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ABSTRACT In industrial processes, some important process variables cannot be measured directly by
hardware sensors for technical or economic reasons. Soft sensors estimate these key variables using some
other easily measured variables by building a mathematical model. A novel knowledge- and data-driven
soft sensor is proposed in this paper to predict the deformation of an air preheater rotor in a thermal power
plant boiler. Two submodels were constructed, including the knowledge-driven submodel, derived from all
the available domain knowledge, and the data-driven submodel, constructed solely from the data. The two
submodels were integrated with a mass balance model. A mathematical model based on technical expertise
in predicting rotor deformation, named the Lab model, was used as the knowledge-driven submodel, and a
deep learning model based on stacked autoencoders (SAE) was used as the data-driven submodel. To improve
the performance of the model, the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm
was adopted to optimize the SAE parameters. The experimental results demonstrate that, compared with the
common knowledge-driven (KDM) and data-driven (DDM) models, the proposed Lab-stacked autoencoders
(L-SAE) model is able to provide a higher predictive accuracy for the air preheater rotor deformation and

inherits the advantages of both the KDM and DDM.

INDEX TERMS Deep learning, industrial process control, knowledge- and data-driven model, soft sensor.

I. INTRODUCTION

In industrial processes, there are some variables that play an
important role in improving efficiency and product quality.
Efficient monitoring and control of these variables are crucial
for the control system of the industrial process. Unfortunately,
these key variables are often difficult to measure directly
using hardware sensors, which can be attributed to two main
reasons. One reason is that there are no appropriate hardware
sensors for some special industrial measurements due to tech-
nical or economic limitations. Another reason is that the harsh
environment of industrial sites usually induces the abnormal
working of hardware sensors [1], [2].
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Soft sensors estimate the key variables in the industrial pro-
cess indirectly by constructing a mathematical model. Some
easily measured variables are used as the input, and the target
variables are used as the output [3]. The input variables are
selected from many easily measured variables, which appear
to be more relevant to the target variables. Then, the key
variables can be estimated by establishing the mathematical
relationships with the input variables [4].

In general, there are two main types of soft sensors:
knowledge-driven models (KDMs) [5], [6] and data-driven
models (DDMs) [7], [8]. The KDMs occupied a domi-
nant position for a long time and achieved good perfor-
mance. The modeling process of KDMs is mainly based
on industry knowledge, including the known relationships
from physically based or mechanistic models. This kind of
method mainly includes multivariate statistics [9], Kalman
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filters [10], and clustering [11]. However, the KDMs often
obtain a lower prediction accuracy in comparison with the
data-driven methods for two main reasons. One reason is that
the modeling process of the KDMs only considers the visible
knowledge but ignores the data that reflects the real condition
of the industrial process. The other reason is that the industrial
processes that require soft sensor techniques always have
complex physical backgrounds, making it difficult to describe
the processes thoroughly with a KDM. In recent years, data-
driven soft sensors have become increasingly popular due
to their low cost and time savings, especially in complex
industrial process modeling and control [12]. It has been
proven that DDMs have high accuracy because they are based
on the data collected from the industrial site, which more
reliably describes the real process conditions [13]. However,
because of the characteristics of the modeling method and the
limitations of the process data, the prediction accuracy can
only be guaranteed in the local range of the data-driven soft
sensor. In addition, many industrial processes are multivari-
ate and nonlinear and have wide operational ranges, which
leads to difficulty in achieving satisfactory results. In this
paper, a new knowledge- and data-driven soft sensor, named
the Lab-stacked autoencoders (L-SAE) model is proposed,
inspired by the idea of combining the advantages of the two
abovementioned methods to estimate the rotor deformation
of an air preheater rotor in a thermal power plant boiler.
A knowledge-driven submodel and a data-driven submodel
are integrated and balanced to create a new soft sensor.

An air preheater is used to transfer the heat from the flue
gas to the combustion-supporting air in a power plant boiler.
Due to the large difference between the temperature of the
top and bottom of the rotor, thermal deformation occurs on
the sector plates and results in deformation gaps. Conse-
quently, air leakage happens, and the thermal efficiency of
the boiler is reduced, which causes large economic losses.
However, the air preheaters are typically located in harsh
high-temperature corrosive environments that often cause
the hardware sensors to go out of service. Therefore, a soft
sensor is adopted to estimate the rotor deformation of the air
preheater in this paper.

To ensure a high prediction accuracy, the selection of
the two submodels in this study was quite deliberate. The
most common KDM for calculating the rotor deforma-
tion, the Lab model, was used as the knowledge-driven
submodel, and a deep neural network based on stacked
autoencoders (SAE) was used as the data-driven submodel.
The traditional data-driven methods mainly include the par-
tial least square (PLS) [14], principal component anal-
ysis (PCA) [15], artificial neural network (ANN) [16]
and combined methods such as the neural network PLS
(NNPLS) [17]. Many successful applications and satisfac-
tory results have been achieved when using these meth-
ods to estimate the key variables in industrial processes.
However, there are obvious deficiencies in these methods.
First, the statistics-based methods are not powerful enough
when dealing with the highly nonlinear industrial data [18].
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Second, the data utilization ratio of these methods is relatively
low because they can only use samples that consist of both
the input and output values, that is, labeled data. However,
in actual industrial processes, unlabeled datasets that contain
only the input samples are typical because the measurement
of the target variables is difficult [19]. Third, the general
methods based on ANNSs are plagued by gradient diffusion
and local minima [20]. In recent years, deep learning has
achieved great success and has gained broad applications in
many fields [21]-[23]. Its core technology is layer-by-layer
unsupervised pretraining, which makes the training process
of a deep neural network run smoothly and significantly
improves the feature extraction and representation capability.
Therefore, deep learning outperforms the traditional meth-
ods in many complex problems [24], [25]. Moreover, deep
learning has also been proven to be more appropriate for soft
sensor modeling [26] because it utilizes both the labeled and
unlabeled data to avoid wasting the large amount of unlabeled
data in comparison with the traditional soft sensors. On the
other hand, deep learning performs better in revealing the
underlying relationships of the nonlinear industrial data.

An autoencoder is a typical deep learning method. There
are many successful applications of autoencoder-based mod-
els in speech feature parameter extraction [27], facial recog-
nition [28] and other fields [29]. It has been verified in our
practice that autoencoders work well when used in soft sensor
modeling. Therefore, a deep neural network that consists of
several autoencoders is adopted as the data-driven submodel
in this study. Furthermore, we improve the reconstruction loss
function of the autoencoder and adopt a more effective param-
eter optimization algorithm to achieve better performance.

Our contributions are as follows.
+ A new knowledge- and data-driven soft sensor is pro-

posed, named the L-SAE model, that integrates a
knowledge-driven submodel and a data-driven sub-
model. The loss function is improved by combining
the two parts to maximize the predictive accuracy and
improve the convergence speed.

« The established model is introduced to estimate the rotor
deformation of an air preheater. This is the first appli-
cation of the knowledge- and data-driven model in this
aspect from a review of the searchable literature.

The remainder of this paper is arranged as follows: The
application background for predicting the rotor deformation
of an air preheater is introduced in Section 2. The proposed
L-SAE model is detailed in Section 3, including the two
submodels and the overall model. In Section 4, the experi-
ments and results analysis are presented. Finally, our work is
summarized in Section 5.

Il. APPLICATION BACKGROUND

In the boilers of thermal power plants, an air preheater is
a heat exchange device that utilizes the heat of the flue
gas to preheat the combustion-supporting air. In this way,
the heat of the flue gas is recycled, the temperature of the
flue gas is reduced and the boiler efficiency is improved.
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FIGURE 1. The role of the air preheater.
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FIGURE 2. The top view of a rotary air preheater.

Meanwhile, the increase in the combustion air temperature
is beneficial for fuel ignition and combustion to reduce the
loss of incomplete combustion. The role of the air preheater
in the boiler is shown in Fig. 1. Air preheaters fall into two
categories according to the heat transfer method: tubular air
preheaters and rotary air preheaters. Due to the advantages
of small volume, light weight and easy installation, rotary air
preheaters have gained more popularity in the large power
units of thermal power plants. The top view and the stere-
ogram of a rotary air preheater are shown in Fig. 2 and Fig. 3.
A rotary air preheater consists of a fixed cylindrical housing,
a cylindrical rotor, a flue, an air duct and a transmission
device. The rotor is divided into a number of fan-shaped
compartments, each of which is filled with heat storage panels
made of undulating sheet metal. The cylindrical housing is
divided into flue and air ducts to separate the flue gas and
combustion-supporting air. To separate the air duct from the
flue more strictly, two sector plates are installed on the bottom
and the top of the air preheater.

In the rotation process of the rotor, taking a fan-shaped
region of the rotor as an example, when the region rotates to
the flue gas side, the hot flue gas flows through the flue from
the top down and passes through the heat storage panels inside
the rotor simultaneously. In this way, the heat of flue gas is
transferred to the heat storage panels. As the rotor continues
to rotate to the air side, the cold air flows from the bottom
up through the air duct and absorbs the heat of the storage
panels [30]. Once the rotor turns a full circle, the air preheater
completes one heat exchange.
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However, in the process of heat exchange, the temperature
of the top preheater is high, while the temperature of the
bottom is low. The unevenness of the heat causes a mushroom
deformation of the rotor under the action of the thermal
stress [31]. Some gaps appear between the rotor and the sector
plates, as shown in Fig. 4. Both the flue gas and the air leak
toward each other through the gaps. The hazards caused by
air leakage are great. The heat transfer efficiency of the air
preheater is reduced, which leads to lower boiler efficiency.
Moreover, air leakage causes a large increase in auxiliary
power usage that results in a direct economic loss. Taking
a 600 MW coal-fired unit as an example, the generator sets
consume approximately 2 million RMB of additional energy
a year for each 1% rise in the air leakage rate.

Obviously, it is of great significance to measure and control
the rotor deformation in real time. In practical applications,
the measurement error of the rotor deformation should be
less than 0.5 mm. There are two traditional methods to
measure the rotor deformation in air preheaters. One is to
use a mechanical probe for the measurement, and the other
is to install a noncontact sensor on the sector plate. The
mechanical probe has a satisfactory measurement accuracy in
performing contact measurements. However, to avoid wear-
ing the rotor, the mechanical probe can only make discrete
measurements, and the measurement period is generally up
to 4 hours. In addition, mechanical plugging and precision
attenuation can occur on the mechanical probe after long-
term use. A noncontact sensor must be installed in a confined
space on the sector plate and work under severe conditions,
which is costly. In the high temperature, corrosive and dusty
environment where the air preheaters are located, the sensor
often malfunctions. In this case, the whole air preheater must
be stopped to maintain the failed sensor. The routine mainte-
nance and overhaul of a sensor are both inconvenient.

Based on the above, it is difficult to measure the rotor
deformation directly and timely. Therefore, we introduce
the soft sensor technique to construct a predictive model to
estimate the rotor deformation. Then, the output of the model
is adopted as the control signal of the process control system
and corresponding control measures can be adopted.

At present, there are few relevant studies available. In [32]
and [33], mathematical models based on thermal stress theory
are adopted to analyze the thermal deformation of the air
preheater rotor, which are typical KDMs. First, the finite
difference method is used to calculate the temperature dis-
tribution of the air preheater. Then, the finite element method
is used to obtain the thermal deformation of the rotor. The
authors stated that they achieved satisfactory results, but the
differential problem became complicated when the temper-
ature increased. In addition, these methods have time lag
problems causing real-time prediction to be infeasible.

lll. METHODS

A. KNOWLEDGE-DRIVEN SUBMODEL

There are complex lattice structures and heat storage compo-
nents of various shapes and sizes inside the air preheater, and
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FIGURE 4. Sketch of rotor deformation in an air preheater.

the rotor deformation is a complex combination of the thermal
deformations of these components. Therefore, in any working
condition, the relationship between the rotor deformation
and input variables is complex and nonlinear. However, air
preheaters are located in harsh environments with high tem-
peratures and corrosion, leading to a complex and unstable air
preheating process. According to the existing research, there
is no exact relationship between rotor deformation and other
factors.

In this study, the most common design formula for predict-
ing the rotor deformation of an air preheater, herein called the
Lab model, is used as the knowledge-driven submodel. The
formula is based on the knowledge of technical experts about
industrial processes as follows:

ATR?

Y = 0.006 ()

where Y represents the maximum thermal deformation of the
air preheater rotor. R denotes the radius of the rotor, and H is
the height of the rotor. The temperature difference between
the cold and hot ends is denoted as AT and is defined as
follows:

_ Tgi + Tuo . Tgo + T
2 2

AT 2)
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where Ty; is the inlet temperature of the gas flue, T, is the
outlet temperature of the air duct, T, is the outlet temperature
of the flue, and T; is the inlet temperature of the air duct.

This formula is the most accurate existing KDM for pre-
dicting the deformation of an air preheater rotor. However,
we found that this model behaved unsteadily in the field test.
The prediction error is sometimes quite large. We need to
adjust the value obtained from this model when applying it
to an actual operation. Therefore, this model is not entirely
suitable for dynamic prediction and control. The main limi-
tations found in practice are listed below.

1) The air preheater rotor is an energy storage link with a
complex structure, and its mathematical model must be
a dynamic model rather than a simple static functional
relationship.

In addition, the rotor deformation is also affected by
the thermal deformation of the shell, main beam of the
air preheater, center barrel, supporting shaft and other
related mechanical components. However, equation (1)
only expresses part of the steady-state characteristics of
the system.

Over time, the coal ash that accumulates between the
sealing sheets significantly increases, which increases
the resistance of the air preheater, decreases the heat
transfer capacity, and indirectly affects the thermal
deformation law. The thermal deformation of the air
preheater thus has a time-varying characteristic.

2)

3)

In summary, the thermal deformation model of an air pre-
heater is a nonlinear dynamic system with inertia. Therefore,
a knowledge-based model alone is insufficient to accurately
predict the rotor deformation.

B. DATA-DRIVEN SUBMODEL

1) TRAINING PROCESS OF THE SAE

A deep neural network based on SAE is adopted as the data-
driven submodel in this study. An autoencoder is a three-
layer neural network designed to reconstruct the input data.
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It consists of two parts: an encoder for extracting the features
of the input data and a decoder for reconstructing the input
data from the features. First, the encoder obtains the repre-
sentation code h, that is, the features, as follows:

h = s(Wx + b) 3)

where x is the input data. W and b are the weight and bias
parameters of the encoder, respectively. s(.) is the sigmoid
function defined as follows:
1
1+e
Then, & is sent to the decoder as input, and the decoder
yields the reconstructed data, X, according to (5):

s(x) =

“

2 =s(Wh+Db) 5)

where W’ and b’ are the parameters of the decoder. Obvi-
ously, the higher the similarity is between x and x, the more
important 4 is. Therefore, we optimized the parameter set,
6 = {W, b,W', b } to minimize the reconstruction error
between x and x. The optimal network parameters and the
most important features of x are obtained when the recon-
struction loss is minimal. In this paper, the loss function, L,
is defined differently from the previous research as follows:

L(0) = Lyecon(0) + Lweight(g) (6)

where L;e.0,(0) is the reconstruction loss, which is defined
based on the cross-entropy as follows:

1 m n ) )
Lyecon(0) = _ZE E (xijlog(xij) + (1 — x;)log(1 — X)) (7)
i=1j=1

where m denotes the number of input samples and »n denotes
the input dimension. In comparison with the mean square
error (MSE), cross entropy is not sensitive to outliers and
behaves steadily in the convergence process, which is more
suitable for designing loss functions. Ly.;en:(6) is a weight
decay regularizer to ensure that L is a strictly convex function.
We found in practice that the convergence process is more
smooth by adding the weight decay term when optimization
algorithms that are more developed than the gradient descent
algorithm are adopted. In addition, it can prevent overfitting.
We define Lyyeign: (6) as follows:

ki kit

2
Lucig @) = 5 323 3 0w ®)

=1 i=1 j=I

where k; is the neuron number in layer / and wj; denotes the
weight between the jth neuron of layer /+ 1 and the ith neuron
of layer /. A is the decay coefficient.

Then, the network parameters are optimized by using
the optimization algorithm. There are various existing
optimization algorithms with their own advantages and
drawbacks. In this paper, an advanced limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS)
[34] is adopted, and we will describe it in a later section.
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FIGURE 5. Training process of the SAE.

Obviously, the training of a single autoencoder is unsu-
pervised since it uses only unlabeled data. When the first
autoencoder is trained, the first level code of x is obtained.
After that, the decoder is removed, and the code £ is taken as
the input of the second autoencoder. The second level code is
extracted in the same way. In this way, a deep neural network
is constructed by stacking autoencoders. The training process
of the SAE is shown in Fig. 5. The number of network layers
needs to be determined experimentally because there is no
unified approach. If the SAE consists of n hidden layers,
the topmost output of the hidden layer is as follows:

Y = s(x, ™) )

where 6 consists of the overall deep neural network param-
eters as follows:

0" = WO, p0, . W, b (10)

where W and b denote the parameters of the nth autoen-
coder. Considering the regression requirement of the soft
sensor, we add a linear regression to the top of the model.
The final output of the SAE is as follows:

y =007y (11

where ) consists of the parameters for the regression opera-
tion which is optimized by the gradient descent method using
the labeled data in the training set.

2) PARAMETER OPTIMIZATION OF THE SAE
Better parameters can improve the model accuracy. The
parameter optimization of the SAE is divided into two stages.
The first stage is the parameter optimization in the training
process of a single autoencoder, and the second stage is the
supervised fine-tuning of the whole network.

In the first stage, the L-BFGS algorithm is adopted, which
is a quasi-newton algorithm with a high convergence speed
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and strong global search capacity. During the training process
of an autoencoder, the parameters are first initialized and
then optimized through the L-BFGS algorithm. When the
optimization is completed, the parameters are maintained,
and the next autoencoder is trained. The steps of the L-BFGS
algorithm are shown below.

Algorithm 1 Procedure of the L-BFGS Algorithm

1: Initialize 69 as ) ~ [—/6/N + M, /6/N + M, (6 €
RNXM)

2. for k=1,2...until end conditions are satisfied do

3. Evaluate g = \/ f(6k)

4 Sk =T9k — Ok—1, Yk—1 = &k — 8k—1
5. HY = 2l
6
7

Y k-1
fori=k —r,...,k — 1do

si = biy1 — 0;

Yi = gi—li-l —&i

Pi = yZSk

Vi=1— piyis}

. end for
9 H = VI VEDH) Vi, .. Vic) +

or—r (Vi VL Dskers{ (Vi - Vi)
Hok—rp (VL ... Vi ri2)Sk—r1 S,{,r+1(Vk—r+2 oo Vi)
+.. .—l—pk_lsk_lsg_l

10:  Set learning rate ot
Ok+1 = Ok + axHi g
k<—k+1

11: end for

Where Hj41 is the new inverse Hessian approximation
obtained by updating Hy. In the L-BFGS algorithm, a mod-
ified version of Hy, {si, yx}, is stored instead of the whole
inverse Hessian matrix. The matrix is updated r times using
the » most recent correction pairs, {s;, y,-}f.{:_kl_r, to reduce the
cost of each iteration. Therefore, the L-BFGS algorithm has
strong robustness and a high execution speed.

Based on the above, the supervised fine-tuning of the deep
network is implemented using labeled data. In this stage,
the stochastic gradient descent algorithm is adopted to realize
end-to-end learning.

C. L-SAE MODEL

Based on the above research, a knowledge- and data-driven
soft sensor is proposed, named the L-SAE model, which con-
sists of the two submodels mentioned above to estimate the
deformation of an air preheater rotor. A schematic diagram
of the model is shown in Fig. 6. The knowledge-driven sub-
model is established based on the available domain knowl-
edge, and the data-driven submodel is constructed solely
based on data that reflect the actual conditions of the indus-
trial installation. The two submodels are combined to cap-
ture the air preheating process more completely. The L-SAE
model can be expressed by integrating the two submodels as
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in the following mathematical formula:

YL—SAE = fi(xk, Ok) ® fa(xa, 0a) (12)

where y;_sag is the output vector of the model. f; and f; are
the functions that are associated with the KDM and DDM
submodels, respectively. 6x and 6, are the parameter vectors
that are associated with the functions f; and f;, respectively.
The symbol “@” represents the coupling operation between
the KDM and DDM submodels.

There are various ways of forming the coupling connec-
tions to support flexibility in combining the two submodels.
Due to the diversity of different industrial knowledge, there
is no generic approach for designing the coupling operation
between the two submodels. For practical purposes, we set
our coupling connection as a simple and commonly used
superposition coupling operator through verification in prac-
tice, as shown in Fig. 7. The mathematical expression of this
operator is given as follows:

yL—-SAE = P [fiCxk, O] + (1 — p) [falxa, 62)1  (13)

where p is the weight coefficient that is used to balance
the two parts of the L-SAE model. The optimal model
performance can be obtained when the value of p is set
appropriately. We found in practice that when the value of
p is inappropriate, the model performance of the L-SAE is
worse than each of the two submodels. But when p is set
appropriate, the performance of the L-SAE can be improved
significantly. That is, the linear superposition way of the two
submodels behaves unreliable somtimes. Therefore, in the
future work, we need to develop the more stable and reli-
able coupling connection way of the two submodels. Here,
we set p to 0.25 based on repeated experiments. Together with
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(1) and (11), equation (13) can be simplified as follows:

yL-sAE = pY + (1 — p)y (14)

This is the final output of the overall model.

IV. EXPERIMENTS

In this section, to verify the feasibility and effectiveness of
the L-SAE, the established soft sensor is applied to the rotor
deformation prediction of an air preheater in a thermal power
plant boiler. Then, the model performance of the L-SAE is
compared to that of other three common KDM and DDM
approaches. The experiments are implemented on a PC with
an Intel (R) Core (TM) i7 3.60 GHz processor with 8 GB
RAM using MATLAB 2018a.

A. EXPERIMENTAL SETTINGS

1) SETTINGS OF THE SAE

In the process of soft sensor modeling, the selection of the
input variables has an important impact on the prediction
performance of the model. Using input variables that have
no or low correlation with the target variable will negatively
affect the model performance. Therefore, among the vari-
ables available, we need to choose those that have a strong
correlation with the target variable as the input variables.
Currently, the selection of the soft sensor input variables is
generally based on mechanism knowledge and analysis expe-
rience. In our experiment, the alternative variables include the
rotation speed of the rotor, the inlet and outlet temperatures
of the flue and the air duct, the pressure and flow rate of
the flue gas and the air. The rotor rotation is transverse,
so there is no correlation between the rotation speed and the
thermal deformation. The pressure and the flow rate of the
flue gas and the air are correlated with the rotor deformation,
but they are also correlated with the temperatures. Finally,
we choose four temperature variables that are most correlated
with the rotor deformation as the input variables of the SAE,
including the inlet temperature of the air duct, 7,;; the outlet
temperature of the air duct, 7,,; the inlet temperature of the
flue, T;; and the outlet temperature of the flue, Tg,.

In addition, the hyperparameters of the SAE are deter-
mined experimentally, and the model structure is set to
4-2-2-1. The final model structure of the L-SAE model is
shown in Fig. 8.

2) DATA PREPROCESSING
All the historical data used in the experiment came from the
real processes of a thermal power plant in western China. The
input temperature samples are collected by sensors positioned
at the inlet and outlet of the air duct and the flue. The target
rotor deformation samples are collected by the noncontact
sensor mounted on the sector plate.

To eliminate unit limitations, all the samples are normal-
ized to [0,1] as follows:

Xnorm = — (15)

VOLUME 7, 2019

KDM (Lab)
R ———»
H————* B ATR’
T Y= 0.006—1_[ v
Lo 4T, T,+T,
T, arztatle Lo
T 2 2
jmmTTmTmTmmmmmmmmmoey
VVisae = pY +(1=p)y ;‘_’ Yi-sae
]
Lab@®SAE
y
DDM (SAE)

FIGURE 8. The structure of the L-SAE model.

In addition, considering the negative effect on the model
performance of the outliers in the original dataset, the
Hampels method [35], which outperforms the popular 3o
method in our practice, is adopted to eliminate the outliers.
Samples satisfying (16) are flagged as outliers and removed.

lx; — xo.51 -
1.4826 x median(|x; — x¢.5|)

where x; denotes the ith input sample and xg 5 denotes the
median value of x;.

It is worth noting that when deep learning is used for image
processing or speech recognition, it involves processing huge
amount of data. But in the industrial case used in this paper,
collecting samples is very difficult due to complex reasons
such as high temperature and dust, which causes the data
set size is relatively small. To ensure the high quality of
the samples, only 500 samples are selected after the pre-
processing. That is, the dataset used for experiment consists
of 400 unlabeled samples and 100 labeled samples, which is
divided into the training dataset and test dataset. The training
dataset contains 400 unlabeled samples and 50 labeled sam-
ples, while the remaining 50 labeled samples serve as the test
dataset.

3 (16)

B. RESULTS AND DISCUSSION

To verify the superiority of the proposed method, the other
five commonly used soft sensor models were used to pre-
dict the dynamic rotor deformation of the air preheater for
comparison, including the support vector machine regression
(SVR), the NNPLS integrating PLS with a neural network,
the plain deep neural network (DNN) with two hidden layers,
the deep beliefe network (DBN) with two hidden layers and
the Lab model. The root mean square error (RMSE) is used
to measure the predictive errors of the soft sensors. The same
dataset is used for the training and test of the six different
models to ensure a fair comparison, and the final error of each
model is the average of five tests. To highlight the contrast
effect, the comparative results of four of the six methods are
shown in Fig. 9, and the RMSE results of all the methods
are shown in Table 1. In Fig. 9, the vertical axis represents
the rotor deformation, of which the unit is millimeter in the
original samples. Because the data has been normalized to
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FIGURE 9. Comparison of the prediction results of four different soft
sensors.

[0,1] in the data preprocessing stage, the unit of the vertical
axis is not marked.

We can see from Fig. 9 and Table 1 that the errors of all the
models are far less than the required 0.5 mm. The output data
of the L-SAE more closely resembles the real data compared
to that of the other models, which means a better nonlinear
fitting ability. Second to the L-SAE, the SVR behaves best
due to the strong capability of nonlinear approximation. The
performance of the DBN and the DNN are not satisfied at
short of training data. As mentioned above, the dataset size
in this study is small, which is far from enough for the
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training of deep neural networks. In contrast, the L-SAE
performs better under the same condition. The NNPLS model
has the largest test error, showing that the PLS approach is
not sufficiently powerful when dealing with highly nonlinear
data. In addition, the L-SAE has a better ability to track
extreme changes in the data. When the samples vary greatly,
the L-SAE accommodates the changes better, and maintains
a good performance.

TABLE 1. Experimental results of the six different models.

Lab SVR NNPLS DNN DBN L-SAE
Training - 0.046  0.062 0.066 0.054 0.033
RMSE
Test 0.071 0.057 0.082 0.081 0.067 0.045
RMSE
Time(s) - 33.7 82.8 288 134 117

From Table 1, according to the training and test errors of
the six models, we can see that the L-SAE achieves the lowest
error, while the NNPLS achieves the highest test error rather
than the Lab model. This shows that not all the DDMs work
better than the KDMs when used for soft sensor modeling.
From the table, the L-SAE model outperforms the others.
Second to the L-SAE, the SVR shows the best performance.
The DBN performs medially, which shows that the pure deep
learning methods are more suitable for modeling based on
big data, but less powerful when handling small datasets. The
performance of the Lab model is poor for the reasons detailed
in the first part of Section 3. It is noteworthy that the DNN has
the second highest errors after the NNPLS, showing the low
efficiency when training the deep neural networks with more
than four layers directly.

The experiment time shown in Table 1 contains training
and test time of each method. It can be seen that the serious
time lag and precision attenuation problems that cannot be
solved by the traditional method are solved by the soft sen-
sors. In total, the methods based on deep learning consume
much more time than other methods, which shows that the
deep learning methods have the slow convergence problem.
However, we can see that the convergence speed of the L-SAE
is much more faster than the DBN and the DNN due to the
improvements of the training process and the optimization
method. To clarify, the industrial process in this experiment is
typical slow process with low sensitivity to time. Moreover,
the soft sensors are trained off-line. Hence, compared with the
training time, the test time, that is, the forward computation
time of the models, is more important for soft sensor appli-
cation. According to the experiment results, the test time of
all the six methods is less than five seconds, which is quite
satisfying.

Based on the above analysis, it is obvious that the L-SAE
is feasible and performs better than the other common KDMs
and DDMs. In our previous research [36], we established a
soft sensor based on SAE with an SVR method to estimate the
rotor deformation, which was a typical DDM based on deep
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learning. The experiment results are slightly different because
the datasets used in the two papers are not the same one.
However, the results of the L-SAE model are good enough,
proving the effectiveness of the knowledge- and data-driven
approach for soft sensor modeling. In the future work, we will
focus on improving the coupling way of the two submodels
and modeling based on bigger datasets.

In summary, soft sensors, which effectively combine a
KDM and DDM, can balance the advantages and disadvan-
tages of the two methods. The industry process information
is exploited more completely, and the performance of the soft
sensor is improved.

V. CONCLUSION

In this paper, a new modeling method for soft sensors, named
the L-SAE, based on knowledge and data is proposed. It is
a hybrid approach that integrates a KDM and a DDM as
two submodels. In this way, both the domain knowledge and
industrial data are considered. In this paper, the Lab model
is used as the knowledge-driven submodel, and a deep neural
network based on SAE is used as the data-driven submodel.
To verify the superiority of the proposed method, the estab-
lished L-SAE model is applied to predicting the deformation
of air preheater rotors in thermal power plant boilers. The
L-SAE model achieves a higher predictive accuracy com-
pared to that of the other five soft sensors, including the most
commonly used KDM and DDM methods. Furthermore, this
study developed the first knowledge and data-driven soft
sensor for estimating the deformation of air preheater rotors
in thermal power plant boilers. Our main work in the future is
improving the coupling connection method between the two
submodels and improving our approach with larger datasets.
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