Model
Behavior is based on the Surveillance Mission.
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FIGURE 4. These figures show the process of generating emerging
behaviors. The model node is represented in brown attached to the
generating behavior in orange. The blue node represents the behavior
generated at run time. In (a) we have the initial configuration, then the
behavior b3 uses the model behavior b2 with the information acquired to
generate the behavior b5 in the image (b). The behavior manager is
notified about the generation of the pop-up behavior so that it can
update the list of behaviors (image (c)). The emerging behavior is loaded,
being shared or executed (image (d)).

These two additional concepts that we propose here, are
needed to better understand the creation of emerging behav-
iors. The first concept is generating a new behavior and
is displayed in the definition 6. The generating behavior is
responsible for getting the run time information that will be
useful to the new behavior. The information can be a trajec-
tory, a matrix representing a trained neural network, or any
other useful information. Then the generator behavior
would combine the information with a model behavior
(definition 7) creating a new behavior. A graph representation
of how an emergent behavior originates is shown in Figure 4.
In Figure 4a the behavior b3 is a generating behavior and
has the model b2 as a logical requirement. In Figure 4b the

behavior b5 is generated (red arrow) from the model and
the data obtained at run time by b3. Then, b3 triggers the
behaviors manager (red arrow) to reload the behavior files
(Figure 4c), allowing themetadata from b5 to be loaded. Once
loaded, b5 can be freely shared with teammates and executed
(Figure 4d), provided that its dependencies are satisfied.

IV. EXPERIMENTS AND RESULTS
In this section, we present experiments with real robots that
were performed at the Latin American Robotics Symposium
and Competitions,1 which took place in João Pessoa, Brazil,
between 6th and 10th of November 2018 and other poste-
rior experiments for showing the learning versatility of our
approach, that were performed at our Laboratory. All exper-
iments involved our Turtlebots platforms, equipped with a
Netbook for running the robot software and ROS. In the
first experiments, all of them start with our library package
without any behavior. In the second experiment, the robots
start with different behaviors that are supposed to have been
learned in some way by each of them, in the case, we have
taught them by demonstration.

In both experiments, we can assure that the performance of
the second robot will be precisely the same as the first robot
if all the smallest coordinates are passed. Our approach is a
knowledge transference algorithm and the transference of the
learned behavior is 100% the same intended to be transferred.
The performance of the learning behavior by Program by
Demonstration (PbD) is not the objective of our work, only
the creation of new behavior, transference, and execution of
this behavior.

A. EXPERIMENTS AT LARS 2018
The objective of this first experiment scenario is to test
the combination of N-learning with PbD to generate emerg-
ing behaviors and to show that N-learning improves the
PbD technique. Therefore, we set up two Turtlebot robots.
The Turtlebot robot is composed of a tubular base with
odometry and IMU sensors, and a Kinect camera on top of
the robot. On the first Turtlebot, here called master robot,
we implemented a follower-like behavior included in the ROS
libraries. This behavior is responsible for searching the near-
est point of the robot using the LaserScan and trying to keep
the point always ahead of the robot and at a constant distance.
When implementing this behavior, the start and stop functions
of the robot were inserted using the kobuki base button of the
Turtlebot. Thus, when clicking the button on themaster robot,
it starts to follow a person. When the button is triggered for
the second time it stops the follower algorithm, and the robot
itself. As said above, themotion control behavior also uses the
nonlinear model predictive control, borrowed from the work
of Nascimento et al. [6].

During the experiments, the visitors to the robotics fair
were invited to interact with one of the robots, the one that
has the follower algorithm pre-programmed. The interaction

1Robotica 2018 - http://www.robotica.org.br/
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consists of making the robot tomove through the environment
by following the human in front of it while realizing distinct
paths. Its key idea is to allow the participants to interact
with the robot randomly. The audience participating in the
experiment is diverse, i.e. children, young people, and adults.
During the experiments, the robot is following a human while
keeping the pose coordinates from where it passes in every
t seconds. These positions are stored in a data structure
until the behavior is finished. During the follower behavior
performed by the master, only some major, important coor-
dinates acquired in every t seconds were saved. N-Learning
can record and perform the exact movements. However, this
would imply a drawback of recording the smallest differ-
ence in displacement performed by the first robot. Therefore,
we chose not to record all coordinates. After the interaction
with the robot, the follower algorithm is deactivated. Now,
it is necessary to create the new Path Generator Behavior
based on the information acquired at run time from the
master robot. This is performed by the master robot using
model behavior. This behavior model serves to include the
necessary instructions into the new behavior. The Behavior
Manager knows exactly where to enter this new information
to customize a new behavior. With the template loaded and
the new information in memory, it is necessary to save a file
with a new name, generated in a way that does not match
the existing behaviors. For this purpose, Generated Behavior
pattern is used. Then the new behavior is loaded into the
behavior dictionary along with the meta-data and thus it can
be shared with the second robot.

After the emergent behavior (the Path Generator Behavior)
is created, it is transferred to robot r2, here called support-
ing robot. The supporting robot also receives the acquired
major coordinates and all other three previously programmed
behaviors passed to the supporting robot through N-learning.
Then, the supporting robot performs the same path generation
behavior using the major coordinates passed along with the
emergent behavior created by r1. When the tracking of the
path is finished, the experiment is terminated. Illustrative
images of this experiment can be seen in Figure 5.

These experiments were carried out and it was possible
to repeat it six times (in six different situations) during the
symposium. The web server of the event was not available
for the realization of these experiments. Therefore, an ad-
hoc network was created to enable communication between
the robots. The data were obtained from the odometry of
the robot. The configuration of available resources differs
between the robots. Robot r1 uses all available resources
while the Kinect camera from robot r2 is deactivated. Table 1
shows the behaviors available at the beginning of each exper-
iment. Robot r1 had all behaviors previously programmed,
except b5, which will be generated at run time. No behavior
beyond b1 was present at the beginning of the experiment in
robot r2. The execution of the tasks is guided by the roles,
where r1 is the master and r2 is the support robot. Their
objectives are respectively, to generate a learned behavior
taught by the human to be followed and to learn how to move

FIGURE 5. Experiment carried out at the Robotica Conference. It is
possible to verify the diversity of people who participated in the
experiments, which programmed the robots by demonstration.

TABLE 1. The behaviors of the master robot.

with the behavior generated by the master. Finally, the data
presented below do not reflect the true position of the robots,
but the estimated position measured by their sensors and
fused using an Extended Kalman Filter.

The first executed scenario (experiment e1) has the robot
motion chart shown in Figure 6a. The path in blue, which is
traversed by the robot r1, involved several curves and in the
end, the robot was at a position very close to the initial one.
In this experiment, more than one person has participated in
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the tests. The change of participants was straightforward only
by positioning themselves in front of the robot so that the
robot would follow. At the end of all human-robot interac-
tions, the new behavior was generated and transferred to the
supporting robot. From the graph shown in Figure 6a it can be
noticed that the path was similar to r1. At the end of the path,
the robot tries to return to the starting position to make the
path a second time, as it has no other behaviors to perform.

Some parts of the path made by r2 are in a grid format,
without making the curves perfectly. Some factors influenced
this behavior. The first factor is that, as previously stated,
only some sampled coordinates of the path are acquired,
at every t seconds, in this case, every 4 seconds, which
were saved by the master robot. This creates an acceptable
margin of tolerance between the position of the trajectory
performed by the master robot and trajectory generated by
the supporting robot using the created behavior. We noticed
that the difference in both trajectories is not large enough to
generate large displacements. It is also interesting to notice
that the sample points collected will vary according to the
speed that the robot moves. If the followed person moves in
a faster manner the robot will move faster, and thus fewer
points will be collected. In slower trajectories, the robot gets
more points. The same behavior can be seen in the second
experiment presented in Figure 6b. This second experiment
is also the result of several people interacting with the robot
successively. The master robot generated again a path with
several curves. The support robot was able to accomplish a
similar trajectory reaching the goal of its role.

In experiment 6c, the graph shows a different behavior
at the beginning of the trajectory. The configuration of the
initial position of the robot in this experiment was different
from the others, since the supporting robot did not start from
the master robot initial position posr2 6= (0, 0, 0). As the
behavior created by the master robot started at its initial
position posr1 = (0, 0, 0), r2 had to move to that position
to complete the path. At the end, the robot started the path
again toward the starting position as in the first experiment
(the VIDEO of experiment 6c was also performed2).
The fourth experiment in this first scenario that is shown

in Figure 6d presents a simple path, with only one loop.
The path that is taken by the supporting robot, also, does
not perform the curves smoothly. However, at the end of the
experiment, it could be noticed that the behavior has been
performed successfully. In the fifth and sixth experiments,
two loops were found in the path of the robots (Figure 6e
and Figure 6f). Once again the supporting robot was able to
follow the paths successfully.

When analyzing all 6 runs in this scenario, we can compare
the total amount of time that the supporting robot needed
to learn the emergent behaviors with the total amount of
time that the master robot needed to learn the behavior
from the programming by demonstration. The total amount
of time the master robot needs to learn the behavior from

2https://youtu.be/lhgcI-j3VZo

TABLE 2. Time comparison table.

the PbD does not take into account the time the robot stays
in a stopped position waiting for a person to be in front of the
master robot so it can follow. This comparison is presented
in Table 2 and indicates that the learning time using the
PbD approach is greater than the learning time using the
N-learning approach.We are also able to see that when a robot
uses the Programming by Demonstration approach, it spends
more time in learning a new behavior then when it uses the
N-learning approach. This is expected since the followed
human took some time to move and the robot also had to
make the journey. However, if we consider the scenario where
there are other robots in the system to learn the same path,
N-learning is a tool that substantially reduces learning the
time. At first, the robot learns according to the PbD time
column, and from the second robot on, they would only
need the time that N-learning uses to teach the behaviors
into the master robot to the teammates. The approach is
useful because if PbD time was used to teach the teammates,
the final time would be much longer. Each robot would have
to demonstrate the movements for each robot of the team that
needed to learn.

For example, if we use ten robots want to learn a path
like that of experiment e3 which was the shortest learning
time for PbD (and also the shortest path). The learning time
with PbD (tp) disregarding the time to go back to the initial
position would be tp = 10 ∗ 84 −→ tp = 840s. Using the
N-learning approach, the learning time tn = 10 ∗ 4 −→
tn = 40s. Considering the current implementation, one can
use broadcast messages to teach all the individuals at once,
but the study of how long the learning in this situation would
last will be analyzed in future works. Considering that the
time of a single broadcast message is not different from the
time of a message for a single robot, we would have the time
tn = 4s.

B. CHANGING A PREVIOUSLY ACQUIRED BEHAVIOR
In the second row of experiments performed at our lab, two
of our Turtlebots start at some initial position, as shown
in Figure 7a. Differently from experiment 1, in this experi-
ment we have two different Turtlebots. The first Turtlebot is
taller and the camera is set in a higher position on the robot to
better see the actions of the human teacher. The second robot
has a normal height. Both robots are initially taught with some
behavior using the PbD approach.

This behavior is to perform a path following task
(Figure 7b). Then, this behavior is shared between the robots
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FIGURE 6. Trajectories of both robots during the experiments.
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FIGURE 7. Experiment carried out at the Laboratory. The robots start at initial position (a) and are taught by the human (b) then a path
following behavior runs in both of them (c). A box is put on the the path (d) and the human teaches the robot how to avoid it (e). At the end
both robots know how to avoid the box (f) by running the new behavior that was shared by the robot that was taught.

that start following by themselves (Figure 7c) the learned
trajectory in the environment, which is recorded as the small-
est loop at Figure 8, somewhat between a circular or square
shape, as if they were a group of children playing (going after
each other).

Also, one of these robots has been programmed with a
modify PbD behavior including the PbD itself that executes
the follower algorithm to learn emergent behaviors. This
modify PbD behavior has also been shared between the robots
byN-Learning and it can be executed at any time as requested.
In practice, as desired by some robot in answer to unexpected
situations. E.g., if no one of the robots know how to proceed
in some unexpected situation, then a request can be sent to
a human and, this is mandatory, the robot has to wait for

the teacher (human) to pressing some button so then it starts
the follower (with PbD) behavior in order to learn the new
emergent behavior, on-line. In this case, this new behavior is
a piece of the path that avoids an obstacle, that is taught by
the human until he presses the stop button again.

A situation in which this can be triggered is, for example,
when the visual system detects an obstacle on the pathway as
shown in Figure 7d. In this situation, themodify PbD behavior
started by the human takes the previous behavior (path) that
is being executed (in the first robot that detects the box) and
changes the part of the path by the piece that is being taught by
PbD (Figure 7e). This piece changes the path in between the
position where the robot stopped until the human determines
its end, pressing the start and stop buttons for those.
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FIGURE 8. Experiment carried out at the Laboratory. It is possible to verify
that the path followed in the old behavior was modified by one of the
robots that shared this behavior to the other, thus changing the behavior
of both according to the new path taught to the robot. The learning of the
new (emergent) behavior for this part of the path is automatically
triggered by the visual system that detected a box just in the middle of
the old path, and that none of the robots know how to deal with.

To create the new part of the path (seen at right in Figure 8),
the robot follows the human while keeping the pose coordi-
nates from where it passes at every t seconds, in the same
way as in the PbD above. These positions are stored in a data
structure until this new behavior is finished. After finishing,
the follower algorithm is deactivated (by pressing the same
button) and now the old behavior is updated including this
new piece of trajectory on it, taking as initial position the
point where the robot asked for help and as final position
the current robot position. Thus, the Path Generator Behavior
was enhanced for this to be possible, based on the information
acquired at run time from the human teacher. Notice that this
updated behavior can be shared between other robots that,
in practice, can avoid the obstacle (Figure 7f). The old and
new trajectories can be seen surrounding the obstacle that was
put on their way was avoided at the right of Figure 8.
Notice that this approach can be generalized with any

behavior that is currently running and that eventually gener-
ates some deadlock situation. This is somewhat inspired by
a child’s natural behavior that stops some action and asks
for help on what to do next, in the case of some problem
appearing.

Concerning memory usage, in the N-Learning paradigm
(and in the improvement proposed here) the robots just need
to have enough memory to run a set of behaviors that is
strictly necessary for operation in a given environment. How-
ever notice that this set does not need to have all the behaviors
that some robot can perform, including the ones for other
tasks in another completely different environment. This is
especially useful in constraint hardware such as embedded
systems of Unmanned Aerial Vehicles that have limits to
memory storage for navigation purposes. Thus, only behav-
iors that are necessary for a given mission can be acquired by
sharingmechanisms, requested by any robot.With the current

approach, we can even allow these behaviors to be enhanced
on-line, as seen in the second experiment. We could verify
that completely new behavior can be created or acquired in
some way and shared between the robots with the current
enhancement.

V. CONCLUSION AND FUTURE WORKS
We have extended the approach called N-Learning, which
was originally devised for learning and teaching of behaviors
in a multirobot team, to allow the on-line acquisition of
emergent behaviors. We have redesigned and implemented
a new basic central behavior that allows the robots to acquire
new behaviors and sharing them with their teammates. This
is done through interactions between the robots and/or with a
human, at execution time. This approach can be applied by a
team of robots for self-programming through the acquisition
and sharing of knowledge, here represented by a block of
programs that contain the desired behaviors.

This capability can be useful in situations where the team
of robots should accomplish a specially devised mission
requiring a specific set of behaviors that can now be pro-
grammed only a single time at a specific robot or various
robots, in a distributed way. Our initial motivation was to
compare with the Program by Demonstration approach since
the first experiment, which is clear with the second set of
experiments. We could not find in the literature any other
work that shares entire blocks of behaviors between robots
which makes it hard to compare at such level. This was
the contribution of the original N-Learning, which has been
enhanced in this work.

We have shown that the program by demonstration
paradigm can be used in conjunction with our proposal to
set new behaviors at execution time. These new behaviors
can be acquired by any robot of the team that has resources
capabilities for it and then be shared among the other robots
of the team automatically, using the N-Learning, without nec-
essarily reprogramming them. The advantage is to allow the
team to have only one acquired (programmed or by demon-
stration) behavior and further, these (eventually distributed)
behaviors to be transferred to the other robots according to
their demand. This avoids reprogramming all of the robots,
by demonstration or by hand, since the robots in the team
can now acquire and share behaviors autonomously. Thus,
the main contribution is that the basic behavior sharing capa-
bility [4] was extended in this manuscript by including the
capacity of acquisition of new behaviors at execution time.

Experiments with real robots were performed to verify and
validate our approach. In all the experiments the supporting
robot r2 was able to carry out a path similar to themaster robot
r1, which has learned these paths as emergent behaviors.
There are differences in the paths that can be improved by
reducing the master robot sampling time t . The supporting
robot was able to follow the path using the behavior created
by the master robot successfully.

As future work, more complex behaviors involving vision
as foveated attention [20], [21] for recognition and obstacle
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detection, visual recognition of marks [22], and navigation
strategies based on occupancy elevation map [23] will be
integrated to this system. Also, approaches based on AI
are planned to be studied to allow the robots to be more
self-programmed, and independent of the human teacher,
the model of the emergent behavior.
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