IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 9, 2019, accepted October 24, 2019, date of publication October 31, 2019, date of current version November 21, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2950820

Identifying Application-Layer DDoS Attacks
Based on Request Rhythm Matrices

HUAN LIN“', SHOUFENG CAO?, JIAYAN WU', ZHENZHONG CAO3, AND FENGYU WANG'
1School of Software, Shandong University, Jinan 250101, China

2National Computer Network Emergency Response Technical Team Coordination Center of China, Beijing 100029, China

3School of Software, Qufu Normal University, Qufu 273165, China

Corresponding author: Fengyu Wang (wangfengyu@sdu.edu.cn)
This work was supported in part by the Key Special Projects of the 13th Five Year Plan of the Ministry of Science and Technology of China

under Grant 2016 YFB0801502, and in part by the Key Special Projects of the Ministry of Science and Technology of China under Grant
2016YFB0801304.

ABSTRACT Application-layer distributed denial of service (AL-DDoS) attacks are becoming critical threats
to websites because the stealth of AL-DDoS attacks makes many intrusion prevention systems ineffective.
To detect AL-DDoS attacks aimed at websites, we propose a novel statistical model called the RM (rhythm
matrix). Although the original features from the network layer are adopted, the access trajectory, including
requested objects and corresponding dwell-time values, can be abstracted and accumulated into an RM. With
an RM, we can almost losslessly compress complex features into a simple structure and characterize the user
access behavior. We detect AL-DDoS attacks according to the increase of the abnormality degree in the
RM and further identify malicious hosts based on change-rate outliers. In the experiments, we simulate three
modes of AL-DDoS attacks with the latest popular DDoS attack tools: LOIC and HOIC. The results show that
our method can detect these simulated attacks and identify the malicious hosts accurately and efficiently. For
an AL-DDoS detection method, the ability to distinguish flash crowds is indispensable. We also demonstrate
the excellent performance of our approach in distinguishing flash crowds from AL-DDoS attacks with two
reconstructed public datasets.

INDEX TERMS Network security, application-layer DDoS attack, anomaly detection, rhythm matrix,

outliers.

I. INTRODUCTION
Over the past two decades, distributed denial of ser-
vice (DDoS) attacks have been a continuous critical threat
to the Internet. Denial of service (DOS) attacks have been
known to the network research community since the early
1980s. The first Distributed DoS (DDoS) attack incident
was reported in the summer of 1999 and most of the DoS
attacks since then have been distributed in nature [1]. Many
tools are available to easily perpetrate DDoS attacks, and
many cyberspace crimes are closely related to DDoS attacks.
However, the attack modes of DDoS attacks have changed in
the recent years. While most traditional attacks are still active,
more application-layer traffic is emerging, such as HTTP,
HTTPS and DNS queries. We adopt the taxonomy in [2] and
call these attacks application-layer DDoS (AL-DDoS).
Much research has been done on DDoS attack and its
defense [1], [3]-[6]. The recent DDoS Threat Report [7]
shows that the majority of DDoS attacks are short in duration,
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and high-volume, high-rate DDoS attacks are on the upswing.
To thwart a DDoS attack, the detection of the events must
be completed during the manifestation phase, in which the
attack develops and finally compromises the availability of a
legitimate service. Furthermore, the malicious hosts also need
to be identified in order to mitigate the attack. Our objective
in this paper is to develop anovel AL-DDoS detection method
that meets these requirements.

In order to defend against AL-DDoS attacks effectively,
we draw on the experiences of [8], which extracted rhythm
patterns to represent the characteristics of music clips. When
visiting a website, users open and browse web pages repeatly,
which also has some rhythm patterns, both in content
and dwell time. To catch these rhythm patterns, we adopt
the packet size and the interarrival time of consecutive
HTTP-request packets in a flow as our original features. After
a series of transformation, the relative relations are extracted
from feature sequences to construct the RM (rhythm matrix).
For website users, the RM can characterizes the distribution
of their access trajectory fragments, including the order of
visiting pages and the time spent on each page. It is difficult
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for an attacker to mimic these characteristics of legitimate
access. On the contrary, mass similar access controlled by
one attacking master will markedly change some elements
in the RM. So we examine the change-rate abnormality in
the RM to detect AL-DDoS attacks, and furhter identify the
malicious hosts according to their droppoints in the RM. Our
method provides a new perspective for both characterizing
group behavior and identifying AL-DDoS attacks. Analysis
and experiments show that our method performs well in terms
of both timeliness and accuracy.

The main contributions of this paper are listed as follows:

o We define a noval abstract model, named RM (Rhythm
Matrix). For one website, an RM can depict the distri-
bution of user access trajectories, which is a whole new
perspective. Statistics show that the RM can characterize
the legitimate access and is sensitive to the change of
group behavior.

o We propose an approach to detect AL-DDoS attacks.
Based on the fact that the distribution of droppoints in
RMs remains relatively stable under legitimate access,
we count the variation degree of droppoints distribution,
and detect AL-DDoS attacks from its remarkble growth.

« We also propose an approach to further identify mali-
cious hosts. After an AL-DDoS attack is detected,
we find out the change-rate outliers from the subsequent
RMs, and track the associations between hosts’ drop-
points and these outliers. If a large percentage of it’s
droppoints fall on the outliers, one host can be deter-
mined as a malicious host.

o We simulate three modes of AL-DDoS attacks with
popular DDoS attack tools, and evaluate the accuracy
and timeliness of our detection approach. We also ver-
ify the effect of malicious-hosts recognition with these
simulated datasets.

o We reconstructed two public flash crowd datasets and
demonstrate that an RM would not bothered by the dras-
tic changes in legitimate traffic. This advantage ensures
that our detection method can effectively distinguish
flash crowds from AL-DDoS attacks.

The rest of this paper is organized as follows. In Section II,
we present related work. Section III presents the construction
of the RMs and our detection approach. In Section IV,
the experiments and analyses are described. Finally,
Section V discusses some open issues, and Section VI con-
cludes this paper.

Il. RELATED WORK
Generally, the word “rhythm” is used to refer to all the
temporal aspects of a musical work. In the field of music
signal processing, rhythm has been extracted as a feature for
detecting music mood or classifying the genre of the music
content [8]-[10]. Based on the rhythmic characteristics of
network flow, we propose RM and use it to identify AL-DDoS
attacks.

Researchers have studied DDoS attacks from differ-
ent perspectives and proposed many approaches to detect
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and mitigate them [1], [3]-[6], [11]-[18]. Recent research
interests have been more concentrated on AL-DDoS
attack [2], [7], [19]-[30] for its harmfulness and concealment.
In this section, we focus on works that are similar to our
approach in terms of feature selection or model construction.

Some studies adopted packet size or interarrival time as
features in DDoS detection. Li [31] employed the packet
size discrete series to study how the Hurst parameter H
of traffic varies under DDoS flood attacks. A method pre-
sented in [32] made use of the mean packet interarrival
time to construct a fuzzy estimator to detect DDoS attacks.
Zhou et al. [33] used the expectation of packet size to distin-
guish two typical low-rate DDoS attacks, constant attack and
pulsing attack, from legitimate traffic. Although packet size
and interarrival time are network-layer properties, a wealth of
application-layer information is implied by them. Our method
utilizes the rhythm matrix to depict the relative relations
of consecutive packets and to capture the application-layer
information.

Some related publications defined a matrix to characterize
the patterns of traffic in DDoS detection. One paper [34]
adopted a covariance matrix for the detection of AL-DDOS
attacks, but implementing such a matrix for each user on a
popular website has a high cost. Xie and Yu [35] constructed
an access matrix to describe document popularity by extend-
ing the traditional definition, i.e., the request hit rate, and then
used a stochastic process to model the variety of document
popularity. Lee et al. [36] built a traffic matrix by extracting
source IP addresses from an inbound traffic stream and used
the variance computed from the fraffic matrix to detect DDoS
attacks. Another study [37] designed a Bayesian network
structure to model the causal relationships between network
traffic and constructed a traffic matrix. Luo et al. [38] con-
structed a behavior feature matrix based on nine user behavior
features, and outliers from user browsing behavior patterns
were used to recognize normal users and attackers. Compared
with the access matrix, our rhythm matrix can also capture
the spatial-temporal patterns of access behaviors with lower
complexity. The rhythm matrix is constructed at the packet
level, as is the traffic matrix, but the features employed by
the rhythm matrix can depict a much richer application-layer
information.

1ll. DESCRIPTION OF THE PROPOSED METHOD

In this paper, we focus on AL-DDoS attacks targeting web-
sites and consider HTTP-flooding attacks as the principal
experimental subject. Our main objective is to build an accu-
rate model of legitimate traffic, i.e., the target class, then try
to detect whether the subsequent traffic is adulterated with
attack flows by comparing the behavior to that of the target
class.

A. REQUEST RHYTHM MATRIX

Fig.1 intuitively depicts the construction scheme of the
rhythm matrix. First, we extract the flows from inbounding
traffic, and denote the aggregation of flows as F. Then,
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FIGURE 1. Construction scheme of the rhythm matrix.

we discrete and encapsulate the feature sequences of these
flows, and F is transformed into . Finally, we set a window
on F’ and produce the rhythm matrix. Next, we describe the
construction process in greater detail.

1) FEATURE EXTRACTION

Based on the analogy between music and network flow,
we consider the packet size and interarrival time between
consecutive packets in a flow as our features to create the RM.
The packet size implies the location of the requested object,
so the packet size sequence depicts the access trajectory
in the spatial dimension. The interarrival time implies the
dwell time on one object, so the interarrival time sequence
depicts the access trajectory in the temporal dimension.
These appearently network layer features contain a wealth of
application-layer information.

Our method uses RMs to profile the access behaviors.
An RM is constructed from the inbound traffic flows.
We define flow F as the unidirectional, ordered sequence of
IP packets produced either by one client towards the server or
by the server towards the client during a period of time. Our
detection system only pays attention to the flows from client
to server, and we denote the aggregation of flows from all
clients towards the server in one period as F. Each flow F' can
be represented as an ordered sequence of pairs (s, At), where
s represents the packet size and At represents the interarrival
time between the current packet and the previous one.

Some incoming packets should be filtered out from . The
packets that carry empty TCP payload are not considered,
except for those for which SYN/FIN TCP-flags are set. The
statistical behavior of TCP packets of zero payload size does
not depend on the behavior of the users but is a function of the
TCP/IP stack of the end hosts and the status of the network.
So empty TCP packets are of little use in the characterization
of application-layer traffic. A side benefit of ignoring zero-
payload-size packets is that it is helpful to reduce the con-
sumption of computational resources. In practice, a simple
BPF expression, as below, can help us to filter the useless
packets.
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e BPF expression example:
(dst host host and tcp port port) and \
((tepltepflags] & (tep-syn | tep-fin) = 0) or \
((ip[2:2] — (ip[0]&Oxf)<<2 — (tcp[12]&0xf0)>>2)
1=0))

When matched packets arrive at the detecting module,
we group them into different inbound flows by maintaining a
hash table. With the hash value of the source IP address, one
packet is finally mapped and appended to a list of (s, At).
The collision problem is negligible in this hash table because
the window restricts the number of points in ' and, in turn,
the number of packets for one rhythm matrix.

Assuming there are N flows during one window, we set F'
to be one of these flows with size of L and denote it as follows:

_ (s s2) ... sL)
"= (At(l) Ar2) ... At(L)) )

Then F consists of these N flows:
N-1 '
F = U F', whereF" denotes the i_th flow of F  (2)
=0

2) DATA TRANSFORMATION

The packet size s is approximately equal to the sum of
the length of the encapsulation headers and the payload.
The encapsulation headers always hold a fixed length for a
client-server pair, and the payload is the main variable for
different application protocols. For HTTP requests, the size
of payload is the sum of the lengths of the URL and HTTP
protocol extra messages. For a given website, the only varia-
tion is the extra messages, which depend on some factors with
a small variable quantity. Thus, the packet size s corresponds
to the length of the URL.

The interarrival time between consecutive packets is
affected by many factors, such as the distance of the peers,
network congestion, and user access behavior. We argue that,
within a short period, the relative interarrival times of HTTP
requests are mainly influenced by the page components and
user browsing duration. We adopt a logarithmic transforma-
tion to truncate the range of possible values to a limited
interval. Commonly, the grain of the time-stamp recorded by
a network traffic capture tool is fixed. Hence, the observed
variable log;[ At] is discrete and limited.

We denote the cardinality of observable values for the
two variables as B(s) and B(At), respectively. In reality, B(s)
and B(At) always hold great values. Since our detection
model must run in a real-time environment, the rhythm matrix
should be abstracted into a reasonable space size to construct
it fast enough, while at the same time covering as many
incoming packets as possible. Therefore, we quantize the
variable log;,[A¢] with step size of one and s with a step
size of B(s)/10, where B(s) = sup(s) — inf(s). The symbols
“sup” and “inf” indicate the supremum and infimum limits
of the variables immediately following with them. According
to these rules, we obtain the formula (3). In a practical pro-
cess, we can modify the supremum and infimum limits of s
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and At to different values based on the actual situation. For
simplicity, we set |log;o[sup(A¢)] —log[inf(A#)]] to be the
constant 9. As mentioned above, s is quantized with a step
size of B(s)/10. Thus, both 5" and At are discrete integers in
[0, 9].

s — inf(s)

(s', Ar') = (LMJ, llog,o[At] — logm[inf(At)]J>
3)

To encapsulate the HTTP request rthythm, we integrate d
pairs (s, At’) into one pair and transform the flow into:

- (x(l) x(2) ... x(L’))

(1) ¥2) ... yL) @)

in which

(:9)- (Zi;é<s;+k < 109 ) ®

() oAt x 105

where L' = L%J, i=dj+1and0 <j < L'. With variable d,
the rhythm matrix possesses a flexible resolution ratio. If the
length of flow F' is not an integer multiple of d, the remaining
packets will fit into the next window. Once the array of (s, At)
for each flow is filled up with d + 1 pairs, the transformation
in (5) is performed exactly once. Then, the first d elements
of the array are cleared and the tail is moved to the head
to calculate Ar of the next incoming packet. This procedure
is executed repeatedly during the module runtime. However,
we should also pay attention to the flows with lengths less
than d. These flows are never transformed to the format of
F’, so we must set a session timeout value and release the
buffers of the useless flows periodically.

Now, flow F is transformed into F’. Accordingly, F is
transformed into F', which is an aggregation of F:

N-1 _
F=JF" (6)
i=0

where N is the number of flows in ' and F” is the trans-
formed sequence of the i-th flow in F.

3) RHYTHM MATRIX CONSTRUCTION
The construction of an RM is shown in Fig. 2. We use x
and y as the indexes of the row and column of the matrix
respectively. Clearly, the values of x and y in formula (4)
are integers in [0, 104 ), so the scale of the rthythm matrix is
107 x 10%. In terms of space complexity, we need to limit
the value of d. If the data of an RM can all reside in memory,
the efficiency of the algorithm can be effectively improved.
In general, the recommended value range of d is between
2 and 4. Typically, we set d as 3 in the later experiments.
The element (x,y) in the RM records the times that (x,y) is
generated from F’. We present the definition of the rhythm
matrix below.

Definition 1: Rhythm Matrix Let F be the packet
sequence of a traffic trace, the transformed sequence of which
is 7. The RM is a 10¢ x 10% matrix, with R,y denoting the
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FIGURE 2. Construction of the rhythm matrix from the transformed
sequence.

element at location (x,y) of the matrix. If the value of each
element R,y is equal to the frequency of (x,y) in ', we call
the RM the rhythm matrix of this trace.

We did not set the window on F but on F’, and the size
of the window is based on the number of droppoints. On the
one hand, a time-based window on JF would lead to extra
computational overhead in the absence of DDoS attacks and
infrequent access. On the other hand, a window size based on
the number of packets would generate dissimilar RMs in the
case of flash crowd traffic. As an extreme example of adopt-
ing the window size based on the number of packets, when
the number of concurrent sessions is equal to the window
size, no droppoints can be produced and the RM is filled with
zero elements. Such an RM cannot represent any information
about the traffic. In the following, we will denote the window
size based on the number of droppoints as PktW.

To describe the construction more clearly, we illustrate the
matrix generation process with an simple example. Suppose
a flow F exists, from which a fragment of packet-size series
s and interarrival time series At are extracted as follows:

s\ _ 40 186 332 186 518
At ) 7 10.000001 0.00001 0.1 1 10

We discretize above flow features with formula (3) and

yield:
sy _(0 1 2 1 3
AV ) \0 1 5 6 7

Then this flow can be added into the rhythm matrix. We set d
to 3 and calculate the droppoint coordinate for every three
continuous packets with formula (5). For example, the x-
coordinate for packets 1731s 0 % 100 + 1 % 10 + 2 = 12,
and the y-coordinate is 0 % 100 + 1 % 10 + 5 = 15. Thus,
the droppoint coordinate of packets 173 in the rhythm matrix
is (12,15), and we add 1 to the element at this location. Other
flows can be processed concurrently in the same way, until
the number of droppoints reaches window size PktW .
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SUF | MUF | RUF | WEB-1 | WEB-2 [ WEB-3 [ WEB-4 | WEB-5 | WEB-6 | WEB-7

SUF | 29.63 95.12  82.67 | 129.33 | 121.71 | 100.16 | 85.33 | 93.48 | 85.69 | 126.19
MUF | 95.12  22.47 113.52 | 150.75 | 143.12 | 126.27 | 115.80 [ 122.50 | 115.94 | 148.65
RUF | 82.67 113.52 27.68 | 117.77 | 110.11 | 86.19 | 68.84 | 81.25 | 68.11 | 111.03
WEB-1( 12933 [ 150.75 | 117.77 | 49.65 | 142.12 | 129.51 | 117.48 | 124.91 | 119.26 | 143.68
WEB-2 [ 121.71 [ 143.12 | 110.11 | 142.12 | 25.88 | 122.50 | 110.84 | 109.85 | 112.40 | 135.50
WEB-3 [ 100.16 | 126.27 | 86.19 | 129.51 | 122.50 | 25.32 | 86.21 94.69 | 87.59 | 126.60
WEB-4 | 8533 [ 115.80 | 68.84 | 117.48 | 110.84 | 86.21 28.05 | 82.16 | 69.28 [ 115.07
WEB-5( 93.48 [ 122,50 | 81.25 | 124.91 | 109.85 | 94.69 | 82.16 | 29.70 | 83.40 | 121.12
WEB-6 | 85.69 [ 11594 | 68.11 | 119.26 | 112.40 | 87.59 | 69.28 | 83.40 | 42.47 | 117.02

WEB-7 [ 126.19 [ 148.65 | 111.03 | 143.68 | 135.50 | 126.60 | 115.07 | 121.12 | 117.02 | 33.30

FIGURE 3. Distance matrix of 10 groups of RMs.

B. DESCRIPTING TRAFFIC WITH RHYTHM MATRICES

The key point of our model is that it can effectively sense
the change of access trajectory distribution. In this section,
we present how the RM is able to describe the characteristic of
various types of traffic. Ten traces, including seven different
sites” normal traffic and three DDoS attack modes’ traffic,'
were used to build the RMs. The WebDDoS attack modes are
classified based on the taxonomy presented by [39] and [40],
i.e., Single-URL Flood (SUF), Multi-URL Flood (MUF) and
Random-URL Flood (RUF). We built a group of 4 RMs with
the same PktW on each trace and computed the Euclidean
distance between all pairs of RMs. Then, the mean Euclidean
distance between the RMs in two groups composed the dis-
tance matrix, as shown in Fig.3.

Fig.3 provides at least 3 viewpoints about RMs. First,
the RMs have a high similarity if they are built based
on the same-source traffic but are dissimilar if built on
different-source traffic. Second, the RMs built on DDoS
traffic are dissimilar to those built on normal traffic, even
traffic from different sites. Thus, the rhythm matrix has the
ability to discriminate DDoS attack traffic from normal traffic
through some reasonable measures. Finally, the modes of
DDoS attack traffic can be classified by the RMs, although
this is not a requirement for this paper. Later in the exper-
iments, we will show RM’s perception ability to AL-DDoS
attacks in a more comprehensive way.

C. DEFENDING AGAINST AL-DDoS ATTACKS

According to the previous analysis, we conclude that an RM
can accurately characterize the access behaviors of website
users. Under an AL-DDoS attack, many malicious hosts
access a website via a similar mode simultaneously, which
would lead some elements in the rhythm matrix to increase
disproportionately. According to these abnormal elements,
we can detect the DDoS attacks and identify the malicious
hosts.

IDDoS attack traffic is captured by simulating on our campus website;
normal traffic is extracted from the dataset http://wand.net/wits/waikato/8/
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1) CHANGE RATES AND DDoS DETECTION

For a website, the relative relations among elements in the
rhythm matrix remain roughly stable over time. Suppose we
have sampled i RMs, RM = {RM, RM>, ..., RM;} for the
normal traffic of one site. RM; is the current thythm matrix,
and we select one previous rhythm matrix as its base matrix.
Let R,y be one element of RM;, and let R;’ y be the corre-
sponding element in the base matrix. Then, we can define the
change-rate for R, , as:

RX,}‘
/
R,

Qx,y = @)
When R;’y is 0, we set it to be 1. Normally, the values of
change-rate in one rhythm matrix would be very similar.

However, for the aggregation of similar access behavior
under an AL-DDoS attack, this balance in rhythm matrix can
be broken and some of the elements can increase unusually.
In practice, some accidental events could also cause a few ele-
ments to increase unusually; thus, AL-DDoS attacks should
not be identified based solely on the appearance of abnormal
growth elements. To eliminate the distraction of accidental
abnormal growth, we introduce a new measure named the
abnormality degree. For the elements whose change-rate is
greater than 1 in RM;, we suppose the average change-rate
is a. We define the abnormality degree of element Ry, as
max(0, Ry y — R, *&). Then, the abnormality degree of RM;
is:

y = max(0,Ryy — R, @) (8)

We can track the normal access traffic of one website and
obtain the maximum value of y, then set a threshold I’
slightly higher than y. For subsequent access traffic, if the
abnormality degree of an RM exceeds I', then the website is
under AL-DDoS attack.

In general, we use RM;_, rather than RM;_, as the base
matrix of RM;. Because if an AL-DDoS attack starts in
the second half of the window of RM;_1, the attack can proba-
bly escape detection in RM;_; for an insufficient abnormality
degree. Then, using RM;_; as the base matrix will weaken
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the abnormality degree of RM; and result in a false negative.
Selecting RM;_» as the base matrix of RM; can prevent this
problem. If the DDoS attack is detected in one rhythm matrix,
for instance, RM;, then the base matrix of subsequent RMs
should remain unchanged until the attack disappears.

2) OUTLIERS AND MALICIOUS HOST IDENTIFICATION

As previously mentioned, the similar access behavior of a
vast number of malicious hosts results in abnormal growth
elements, and vice versa, the majority droppoints of one
malicious host would fall on abnormal growth elements.
Thus, if the abnormal growth elements are found out, we can
identify the malicious hosts.

By considering the change-rate outliers, we can locate the
abnormal growth elements in RM;. In statistics, an outlier is
an observation point that is distant from other observations.
The simplest way to identify outliers is with the quartile
method, which flags observations based on the interquartile
range. Suppose Q1 and Q3 are the lower and upper quartiles of
the change-rates in an RM, respectively, then we could define
an outlier of change-rates to be any observation outside the
range:

[Q1 — k(@3 — Q1), Q3 + k(03 — Q1] C))

where k = 1.5 indicates an “outlier”.

If an AL-DDoS attack is detected in RM;, we track the
droppoints of every host in RM; 1. After identifying the out-
liers in RM; 1, we can identify the malicious hosts by check-
ing their droppoints. Suppose that for one host, p percent of
its droppoints fall on outliers. If p exceeds a threshold ©®, then
the host is considered to be malicious. The threshold ® can
be set experimentally. A low ® can ensure a high malicious
host identification rate; however, this would inevitably lead to
false positives. Therefore, we need to find the optimal range
of ®. In practice, we can adopt a dynamic adjustment scheme:
® is initialized with a high value, such as 80%, and once
an AL-DDoS attack is detected, the value of ® is gradually
reduced until the target website under attack can function
normally.

D. COMPLEXITY ANALYSIS

We now consider the computational cost of the discussed
algorithm. The computational complexity of the generation of
an RM is O(n), where n is the number of droppoints in the RM
and is no more than PktW. A hash table is used to record the
list of packet lengths and interarrival times (s, Af¢), which is
preallocated and does not increase, so the spatial complexity
is O(1). To generate the abnormality degree of each RM in the
detecting phase, we need to calculate the change-rates and
count them. The number of elements in an RM is constant,
so the time complexity is O(1). When we identify malicious
hosts, we first perform outlier detection. The time complexity
to detect outliers is related to the sorting algorithm: we use
quick-sort with time complexity O(n x logyn). After an attack
is detected, we track every IP and calculate its percentage of
droppoints falling on outliers. All the hosts must be recorded,
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FIGURE 4. Profiles of the different AL-DDoS datasets.

so the space complexity is O(n), where n is the number of
hosts.

IV. EXPERIMENTS

A. DATASETS

1) DDOS DATASET

In this section, we employed two practical DDoS attack tools,
HOIC [41] and LOIC [42], to generate our own DDoS attack
datasets [12]. The primary data samples were generated by
a small-scale simulation in which our campus website was
the main protection target. We evaluated the effectiveness and
timeliness of the proposed method.

The data were collected by mirroring the server’s Ethernet
port and capturing the inbound traffic on ports 80 and 443.
The PF_RING ZC [43] was employed in the capture process
to avoid packet dropping. We launched three attacks with dif-
ferent settings to generate three datasets. The traffic profiles
are shown in Fig. 4, where 4(a) shows the LOIC-S of which
the target is a single page without parsing the mainframe of
the page, 4(b) is HOIC-P of which the target is one page
with parsing of the mainframe of the page, while 4(c) is
HOIC-R of which the target is randomly chosen from a list of
pages and with parsing of the mainframe of each page. These
three datasets correspond to the three modes introduced in
Section III.

We recorded the start-time and the onset-time of each
attack mode. The onset-time stands for the time when
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TABLE 1. Duration of the manifestation phase.

Mode ART-Duration(sec)  EC N-Duration(sec)

LOIC-S 300 912
HOIC-P 100 820
HOIC-R 120 206

the DDoS attack took effect, which we identified by two
approaches. The first approach is artificial recognition, that
is, continuously visiting and refreshing the page of the vic-
tim server on one PC connected in the same subdomain
as the victim server. The time when the page no longer
displayed was recorded as the onset-time (ART). The other
approach extracted the time-stamp of the first packet with
the ECN (Explicit Congestion Notification) TCP-flag as the
onset-time (ECN). The ECN is an extension of the TCP/IP
that allows end-to-end notification of network congestion
without dropping packets. Therefore, we can consider the
time-stamp of the first packet with the ECN setting coming
out from the server as the DDoS onset-time. By subtracting
the start-time from the onset-time, we can obtain the duration
of the DDoS manifestation phase of each mode, as shown
in Table 1.

The duration times in Table 1 show that legitimate users
are influenced more immediately by DDoS attacks than are
network devices because the servers always attempt to serve
every incoming request and will not signal impending con-
gestion until the limited resources are exhausted. However,
an end-user can feel the network abnormality before that
point.

2) FLASH CROWD DATASET

To demonstrate the performance of our proposed method in
the case of flash crowds, we used the 1998 FIFA World Cup
dataset [44] as a representation of flash crowds. This dataset
represents a highly reliable flash crowd and has been widely
used for recent high-quality publications, such as [35], [45].
To better reflect the real situation of the network, we chose
only the requests to the servers in PLANO during two time
periods that correspond to two knockout games, Romania
versus Croatia (RC for short) and Argentina versus England
(AE for short), as shown in Fig. 5.

We reconstructed the data to meet the requirements of
our experiments. First, we set the session-timeout value to
100 seconds so that the maximum number of active sessions
would not be too great to exhaust the resources of the servers,
as discussed in [46]. Second, a log item with the SYN flag
was inserted in the front of each session while an item with
the FIN flag was set at the end. Finally, the interarrival times
between consecutive log items of the same session were
generated from a log-normal distribution with parameters p
and o taken from paper [47]. To more clearly represent the
actual situation, we calculated the packet size for each item
on the basis of the URL length.
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FIGURE 5. Profiles of the flash crowds dataset.

B. EMPIRICAL RESULTS

In this section, we perform evaluations of our proposed
method using the aforementioned datasets. Since our algo-
rithm only considers the relative packet size, for simplicity,
we use the size of the Ethernet frame instead and limit the
packet size s in the range [40,1500] in all the experiments.
Although the interarrival times between consecutive packets
are not generally limited, we restrict them so that the min-
imum value is fixed to 107® s and the maximum is fixed
to 103 s. Since we apply a log transformation, the variable
log;((At) ranges in [—6,3], which satisfies the condition
[logolsup(Ar)] — log;olinf(Az)]] = 9, as mentioned in
Section III. For simplicity, we set the parameter d = 3.
In other words, we adopt the 1000 x 1000 rhythm matrices
for the experiments.

1) PERFORMANCE OF DETECTING AL-DDOS

Our AL-DDoS detecting method is based on two assump-
tions, one is that the RMs of traffic targeted at the same
website are similar, and the other is that AL-DDoS attacks
would cause obvious changes in the RMs. We set Pktw to
be 2000 and chose two RMs at random from normal traffic,
LOIC-S, HOIC-P and HOIC-P, respectively. The 2000 drop-
points are sparsely distributed in 1000*1000 matrix, which is
difficult to be observed by the unaided eye. So we compacted
these 1000 x 1000 matrices into 50 x 50 matrices through
accumulating adjacent elements. The gray-scale maps of
these 50 x 50 matrices are shown in Fig 6. As we can see,
the differences between RMs from normal traffic, LOIC-S,
HOIC-P and HOIC-P are obvious, and the matrices in the
same group are very similar. These statistical results strongly
support our assumptions.

To evaluate our detection method, we calculate the true
positive rate (TPR) and false positive rate (FPR). A larger
Pktw could delay the detection time, but a small window size
could also weaken the statistical characteristics of the rhythm
matrix. Taking these factors and the dataset size into account,
we set Pktw in the range 80072200 with step 200. Before
attack detection, the threshold abnormality degree, i.e., ',
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FIGURE 6. Gray-scale map of RMs for normal and three types of AL-DDoS.

must be set. For each Pkrw, we determine I" by raising the
maximum value of the abnormality degree on normal data
by 5%. We replay one hour of normal traffic data and three
different types of attack traffic to the detection system. From
the normal and one type of DDoS traffic, we gather P and
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QO RMs respectively, which denoted by RM,,,,, and RMpp,s.
Then, we perform detection and calculate the TPR and FPR
via formula (10), as shown at the bottom of the next page.
As shown in Table 2, for three types of AL-DDoS attacks,
our method performed well in terms of both TPR and FPR.
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TABLE 2. Performance in detecting DDoS attacks.

PRIW TPR FPR
LOIC-S | HOIC-P | HOIC-R | LOIC-S | HOIC-P | HOIC-R
800 1.00 1.00 1.00 0.00 0.00 0.01
1000 1.00 1.00 1.00 0.00 0.01 0.00
1200 0.99 0.99 1.00 0.00 0.01 0.01
1400 1.00 1.00 1.00 0.01 0.00 0.00
1600 0.99 1.00 1.00 0.00 0.00 0.00
1800 0.99 1.00 0.99 0.00 0.00 0.00
2000 0.99 0.99 1.00 0.00 0.00 0.00
2200 1.00 1.00 1.00 0.00 0.00 0.00
1400 T
——LOIC-S
1300 [ HOIC-P
—8—HOIC-R
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FIGURE 7. Abnormity degree and threshold for different types of attack
traffic.

Occasionally, in some RMs, our method failed to detect the
DDoS attack because the startup point of the attack fell in
the second half of the window and the abnormality degree of
that RM was not accumulated enough. The attack was then
detected in the next RM. Regarding the false positives, it is
inevitable that a small number of extreme exceptions exist
in normal data. By increasing the quantity of training data,
we can obtain a more appropriate I' and maintain a relatively
low false positive rate.

In order to show the detection effect more intuitively,
we checked the abnormality degrees for three AL-DDoS
attacks with the Pktw set to 1400 and the I' set to 730.
The results are shown in Fig. 7. In all three DDoS attacks,
the abnormality degree remains low in early normal stage, and
after the attack is launched, the abnormality degree increases
and exceeds the threshold considerably. These results validate
the hypothesis adopted in our method.

We also assess the detection timeliness of our method.
We record the time-stamp of the last packet belonging to the
RM in which the DDoS is first signaled and use it as the alert-
time. Since we have recorded the start-time of every mode
of DDoS attack, the detection duration can be calculated by

LOIC-S HOIC-P HOIC-R
350 350 350
ART-Duration
300 300 300
S 250 250 250
[
o
5
5 200 200 200
E]
©
§ 150 150 150
g ART-Duration
% ART-Duration
© 100 100 100
50 50 50
- ¥
ok K

0 0
1000 1500 2000 1000 1500 2000

Pktw

1000 1500 2000

FIGURE 8. Timeliness in detecting DDoS attacks.

TABLE 3. Performance in identifying malicious hosts.

o Precision Recall

LOIC-S | HOIC-P | HOIC-R | LOIC-S | HOIC-P | HOIC-R
0.2 1.00 1.00 0.69 1.00 1.00 1.00
0.4 1.00 1.00 0.92 1.00 1.00 1.00
0.6 1.00 1.00 1.00 1.00 1.00 1.00
0.8 1.00 1.00 1.00 1.00 0.82 0.27

subtracting the start-time from the alert-time. We repeated
the test with different attack launching times. The average
detection durations are shown in Fig. 8. Compared with
the ART-durations and ECN-durations of attacks in Table 1,
the detection durations were short, which demonstrates
that the DDoS attacks could be detected before they take
effect.

2) VALIDATION OF IDENTIFYING MALICIOUS HOSTS

When a DDoS attack is detected, our system starts tracking
the hosts to identify the attack nodes. Let k be 1.5 and Pktw
be 1400. Let ®, which is defined in Section III, take values
ranging from 0.2 to 0.8. The results are shown in Table 3.
Increasing ® improves the precision but lowers the recall.
In our datasets, the optimal results were reached when ©
was near 0.6: both precision and recall reached 100%. How-
ever, network conditions are complex and attacks are diverse,
so it is difficult to fix the optimal point. When under attack,
we would prefer to decrease ® from 0.8 to 0.2 gradually
according to the congestion degree rather than fix the value
in advance.

3) ABNORMITY DEGREE OF FLASH CROWDS
Because of the strong elusiveness of AL-DDoS attacks,
distinguishing flash crowds from AL-DDoS attacks is a key

TPR = # {j

|[RM; is signaled as abnormal & RM; € RMppos}

FPR = lj{j

|RM; is signaled as abnormal & RM; € RM,Wm}

Q
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FIGURE 9. Abnormal degree of flash crowds.

requirement for attack detection. We tested our method on the
previously mentioned real flash crowd dataset and checked
the abnormality degree. This dataset includes some ordinary
traffic and two flash-crowd periods, i.e., RC and AE; there-
fore, we simply replayed the traffic data to the detection
system. We chose a Pktw of 1400, and set the threshold
' = 590 based on a period of ordinary traffic.

The distribution of the abnormality degree is shown
in Fig. 9. Obviously, the abnormality degrees of flash crowd
traffic were distributed in the same range as ordinary traffic
and did not exceed the threshold. Therefore, a normal sudden
traffic spike, i.e., a flash crowd, could not be mistaken for an
AL-DDoS attack by our method.

We also selected three RMs randomly from the ordinary
period and the two flash-crowd periods respectively. Same as
before, for visualization purposes, we compacted the 1000 x
1000 matrices into 50 x 50 matrices. The gray-scale maps are
shown in Fig. 10. Obviously, the distribution of droppoints
did not change significantly in the three maps, which can
explain why the abnormality degrees in Fig. 9 remain stable.

C. COMPARISON WITH OTHER DDOS

DETECTION METHODS

Many methods reported by other researchers could work
well in detecting AL-DDoS attacks. However, only a few
works have identified malicious hosts and presented the
results [19], [20], [27], [48]. In this section, we compare
our method with these works in terms of four key aspects:
complexity, accuracy, adaptation and data source. The results
are shown in Table 4.

TCM-KNN [19], [48] was designed as a lightweight
DDoS attack detection scheme for web servers. The reported
TPR and FPR are 99.53% and 1.93%, respectively. E-FCM
is employed to boost the real-time detection performance.
However, the E-FCM instance selection mechanism for the
TCM-KNN algorithm is not amenable to incremental updat-
ing, so the model is not adaptive to network dynamics and
the training of the model is expensive. Paper [20] extended
HsMM (Hidden semi-Markov Model) to describe the brows-
ing behavior of websites. The entropy of the user’s HTTP
request sequence fitted to the model is used as a criterion to
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TABLE 4. Comparison with previous works.

‘ Complexity ~ Accuracy  Adaptation  Data
TCM-KNN medium high poor real-time data
HsMM high high fair web server log
SkyShield low medium good real-time data
Our Method low high good real-time data

measure the user’s normality. This method could achieve an
FPR as low as 1.5% and a detection rate of approximately
90%. However, the complexity of this algorithm is relatively
high, and the data source is the logs of the web server, which
will affect the real-time performance. SkyShield [27] exploits
the divergence between two sketches to detect anomalies that
are caused by numerous requests originating from malicious
hosts. A new variant of the Hellinger distance is designed
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to measure the divergence to mitigate the impact of network
dynamics. However, the sketch is an approximation tool that
sacrifices accuracy; thus, SkyShield is not good as the previ-
ous methods in terms of accuracy.

Although our proposed method also adopts a highly
abstract model to reduce the complexity, a wealth of
application-layer information is compacted into the RM.
Therefore, our method outperforms the aforementioned
methods in terms of detection accuracy. The RMs are pro-
duced online in the detection process, and no special training
is required; thus, our model can adapt to network dynamics.

V. DISCUSSION

A few limitations are worth discussing. First, the performance
of our method may be influenced by network conditions.
Our method was designed to run on an edge router near the
web server. If the method is deployed on a backbone router,
it should be capable of coping with the high bandwidth by
setting a larger PktW , but the detection time would be slightly
delayed.

Second, sophisticated attackers may increase AL-DDoS
traffic slowly, and our method may not be able to notice the
change. To overcome this vulnerability, we can select more
than one base matrix over a longer horizon, thus the abnor-
mality degree could be accumulated sufficiently to detect the
slowly increasing attack. Furthermore, low rate DoS attacks
against applications (LoRDAS) [49] may cause problems
because the special attributes of LORDAS prevent our method
from detecting such attacks during the manifestation phase,
unless the attack traffic is sufficient to disturb the rhythm
matrix.

Finally, two thresholds, i.e., I and ®, must be set based on
historical data of the target website. Alternatively, we could
adopt a cluster algorithm to differentiate abnormal data. The
clustering scheme could avoid the hassle of setting experi-
mental values but would result in higher computational com-
plexity. In practice, we need a balance between complexity
and convenience.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new model, i.e., the rhythm
matrix, to characterize access behavior. Based on this model,
the abnormal change points of the RM are utilized to detect
AL-DDoS attacks and to identify malicious hosts. We simu-
lated three modes of DDoS attacks by using the state-of-the-
art AL-DDoS attack tools LOIC and HOIC on our campus
network. The evaluation demonstrated that our approach
performs well in terms of both accuracy and timeliness.
At last count, the TPR is over 99% and the FPR is no more
than 1%. The precision and recall of identifying malicious
hosts increased to nearly 100% with the optimization of
the parameters. All the simulation attacks were detected far
earlier than the time at which they took effect. Furthermore,
two datasets modified from the 1998 FIFA World Cup dataset
illustrated that our method possesses excellent performance
in the scenario of flash crowds. In our model, although the
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traffic increased substantially under flash crowds, the abnor-
mality degree did not increase, whereas the abnormality
degree did increase under AL-DDoS attack.

We have tried to reduce the complexity of AL-DDoS detec-
tion method and proposed the rhythm matrix as a model with
strong identification power. Our future work will combine the
rhythm matrix with other online detection methods.
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