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ABSTRACT DC electric power distribution is becoming popular due to the proliferation of renewable
sources and storage elements in applications such as electric vehicles, ships, aircrafts, microgrids, etc.
These systems are characterized by a high integration of power electronic converters. From a system-level
perspective, it would be desirable to design this kind of systems using commercial-off-the shelf converters.
However, in general, the manufacturers do not provide a behavioral model of the devices in order to analyze
the dynamic behavior of the interconnected system before the actual implementation. In the literature, several
blackboxmodeling techniques have been proposed to overcome this lack of information. This paper proposes
the integration of dynamic weighting functions to the polytopic model in order to improve the accuracy of
the behavioral models when the input variables change sharply. A boost converter is used as case study and
the performance of the proposed model is compared with the most relevant techniques that can be found in
the literature.

INDEX TERMS Blackbox models, dc microgrids, dc-dc converters, dynamic interactions, electronic power
distribution, modeling, system identification, nonlinear models.

I. INTRODUCTION
Power Electronic Converters (PEC) are an enabling technol-
ogy in the integration of distributed energy sources and stor-
age elements in Electric Power Distribution Systems (EPDS).
In traditional EPDS the dynamic is imposed by slow rotating
synchronous generators and it is coupled with the distribution
and consumption stages. The energy distribution is ensured
bymeans of redundancy and oversized designs. PECs provide
dynamic decoupling and controllability, allowing improve-
ments in the reliability, efficiency, and cost of the whole
system [1]. Furthermore, PECs enable dc power distribution
through dc microgrids, which are the context of this work.
The same conclusions can be extrapolated to other EPDS such
as those used in electric vehicles, data centers, etc.

The dynamic decoupling capability of the PECs has
encouraged the use of a hierarchical structure in the
EPDS [2]. In this structure the system consists of autonomous
subsystems, named nano/microgrids, which can work in
grid-connected or in islandedmodes. An important advantage
of this approach is that the overall complexity is reduced,
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FIGURE 1. DC microgrid scheme of a residential building.

as each microgrid is in charge of controlling their own gen-
eration, storage and consumption elements. The connection
to the rest of the system is performed through a PEC, which
is considered as the Point of Common Coupling (PCC)
converter (Fig. 1).
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The PCC converter is in charge of the connection and
disconnection from the rest of the systems and the power
exchange. Besides, due to its dynamic decoupling capability,
themicrogrid can be considered as a single load, which highly
simplifies the design of the upstream system. Similarly, sev-
eral microgrids can be connected together creating a higher
power microgrid, and so on, (Fig. 2).

FIGURE 2. DC microgrid scheme of a group of residential buildings.

The integration of PECs in the EPDS provide a huge
amount possibilities, but it also comes with a price. One
of the most challenging aspects about PEC-based EPDS is
the dynamic interaction among the converters. Commercial-
Off-The-Shelf (COTS) converters are designed individually
to have a specific dynamic response, however, when sev-
eral COTS converters are connected together, their dynamic
responses will be coupled and the response of the intercon-
nected system will not be as expected. This effect can impact
on the power quality of the system or even destabilize it.

In addition to this, the microgrids are characterized by hav-
ing a wide range of operating conditions due to the variability
of the power delivered by the renewable sources, the state
of charge of the batteries, the changing power consumption,
and the presence or not of the grid. In general, the wide
range of operating conditions of the PECs compromises the
assumptions necessary to apply small-signal approximations
in order to make dynamic or stability analyzes. The PECs are
nonlinear elements due to their switching nature. This nonlin-
earity is reflected in their static and dynamic response, which
depends on the operating point. Consequently, the possibility
of obtaining accurate behavioral models of COTS converters
is very interesting in this kind of applications.

Different models have been proposed in order to perform
dynamic and stability analyzes. In case all the information
about the PEC and its control loop is known, analytical
models can be derived [3]–[6], a review can be found in [7].
However, it is desirable to design dc microgrids with COTS
converters in order to reduce the cost and time-to-market of
the installations. In these cases, generally, the information

available about the converters is very limited due to confi-
dentiality issues.

The blackbox models are behavioral models that can be
obtained from the response of the converters to specific per-
turbations injected to their terminals. Blackbox models have
been proposed for ac microgrids [8]–[12], however in this
paper the focus will be in dc-dc converters. The different
blackbox modeling approaches can be classified in three
categories according to the kind of responses that they are
able to reproduce [13]:

• Linear structures
• Static nonlinear structures
• Dynamic nonlinear structures

In this paper, the different blackbox approaches to model
dc-dc PECs are reviewed and their capabilities and limitations
are highlighted using a boost converter. The integration of
dynamic weighting functions to the polytopic model is pro-
posed and its performance is compared with other blackbox
modeling approaches. The rest of the paper is organized as
follows: in Section II the different blackbox modeling struc-
tures for dc-dc PECs are reviewed. In Section III the proposed
dynamic weighting functions are detailed. In Section IV the
performance of the different blackbox models is compared
using the boost converter as case study. Finally, in Section V
the conclusions of the paper are exposed.

II. BLACKBOX MODELING OF DC-DC PECs
Blackbox models are used in case the information about the
PECs is not available. In those cases, identification tech-
niques can be applied to obtain the transfer functions that
approximate the response of the system to a certain pertur-
bation in time or frequency domain.

The most important part in the design of a blackbox
model is the selection of the model structure, which entails
a trade-off between complexity and capabilities.

A. LINEAR STRUCTURES
The most common blackbox linear structures used for PECs
are the two-port models [14]. The two-port representation is
very interesting from a system-level perspective, as differ-
ent PECs can be easily interconnected creating the desired
EPDS. These models represent the input-output small-signal
dynamic behavior of the PECs, therefore they are very useful
for dynamic interaction analyzes. The most common kind
of structure is the inverse hybrid parameters (G-parameters)
model, which represents a voltage-controlled PEC connected
to a voltage source. The equivalent electrical circuit and the
block diagram of the model are depicted in Fig. 3. This model
can be represented as:(

vo
iin

)
=

(
G(s) −Z (s)
Y (s) H (s)

)(
vin
io

)
, (1)

where v and i are voltage and current, the subscript o and in
indicate output and input respectively. The physical meaning
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FIGURE 3. G-parameters model. (a) Equivalent electrical circuit, (b) Block
diagram notation.

of the G-parameters is:

Audio-susceptibility Input admittance

G(s) =
ṽout
ṽin

∣∣∣∣
ĩo=0

Y (s) =
ĩin
ṽin

∣∣∣∣∣
ĩo=0

Output impedance Back current gain

Z (s) =
ṽout
ĩo

∣∣∣∣
ṽin=0

H (s) =
ĩin
ĩo

∣∣∣∣∣
ṽin=0

. (2)

Notice that these models are linear because they are based
on the superposition theorem, i.e. the output variables can be
defined as the independent contribution of each of the input
variables when the other inputs are set to zero. This method
has been widely used for the analysis of supply and load
interactions, as well as for system-level impedance-based
stability assessment [15]–[21].

The methodology to identify the G-parameters of a con-
verter working in a particular operating point can be found
in [22], [23]. The approach involves the use of a voltage
source and a controllable current load in order to set a fix
operating point. Notice that in order to apply superposition,
keeping a variable constant is equivalent to set its small-signal
contribution to zero. Two tests are needed to obtain the
four G-parameters (Fig. 4). In the first test, a perturbation
is introduced in the load current, while keeping the input
voltage constant, and the response of the output variables
is measured. From this test the output impedance and the
back current gain can be identified. The second test is analo-
gous, introducing the perturbation in the input voltage in this
case, while keeping the output current constant. From this
test the audio-susceptibility and the input admittance can be
identified.

FIGURE 4. Test procedure to identify the G-parameters model. (a) Load
perturbation, (b) Source perturbation.

In general, the output impedance of the sources and the
input admittance of controllable loads are designed to be
small, so they do not affect the rest of the system. However,
it is possible that in some applications their effect is not
negligible. In [23] the methodology to obtain unterminated
models is presented, i.e. a model that is not affected by the
impedances of the source and the load used to perform the
tests. The approach is to determine the contribution of these
impedances in the response of the system and remove them
from the final model.

Blackbox G-parameters models have been applied to
EPDS based on COTS converters [24]. It is also possible to
identify the small-signal state-space representation of a con-
verter around an operating point as in [25]. Considering the
small-signal assumption, this kind of structure can represent
with high accuracy the dynamic of PECs.

B. STATIC NONLINEAR STRUCTURES
In some cases, the dynamic of the PECs can be approxi-
mated by a linear structure, however the steady-state response
shows strong nonlinearities due to saturations, the response
of actuators and sensors, the control strategy, etc. In these
cases, the Wiener-Hammerstein approach is very convenient.
In general, this model is a block-based approach, where the
input and output dynamic behavior is represented by linear
networks and the nonlinearities in the static response are
captured by means of nonlinear references.

In the literature, two different applications of this method
for dc PECs have been proposed. One is based on the two-port
models, where the dc operating point is changed by a nonlin-
ear function of the operating point [26]. The second is a circuit
oriented network, where the linear dynamic response is rep-
resented by networks, which consist of passive elements, and
the nonlinear references are included as controlled voltage
and current sources with a nonlinear function that depends
on the operating point [27]. The latter approach is depicted
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in Fig. 5. The input network accounts for the input filter,
the output network represents the dynamic behavior of the
output filter and the control loop, and the upper network takes
into accout the audiosusceptibility. This general network is
able to approximate the dynamic behavior of any converter
with a second order response. It is also possible to extend
it to higher order responses by incorporating other passive
elements [28].

FIGURE 5. Oliver’s Wiener-Hammerstein model.

One important difference between the two approaches is
that in the former, the changes in the references affect directly
the outputs of the model, whereas in the latter, the references
are internal to the model, so they pass through the input
and output filters before affecting the outputs of the model.
Consequently, in the latter structure it is easy to implement
protection systems, such as soft-start, over-under voltage pro-
tections, temperature protection, etc., [28].

C. DYNAMIC NONLINEAR STRUCTURES
In general, the response of the PECs is nonlinear. This non-
linearity can come from its switching nature, which makes
the dynamic of the system dependent on the operating point;
due to the nonlinear behavior of its internal components,
magnetic elements and semiconductor devices; or due to
its control strategy. From a blackbox perspective, the most
common structure able to represent this kind of behavior is
the polytopic model.

The politopic model consist of a collection of local mod-
els obtained around different operating points [29]. These
small-signal models are integrated in a nonlinear structure
by means of Weighting Functions (WF). The WFs have as
inputs the input signals of the model and they control the
local models which should contribute to the overall output of
the polytopic model. The closer the current operating point
to the operating point where the local model was obtained,
the higher will be its weight. This idea is depicted in Fig. 6.
The mathematical formulation of the model can be expressed
as:

Vo =
n∑
i=1

m∑
j=1

ωij(α, β, ...)V
ij
out (Vin, Iout )

Iin =
n∑
i=1

m∑
j=1

ωij(α, β, ...)I
ij
in(Vin, Iout ) (3)

where Vout and Iin are the output variables of the polytopic
model, corresponding to the output voltage and the input

FIGURE 6. Polytopic model structure of a system with one input and one
output variable.

current, ωij are the WF, and V ij
out and I

ij
in are the output signals

of the local model ij. Traditionally, the WF are static func-
tions, and each of them is associated with each local model.
They will have a value equal to 1 when the operating point
of the model is equal to the one in which the local model was
obtained, and it will decrease towards 0 as the operating point
moves away from this point. These WFs must have values
between 0 and 1 and the sum of all of them must be always
equal to 1. These conditions can be expressed as:

0 ≤ ωij(α, β, ...) ≤ 1 (4)
n∑
i=1

n∑
j=1

ωij(α, β, ...) = 1 (5)

The most common shape of WF is the double sigmoid,
which is a good compromise between a smooth transition
among local models and simplicity in the mathematical
expression. This function is defined by its center and slope.
It is important that two adjacent local models have sigmoids
with the same center and slope, so the condition (5) is com-
plied with. The mathematical expression of the WF with a
double sigmoid shape can be expressed as:

ωi(α) =
(

1
1+ e−mi(α−ci)

)
−

(
1

1+ e−mi+1(α−ci+1)

)
(6)

wheremi and ci are the slope and the center of the rising edge
of the sigmoid and mi+1 and ci+1 are the slope and the center
of the falling edge.

The polytopic model has also been used tomodel dcmicro-
grids [30], [31], to design controllers [32] and to perform
large-signal stability analyzes [33].
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III. DYNAMIC WEIGHTING FUNCTIONS
The classical weighting functions are static, i.e. their outputs
depend only on the current values of their inputs. However,
it has been demonstrated that the changes in the dynamic
behavior of a PEC has its own dynamic [34]. The dynamic
behavior of a system can be expressed using the state-space
representation. In particular, the state matrix is the one that
characterizes the dynamic response of the system. One impor-
tant characteristic of the state variables is that they cannot
change instantly, because they are defined by their deriva-
tives. However, in general, the relationship between the state
variables and their derivatives can be nonlinear. A small-
signal model around an equilibrium point can approximate
this nonlinear relationship. Considering several equilibrium
points, a piece-wise nonlinear model can be derived.

Generally, the state variables of a system are not known
when using a blackbox approach. Hence, the inputs of the
weighting functions are the inputs of the model, which do
not have to be state variables. Usually, these input signals do
not have constrains in their dynamic behavior, e.g. they could
have a step-like variation. Consequently, using the traditional
weighting functions, the model would change drastically its
dynamic behavior from the one of the initial operating point
to the one of the final operating point, which is defined by the
input signal.

The idea of the dynamic weighting functions is to add a
dynamic constraint to the variations in the dynamic response
of the model. The goal is to approximate the dynamic behav-
ior of the state variables from the perturbation in the input
signals and to use this approximation as an input of the
weighting functions.Mathematically, the response of the state
variables can be related with the input signals as follows,
consider a general state-space representation:

sx(s) = Ax(s)+ Bu(s), (7)

where x(s) is the state vector, u(s) is the input vector, A is the
state matrix, and B is the input matrix. The transfer function
between the state and the input vector is:

x(s)
u(s)
= (sI − A)−1B, (8)

where I is the identity matrix. Equation (8) can be also
expressed as:

x(s)
u(s)
=

1
det(sI − A)

adj(sI − A)B, (9)

where adj() is the adjugate of a matrix and det() is the
determinant of a matrix. Notice that det(sI − A) corresponds
with the characteristic polynomial, which defines the poles of
the system and they can be found in all the transfer functions,
if they are observable. A possible conclusion of this analysis
is that, in case the state variables are unknown, as it is the
case when using blackbox models, the poles of the system are
a good approximation for the dynamic behavior of the state
variables.

Consequently, the dynamic weighting functions can be
designed based on this information. First, the classi-
cal weighting functions are implemented such that the
small-signal models have their maximum effect when the
operating point is in the value in which they where obtained.
Then, the characteristic filter, i.e. a transfer function made
with the poles of the system, is inserted between the input
signal and the static weighting functions. Therefore, the input
of the static weighting functions has the steady-state value of
the input and its dynamic is approximated to the dynamic of
the state variables. Finally, the expression of the characteristic
filter can be expressed as:

τ (s) =
a0

det(sI − A)
=

a0
sn + ...+ a1s+ a0

(10)

where τ (s) is the characteristic filter. The denominator would
consist of a collection of the poles of the system. Notice
that due to pole-zero cancellations, not all the poles must
define the dynamic behavior of all the state variables. Finally,
the numerator is designed such that in the steady-state the
gain of the filter is unitary. The mathematical expression of a
dynamic weighting function can be expressed as:

w(u(s), s) = ws(u(s)τ (s)), (11)

where w(u(s), s) is the dynamic weighting function and
ws(u(s)τ (s)) is the static weighting function. The scheme of
a one dimensional dynamic weighting function is depicted
in Fig. 7.

FIGURE 7. Scheme of a dynamic weighting function.

In nonlinear systems, the poles of the system can vary with
the operating point, therefore the characteristic filter can also
be designed such that it depends on the input variables.

IV. CASE STUDY: BOOST CONVERTER
In this section, the blackbox modeling approaches detailed
in Section II will be applied to a boost converter in order
to highlight their capabilities and limitations. The switching
model of the boost converter will be used as test bench. This
kind of model is able to capture the dynamic dependency of
the PECs with the operating point and the problems related
with noise and measurement equipment is avoided. There-
fore, they are considered very useful to classify the models
according to the kind of nonlinearities that they are able to
reproduce. In particular, the analysis will be made using a
voltage-controlled boost converter.

The voltage-controlled boost converter has been used
because it is one of the simplest topologies that present
a considerably strong operating point dependent behavior.
In [13] the mathematical expression of the averaged dynamic
behavior of the converter is detailed in open and closed
loop, where operating point dependent dynamic behavior of
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the converter is highlighted. Besides, the frequency response
of the G-parameters linearized around different equilibrium
points is depicted in order to represent graphically the vari-
ability in the dynamic behavior of the converter.

A. BOOST CONVERTER
1) COMPARISON OF THE DIFFERENT BLACKBOX MODELING
STRUCTURES
Figure 8 shows the scheme of the voltage-controlled syn-
chronous boost converter regulated with a PI controller.

FIGURE 8. Voltage-controlled synchronous boost converter circuit.

The G-parameters models used in the comparison will
be obtained around different operating points of the two
inputs considered. In particular, the points selected are the
nine combinations of Vin = {20, 22, 24} V and Iout =
{1, 5, 9} A. As small-signal model, the G-parameters model
obtained for Vin = 24 V and Iout = 1 A is used. The nine
small-signal models are integrated in a polytopic structure,
using the middle points between operating points as center of
the weighting functions and a slope of 4 for both variables.
The Wiener-Hammerstein model was obtained using identi-
fication techniques from the response of the converter to steps
in the input voltage and the output current. The output filter of
the Wiener-Hammerstein model shown in Fig. 5 is of second
order and it was not able to reproduce the response of the
converter correctly, therefore an extra inductor (Lout2) was
included in series with the resistor in parallel with the output
inductance (RL). The parameters obtained in the identifica-
tion are shown in Table 1.

Figure 9 shows the comparison between the switching
model and the three models obtained. The initial operating
point is the one selected for the small-signal G-parameters
model, Vin = 24 V and Io = 1 A. At time t = 1 ms the input
voltage has a negative step to Vin = 20 V, where it can be seen
that the G-parameters and the Wiener-Hammerstein models
start losing accuracy, whereas the polytopic model is able to
follow the dynamic behavior of the transition. In particular,

TABLE 1. Parameters of the Wiener-Hammerstein model of the
voltage-controlled synchronous boost converter.

the mean error of the polytopic model in this transition has a
68.4% less error than the G-parameters model and a 62.4%
less error than the Wiener-Hammerstein model for the output
voltage. Regarding the input current the improvements are
of 46.9% and 49.4%, respectively.

At time t = 6 ms a resistor is connected in parallel with the
output, making the output current increase to Io = 9 A. In this
case the error of the G-parameters and Wiener-Hammerstein
models becomes higher in the transient response. Besides,
theG-parametersmodel starts to fail also in the steady-state of
the input current, whereas the Wiener-Hammerstein model is
able to track this value due to the nonlinear reference included
in the input network (see Fig. 5). The polytopic model is more
accurate, however some errors can be noticed at the beginning
of the transition: in the output voltage the overshoot of the
model is higher than the switching model; and in the input
current there is an initial negative step. The reason for the
initial negative step in the input current is that, due to the sharp
step in the output current, the weighting functions change
both sharply, changing abruptly the output of the model from
the G-parameters model obtained in Vin = 20 V and Io =
1 A (the operating point before the load step) to the one
obtained for Vin = 20 V and Io = 9 A. As this second
model has static errors in the input current, the initial point
of this variable is not at the same value. The relative error
analysis shows a reduction of error of the polytopic model
of 58.7% and 55.5% compared with the G-parameters and
Wiener-Hammerstein models for the output voltage. Regard-
ing the input current the improvement is 76.7% and 62.5%
respectively.

Finally, at time t = 11 ms there is another step in the input
voltage towards the initial value Vin = 24 V and the results
are similar, the G-parameters and the Wiener-Hammerstein
models do not capture accurately the dynamic behavior,
whereas the polytopic model does it better, but with errors
in the initial part of the transitory response. In this case
the error in the steady-state value of the input current of
the G-parameters model is lower than before because the
operating point is closer to the value where it was obtained.
The relative error improvement in this case is 45.8% and
40.6% for the output voltage and 57.2% and 49.2% for the
input current.

In Fig. 10 different measures of the overall error of the
models compared with the switching model are presented.
It can be clearly seen that the polytopic model has the best
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FIGURE 9. Comparison between the switching model and the three types
of blackbox structures of a voltage-controlled synchronous boost
converter.

performance both for the output voltage and the input current.
The error reduction obtained using the polytopic model is
around 50% for both variables.

FIGURE 10. Error comparison between the switching model and the three
types of blackbox structures of a voltage-controlled synchronous boost
converter.

Regarding the simulation time, in this case the switching
model takes 82 s to complete the simulation, whereas the
G-parameters, Wiener-Hammerstein, and polytopic models
take 2 s, 2 s, and 6 s, respectively. The main reason is that
switching models need an integration time between 10 and
100 times smaller than the switching frequency in order to
provide accurate results. On the other hand, the blackbox
models are averaged models, therefore the integration time
of the simulation can be greatly increased, as it does not con-
sider the switching process. Consequently, as the switching
frequency increases, the reduction in computational burden
of the average models is more evident.

2) POLYTOPIC MODEL WITH DYNAMIC WEIGHTING
FUNCTIONS
The previous section showed that the voltage-controlled syn-
chronous boost converter has a variable dynamic behavior
depending on its operating point. The G-parameters and the
Wiener-Hammerstein models use linear models to account
for the dynamic behavior of the converter, so they cannot
account for this phenomenon. The polytopic model is able to
adapt its dynamic response according to the operating point.
However, it was shown that when a large step in the input
variables occurs, the performance of the model at the initial
part of the transitory was not accurate. In this section the
use of dynamic weighting functions is introduced in order to
approximate the rate of change in the dynamic behavior of the
converter with the poles of the system. The operating points
considered are again all possible combinations of Vin =
{20, 22, 24} and Io = {1, 5, 9}.

VOLUME 7, 2019 160269



A. Francés et al.: Blackbox Polytopic Model With DWF for DC–DC Converters

The static part of the weighting functions is the same
as in the polytopic model used in the previous section, i.e.
the centers of the sigmoids are set in the middle of the
operating points considered and the slope is 4 for the input
voltage and the output current. The transfer function that pro-
vides dynamic to the weighting functions has been designed
using (10). The poles of the initial operating point, Vin =
20 V and Io = 1 A, were selected and the resulting transfer
function is:

τ (s) =
624.47e7

s3 + 2082.72s2 + 116.67e5s+ 624.47e7
(12)

The same transfer function is used for both the input volt-
age and the output current.

In Fig. 11 the response of the switching model of the
voltage-controlled boost converter to steps in the input volt-
age and in the load is compared with the polytopic models
with static and dynamic weighting functions. At time t =
1ms a step in the input voltage occurs, reducing its value from
Vin = 24 V to Vin = 20 V . The response of the polytopic
model with static weighting functions is reasonably accurate,
so only a modest improvement can be seen in the model using
dynamic weighting functions. However, it is interesting to see
the effect of using the dynamic weighting functions in the
transition among small-signal models. The step in the input
voltage is sharp, therefore the polytopic model with static
weighting functions modifies instantly its dynamic behavior
between the initial point, Vin = 24 V and Io = 1 A,
to the final point, Vin = 20 V and Io = 1 A. On the other
hand, the polytopic model with dynamic weighting functions
filters the step in the input voltage (green line), hence the
input to its static weighting functions is not sharp but has the
dynamic imposed by the poles of the system. Consequently,
the dynamic of the polytopic model with dynamic weighting
functions makes a transition starting in the initial operating
point, Vin = 24 V and Io = 1 A, then activating the dynamic
of the next small-signal model towards the final operating
point, Vin = 22 V and Io = 1 A, and ultimately the final
operating point, Vin = 20 V and Io = 1 A.
At time t = 6ms a resistor is connected in parallel with the

load, increasing the output current sharply from Io = 1 A to
Io = 9 A. Similarly to the previous step, the polytopic model
with static weighting functions makes a sharp transition from
the initial operating point, Vin = 20 V and Io = 1 A, to the
final one Vin = 20 V and Io = 9 A, whereas the dynamic
weighting functions experience a transition from the initial
operating point Vin = 20 V and Io = 1 A, the next operating
point towards the final one, Vin = 20 V and Io = 5 A, and
finally the last operating point, Vin = 20 V and Io = 9 A.
Regarding the performance of the models, in this case a
considerable improvement can be seen in the initial part of the
transition. The estimation of the voltage drop due to the load
step of the polytopic model with static weighting functions is
around 5 V , whereas the actual value is 4 V corresponding to
a mismatch of 25%. Using the dynamic weighting functions
the errors are contained to less than 5%. Concerning the input

FIGURE 11. Comparison between the switching model and the polytopic
model with the classical static weighting functions (SWF) and with the
proposed dynamic weighting functions (DWF) for the case of a
voltage-controlled boost converter.

current, the initial operating point is Iin = 2.5 A, however
when the load step occurs the model with static weighting
functions suddenly jumps to Iin = −2.5 A and then starts
the transitory response towards the final value, Iin = 25 A.
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FIGURE 12. Error signals between the switching model and the polytopic
model with the classical static weighting functions (SWF) and with the
proposed dynamic weighting functions (DWF) for the case of a
voltage-controlled boost converter.

FIGURE 13. Details about the performance of the polytopic model with
the classical static weighting functions (SWF) and with the proposed
dynamic weighting functions (DWF) for the case of a voltage-controlled
boost converter.

This undesired behavior is due to the nonlinearity in the dc
gain of the back current gain, and the sharp transition among
small-signal models. The small-signal model corresponding
to the final operating point, Vin = 20 V and Io = 9 A,
initially is at −8 A from its nominal value. As this model has
a higher dc gain than the small-signal model corresponding to

the initial point, Vin = 20 V and Io = 9 A, there is an error in
the steady state value of the input current. As the polytopic
model with static weighting functions change instantly to
the final small-signal model, this error appears in the output
of the model. Using the dynamic weighting functions, this
change among small-signal models is gradual, therefore it
starts from the correct dc value and reflects the transition with
high accuracy.

Finally, at time t = 11 ms there is a step in the input
voltage from Vin = 20 V to Vin = 24 V . As in the previous
cases, the sharp transition of the polytopic model with static
weighting functions does not reflect the dynamic behavior
accurately during the first part of the transitory, having a
lower estimation of the overshoot of both the output voltage
and the input current. On the other hand, the use of the
dynamic weighting functions allows the model to make a
transition among small-signal models, which is demonstrated
to be an accurate approximation of the response of the actual
behavior of the electric power converter to sharp and large
steps in the input variables. The error between the switch-
ing model and the two blackbox models obtained is shown
in Fig. 12 and Fig.13.

V. CONCLUSION
In this paper the concept of dynamic weighting function
has been introduced. This method aims to approximate the
dynamic of the state variables by filtering the input-output
variables of the model with a transfer function designed from
the information of the poles of the system. This transfer
function has a unitary gain to avoid the distortion of the
variables in the steady state. The rationale of this proposal
is that the nonlinear behavior in power electronic converters
can be due to nonlinearities related with the state variables,
which are not available in blackbox models. By using what
it has been named as the characteristic filter, the inputs to
the traditional static weighting functions are not directly the
input-output variables, which can change sharply, but these
variables filtered by the mentioned characteristic filter. This
causes that the transition among the small-signal models,
which integrate the polytopic model, is not necessarily as
sharp as the step in the input variables, but it is limited by
the dynamic of the poles of the system, which is related with
the dynamic of the state variables.

A voltage-controlled boost converter has been used as case
study. After sharp steps in the input variables of the model,
the polytopicmodel with dynamicweighting functionsmakes
a transition through all the small-signal models between the
initial and the final operating point, whereas the polytopic
model with static weighting functions changes abruptly and
directly to the final operating point. This limitation in the rate
of change among small-signal models, that is, in the rate of
change in the dynamic behavior of the PECs, has been proved
to be a better approximation to the real behavior of switching
converters. As future work, other kind of nonlinearities such
as controllers with different operating modes and saturation
of the duty cycle, will be considered.
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