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ABSTRACT In this paper, we propose a novel tracking method based on structured metric learning,
which takes the advantages of both structured learning and distance metric learning. In our method,
tracking is formulated as a structured metric learning problem, which not only considers the importance of
different samples, but also improves the discriminability by learning a specific distance metric for matching.
Specifically, a concrete structured metric learning method is realized by making use of the constraints from
the target and its neighbour training samples under the above framework. Besides, a closed-form solution
is derived for the structured metric learning problem. To improve the matching robustness, the K-nearest
neighbours (KNN) distance is employed to determine the final tracking result. Experimental results in the
benchmark dataset demonstrate that the proposed structured metric learning based tracking method can
achieve desirable performance.

INDEX TERMS Object tracking, structured metric learning, KNN distance.

I. INTRODUCTION
Object tracking is one of the research topics in computer
vision, multimedia information processing, etc. Because it
can be applied in many fields, such as motion analysis,
intelligent surveillance, video editing and human computer
interactive, it has achieved the attention of many researchers.
However, realizing robust and accurate tracking is still a
challenging task because there exist many complex factors.
For example, the target may be occluded by some other
objects, and the appearance of the target may change heavily.
In addition, there may also be illumination changes and scale
changes, and the background may be cluttered.

Researchers have proposed many kinds of tracking meth-
ods. According to whether using the background information
to construct the appearance model, these tracking methods
can be divided into two types: the generative model based
methods and the discriminative model basedmethods. For the
generative model [1]–[5], the similarity between the candi-
date samples and the target templates are often calculated and
the tracking result is determined according to the similarity.
However, only the target information is made use of while the
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background information is neglected in generativemodel. For
the discriminative model [6]–[11], tracking is usually formu-
lated as a binary classification problem and the confidence
scores of the candidate samples are calculated to determine
the tracking result based on the learned classifier. In the latter
model, both the target and background information is applied,
which often leads to better performance than the generative
model. However, there still exist some issues in the discrim-
inative model. For example, the objectives of tracking and
classification are not completely consistent, and the samples
from the background are obtainedwith down-samplingwhich
cannot make full use of the background information, etc.

Deep learning has shown great potential and advantage
in feature extraction and model fitting. It is a new thought
to use deep learning for tracking problems. Deep learning
is derived from the study of neural networks and can be
understood as a deep neural network. Deep feature rep-
resentation can be obtained through it, which avoids the
complicated and cumbersome features of manual selection
and the dimensional disaster of high-dimensional data. The
main models of deep learning include Deep belief network
(DBN) [12], [13] based on Restricted Boltzmann machine
(RBM), Stacked auto encoders (SAE) based of Auto encoder
(AE) [14], Convolutional neural networks (CNN) [15], and
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Recurrent neural networks (RNN) [16]. Wu et al. proposed a
new deep learningmethod based on the greedy deep weighted
dictionary learning for mobile multimedia for medical dis-
eases analysis, which provides guidance for the diagnosis of
disease in wisdom medical [17]. Hu et al. proposed a new
deep transfer metric learning (DTML) method to learn a set
of hierarchical nonlinear transformations for cross-domain
visual recognition, which can achieve better performance
than existing linear metric learning methods [18]. Lu et al.
presented a new discriminative deep metric learning(DDML)
method for face and kinship verification in wild conditions,
which achieves the acceptable results in both face and kinship
verification [19]. In paper [20], deep learning is investigated
in more detail, training deep artificial neural networks to
represent the optimal control action during a pinpoint landing
and assuming perfect state information. The results allow for
the design of an onboard real-time optimal control system
able to cope with large sets of possible initial states while
still producing an optimal response. Reference [21] surveyed
recent developments in the literature regarding deep rein-
forcement learning methods for building human-level agents
and opened a discussion that potentially raises a range of
future research directions in it.

Structured learning can well represent the output of some
tasks in a unified framework with latent variables. An impor-
tant property of structured learning is that it brings in the
loss function to measure the importance of the training sam-
ples, which often improves the performance of the algorithm.
To address the issues existing in the classification based
discriminative model, structured learning is introduced into
tracking by some researchers. Hare et al. [22] propose the
Struck tracking method, which formulates tracking as a struc-
tured output problem and achieves great success. By intro-
ducing the structured learning strategy, the discriminability
of the tracker becomes finer and the location accuracy can be
further improved.

Metric learning aims at automatically learning a metric
from data to better measure the distance or similarity between
the data. It is also an important topic in machine learning, pat-
tern recognition, etc. Since metric leaning can often capture
the idiosyncrasies of the data of interest, it may perform better
than the standard metrics (e.g., the Euclidean distance) for
specific tasks. Metric learning has been successfully applied
in many fields, such as image classification, object recogni-
tion and face recognition. Specifically, some researchers have
introduced metric learning to tracking with good results.

Although both the structured learning and the metric learn-
ing have achieved great success in tracking, each of them
focuses on only one aspect and does not pay enough attention
to the other’s advantages. To the best of our knowledge, there
has not been a learning method combining both of them for
tracking.

Therefore, in this paper, we propose a tracking method
based on structured metric learning. First, we propose a
structuredmetric learning based tracking framework is shown
in Fig.1. On one hand, the structured learning is used to

FIGURE 1. The overview of the proposed tracking framework, which
includes two steps. (a) Learning the structured metric based on the
selected target and neighbor samples. (b) Tracking based
on the learned metric.

improve the discriminability of the model. On the other
hand, the metric learning can improve the adaptivity to the
appearance changes. Second, based on the formulation above,
we present a concrete structured metric learning method for
tracking. By dividing the training samples into target buffer
and neighbour buffer, the fine spatial constraints are utilized
to complete the metric learning. Third, the KNN distance
is introduced to determine the final tracking results, which
improves the robustness to challenging situations. We test
the proposed tracking methods in the benchmark dataset [23]
and the experimental results demonstrate that our method
can achieve comparable performance to many state-of-the-art
tracking methods.

The main contributions of this paper are two folds:
(a) From the perspective of theory, a novel structured met-

ric learning method is developed, which absorbs the advan-
tages of both structured learning andmetric learningmethods.
Concretely, the mathematical form of the structured metric
learning is given and the corresponding optimization method
is derived.

(b) From the perspective of practice, we apply the proposed
structured metric learning in tracking and present a novel
tracking method. Our method not only makes full use of
the spatial constraint but also better measures the distance
between the samples based on the learned metric, which can
determine the tracking position more accurately.

The remainder of this paper is organized as follows.
Section II introduces the related work. Section III gives the
details of the proposed tracking method, following which
the experimental results are demonstrated in Section IV. The
paper is concluded in Section V.

II. RELATED WORK
A. GENERATIVE TRACKING
Many famous trackers are realized based on the generative
model, which is usually constructed based on the infor-
mation of the target while ignoring the background. The
basic generative model is template based tracking [24], [25],
in which the target result is determined by template matching.
Further, to improve the robustness to occlusions and pose
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changes, Adam et al. [1] present the Frag tracking algorithm,
which represents the template object by multiple image frag-
ments or patches and combines the vote maps of the patches
for the final results. To better deal with the appearance
changes, some researchers make use of subspace learning
and sparse representation to build the model. For examples,
Ross et al. [3] present a tracking method based on incremen-
tal principal component analysis (PCA) subspace learning.
Mei and Ling [26] propose a sparsity approximation
based tracking method with `1-regularization. Besides, some
researchers use different strategies to promote the running
speed of the `1-regularized method [4], [27]. Moreover,
Zhang et al. [9] also utilize the low rank algorithm to improve
the tracking performance.

However, since most of the above methods only use the
target information, it may have less discriminability and not
work well in the condition of heavy occlusion, deforma-
tion, background clutter, etc. Moreover, it does not consider
the adaption of the metric. In practice, our method follows
the template matching strategy as well, but we develop a
structured metric learning method to improve the method’s
discriminability and adaptivity.

B. DISCRIMINATIVE TRACKING
Discriminative model, which is also called tracking-by-
detection, is constructed based on the information of both
the target and the background. In the traditional discrimi-
native model based methods, tracking is often formulated
as a binary classification problem. Avidan [6] proposes a
discriminative tracking method based on an off-line support
vector machine (SVM). Grabner et al. [28] present an online
boosting algorithm for tracking, which can adaptively select
the features for representation. Tang et al. [29] introduce the
co-training framework into tracking, which combines two
views of SVMs to improve the robustness. Zhang et al. [30]
make use of the compressive sensing to select features and
train the naive Bayesian classifier as the tracker. In addition,
some researchers also develop some methods based on dis-
criminative subspace learning and sparse representation. For
example, Li et al. [31] propose an incremental 3D discrete
cosine transform based tracking method, which uses both the
target and background to build the subspace. Sui et al. [32]
develop the discriminative low rank tracking method which
also makes use of the information of both the target and
background. However, since the above methods are all imple-
mented under the binary classification framework, there still
exist some problems, such as the downsampling problem
of the training samples, inconsistencies in the objectives of
tracking and classification, etc.

To address the issues existing in the traditional discrim-
inative model, many strategies, including multiple instance
learning, structured learning, fuzzy learning, etc., have been
introduced into tracking. For example, Babenko et al. [7]
present an online multi-instance boosting method for track-
ing. In their method, the positive bags and negative bags are
used to replace the positive and negative samples, which can

reduce the label ambiguity of the samples. Hare et al. [22]
develop a structured learning based tracking approach, which
makes use of structured output to avoid the intermediate
classification step. Henriques et al. [33] formulate tracking
as a correlation filtering problem which makes more full use
of the space information. Zhang et al. [34] introduce fuzzy
learning into tracking and propose a fuzzy least squares SVM
for tracking, which can effectively deal with the fuzzy bound-
ary problem between the training samples. Although these
discriminative methods address the issues in the traditional
methods by different manners, the metrics hiding in these
methods are still defined in advance or fixed, which lacks of
the flexibility and accuracy to represent the appearances of
different targets and scenes.

C. METRIC LEARNING BASED TRACKING
Researchers have proposed many different kinds of metric
learning algorithms [35], [36] and hereby, we mainly have a
short view about the Mahalanobis distance learning methods.
The first Mahalanobis distance learning algorithm is pro-
posed by Xing et al. [37]. It has no regularization, and aims
to maximize the sum of distances between dissimilar points
while keep the sum of distances between similar examples
small. Schultz and Joachims [38] further add a diagonal
matrix as the regularization, obtaining a new metric learn-
ing method. Moreover, Goldberger et al. [39] introduce the
neighbourhood component analysis (NCA) method, Glober-
son and Roweis [40] propose maximally collapsing metric
learning (MCML) method and Weinberger et al. [41] present
the large margin nearest neighbors (LMNN) method.

Metric learning has been successfully applied in many
computer vision fields, e.g. image classification [42], object
recognition [43], image annotation [44], image retrieval [45],
etc. Recently, some researchers have introduced metric learn-
ing into tracking and obtained some useful results. For exam-
ple, Jiang et al. [46], [47] incorporate adaptive metric into
differential tracking method and obtain a closed-form analyt-
ical solution to motion estimation. Li et al. [48] propose the
non-sparse linear representations for visual tracking, where
a Mahalanobis distance metric is learned online and incorpo-
rated for linear representation.Wu et al. [49] propose a metric
learning based structural appearancemodel, which introduces
onlinemultiple instancemetric learning algorithm to learn the
metric and uses multiscale max pooling on the weighted local
sparse codes. Yi et al. [50] develop the individual adaptive
metric learning for visual tracking, which can improve the
computational efficiency by adapting the distance from each
individual sample point to a few anchor points instead of the
distance between all pairs of samples. However, most of these
methods are realized based on the binary classificationmodel.
In this paper, we focus on the Mahalanobis distance learning
and propose a novel structured metric learning algorithm. It is
driven by the tracking task and breaks through the limitation
of the traditional classification framework.

Clustering analysis as a key step in object tracking plays
an important role, which determines the final tracking result.
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He et al. [51] suggest to use kernel k-means sampling for
Nystr öm-based kernel matrix approximation to minimize the
upper bound of a matrix approximation error. In order to
get a lower complexity of spectral clustering and speed up
eigenvector approximation for large-scale data, He et al. [52]
propose an efficient spectral clustering method via explicit
feature mapping. Considering to the performance of Non-
negative matrix factorization that has been restricted due to
its limited tolerance to data noise, as well as its inflexibility
in setting regularization parameters, Leng et al. [53] propose a
novel sparse matrix factorization method for data representa-
tion termedAdaptive Total-Variation Constrained basedNon-
NegativeMatrix Factorization onManifold (ATV-NMF). The
beauty of this method is that the manifold graph regular-
ization is also incorporated into NMF, which can discover
intrinsic geometrical structure of data to enhance the discrim-
inability. In our work, we propose a novel tracking method
based on structured metric learning, which not only consid-
ers the importance of different samples, but also improves
discriminability by learning a specific distance metric for
matching. Specifically, a concrete structured metric learning
method is realized by making use of the constraints from the
target and its neighbouring training samples within the above
framework.

III. TRACKING WITH STRUCTURED METRIC LEARNING
A. OVERVIEW
The overview of the proposed structured metric learning
based tracking method, which is named SML, is shown
in Fig. 1. The novel method has two main steps. The first
step is to learn the structured metric. Hereby, we propose a
novel structured metric learning method to learn the metric
M , which considers both the structured learning and metric
learning and can better represent the distance of the samples
than the traditional Euclidean distance. As Fig. 1(a) shows,
the target samples and some neighbor samples near the target
are selected to learn the metric, which provides the spatial
constraints and has fine discriminability. The second step is
tracking and location. According to the learnedM , we calcu-
late the distances between the candidate samples and the tar-
get samples, respectively. Moreover, the minimum distance
rule is used to determine the final tracking result. Further,
the new tracking result is also used to relearn themetric for the
tracking in next frames. In the following subsections, we will
introduce the formulation based on structured metric learn-
ing, training process, tracking process and update scheme in
details.

B. FORMULATION
Since we aim to track the target by calculating the dis-
tances between the candidate samples and the target samples,
the metric plays an important role in calculating the distance
and how to learn the distance metric is regarded as the kernel
of our method. The proposed method is motivated by both the
structured learning and the metric learning. As we have intro-
duced before, the Struck method [22] formulates tracking as a

FIGURE 2. The spatial constraint from the neighbour samples. (a) denotes
the target sample and (b)-(d) denote the samples with different distances
to the target. It can be seen that the farther the position of the sample to
the target, the larger the distance between it and the target in feature
space.

structured regression problem. In Struck, the training samples
obtained based on different transformations are assigned to
different importance according to the overlap rate. In this
paper, we utilize the structured learning strategy as well, and
we bring the structured learning strategy into metric learning,
by which we can better measure the distances of the training
samples and the target samples.

The proposed method is based on the following structured
constraints. The distances in the feature space between the
target sample and the neighbour samples should be different
according to the different spatial distances, the distance in the
feature space increases with the increase of spatial distance.
Moreover, the neighbour samples which are farther to the
target should have larger distances to the target than the neigh-
bour samples which are closer to the target. By considering
the importance of different neighbour samples, the structured
metric learning can provide finer discriminability than the
traditional binary classification formulation. As Fig. 2 shows,
(a) denotes the target sample and (b)-(c) denote the neighbor
samples. Since the sample (d) is farther than (b) and (c) to (a),
the distance between (d) and (a) should be larger.

Based on the above constraints, learning the structured
metricM can be formulated as the following problem

min
M
‖M‖2F − C

∑
i,k

1i,kd2M (xi, xi,k ), (1)

where M is the metric to be optimized, ‖ · ‖F denotes the
Frobenius norm, dM (·, ·) denotes the distance between two
samples with metric M , C is the trade-off parameter and
1i,k denotes the weight parameter which is used to measure
the dissimilarity of different neighbor samples to the target.
The first term is the regularization term, which is used to
avoid overfitting. In the second term, xi denotes the target
sample and xi,k denotes the neighbor sample which is selected
by transformation around xi, where k = 1, 2, . . . ,Nk and Nk
denotes the number of transformations. Note that the second
term is negative, which can make the structured constraints
integrated in the unified framework with regularization.

C. OPTIMIZATION
Now we introduce how to solve the optimization problem
in Eqn.1. According to the definition of distance metric,
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Eqn.1 can be rewritten as follows

min
M
‖M‖2F − C

∑
i,k

1i,k (xi − xi,k )TM (xi − xi,k ). (2)

Let J denote the function to be optimized in Eqn.2, then the
first-order derivative of J w.r.t M can be calculated by

∂J
∂M
= 2M − C

∑
i,k

1i,k (xi − xi,k )(xi − xi,k )T . (3)

Then the optimal solution to Eqn.1 can be obtained by setting
∂J/∂M = 0. As a result,

M =
1
2
C

∑
i,k

1i,k (xi − xi,k )(xi − xi,k )T . (4)

It can be seen that M can be obtained in closed form, which
can be calculated efficiently.

D. TRAINING SAMPLES PREPARATION
The distance metric is learned by adding constraints to the
training samples. As we have mentioned above, the training
samples can be divided into target samples and neighbor
samples. Hereby, we introduce how to select the training
samples in details. In our method, we build two buffers,
the target buffer T and the neighbor buffer N , to store these
two types of samples respectively, and both of the two buffers
have the fixed size. Since it is assumed that there is only
a single optimal tracking result in each frame, the target
buffer T is composed of the sequentially obtained tracking
results in successive frames, i.e., the sample xi corresponds to
the tracking result in a frame. On the other hand, the neighbor
buffer N contains a group of sample sets, and the elements in
the neighbor buffer are also obtained in sequential frames.
Note that the samples in N are selected by a sliding window
around the position of the tracking result in that frame, and
a target sample corresponds to a set of neighbor samples.
Concretely, assume the tracking result in frame t is xi, and
its position is pt . Then, xi can be taken as a sample in the
target buffer. Further, we slide a window with the same size
as the target around pt and get a set of samples {xi,k}. The
position of the sample xi,k is determined by the translation
pt ◦ yk , where ◦ denotes the translation operation, and yk
denotes the translation vector including both the height and
the width, where k = 1, 2, . . .Nk and Nk is the number of
the translation transformations. Because all the samples are
normalized to the size of Ns × Ns, the sliding step size is set
as dx = aW/Ns in x−axis and dy = aH/Ns in y−axis, where
W and H denote the width and height of the target, and a
denotes a step coefficient. Then the transformation is set as
y = (αdx , βdy) with α, β ∈ {−Ns/a, . . . ,Ns/a}. Both the
samples {xi} in the target buffer T and the sample sets {xi,k}
in the neighbor buffer N are taken as the training samples to
learn the metric.

In addition, the weight parameter 1i,k should be deter-
mined in advance as well. Hereby, the bounding box overlap

rate [54] is employed to measure the importance of the sam-
ples. The parameter 1i,k corresponding to xi,k is defined as:

1i,k = 1−
area(R(xi) ∩ R(xi,k ))
area(R(xi) ∪ R(xi,k ))

, (5)

where R(xi) is the region of the target sample xi, and R(xi,k )
is the region of the neighbor sample xi,k .

E. TRACKING AND LOCATION
Based on the learned metric M , we can run the tracking
process and determine the tracking results in the following
frames. The tracking process includes two steps: select the
candidate samples and determine the final tracking result.

Hereby, we adopt the sliding window search strategy to
select the candidate samples. Assume the position of the
tracked target in the last frame t − 1 is pt−1, and a candidate
sample x̂m in the current frame t is p(x̂m), then we slide
the searching window around pt−1 to select the candidate
samples. Each candidate sample is obtained by cropping an
image region centering at p(x̂m) and with the same size as the
target. If p(x̂m) satisfies

‖p(x̂m)− pt−1‖2 < Rs, (6)

then the corresponding sample x̂m will be taken as the candi-
date sample, where m = 1, 2, . . .Nm and Nm is the number
of the candidate samples. In Eqn.6, Rs denotes the searching
radius.

With the selected samples {x̂m}, we introduce the
KNN distance to calculate the distances between the can-
didate samples and the target subspace and determine the
final tracking result. Specifically, the parameter K in the
KNN distance is set as 10 and the distance metric with
M is determined by Eqn. 4.

First, we calculate the distances between x̂m and the tar-
get samples in the target buffer, which follows the template
matching strategy. For each candidate sample x̂m, the distance
between x̂m and a sample xi in the target buffer can be calcu-
lated based onM :

d2M (x̂m, xi) = (x̂m − xi)TM (x̂m − xi). (7)

Then we rank the distances {d(x̂m, xi)} in ascending order,
and denote the ordered distances as {dr (x̂m, xri )}, where
dr (x̂m, xr1) < dr (x̂m, xr2) < . . . < dr (x̂m, xrT ) and x

r
i denotes

the reordered sample in the target buffer.
The KNN distance is defined as the average of the first K

smallest dr (x̂m, xri ):

dknn(x̂m,T ) =
1
K

K∑
i=1

dr (x̂m, xri ). (8)

After the KNN distances between all candidate samples
and the target buffer have been calculated, the final track-
ing result can be determined by the minimum distance rule.
By selecting the sample with the smallest KNN distance:

x̂opt = argmin
x̂m

dknn(x̂m,T ), (9)
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the optimal tracking sample x̂opt and its corresponding posi-
tion representing the best state in the current frame can be
obtained.

F. UPDATE SCHEME
Because there are many complex factors, such as occlusion
and deformation, the appearance often changes with time
going. Hereby, we propose an update model based on first-in
and first-out (FIFO) rule and incremental strategy, by which
we can learn a new metric to better calculate the distance and
then adapt to the appearance changes.

First, we select the new training samples to replace some
earlier ones based on the FIFO rule. Since the latest samples
can better represent the changes of the appearance than the
earlier ones, it is reasonable to use the FIFO rule. As we
have shown in Section III-D, the training samples are stored
in the target buffer T and neighbor buffer N , we update
the samples in these two buffers respectively. For the target
samples, we directly add the new obtained sample x̂opt into
the buffer T to replace the sample which came into the buffer
in the earliest time. For the neighbor samples, we resample a
set of new neighbor samples {x̂opt,k} around the position of
the tracking result x̂opt in the current frame t , following the
same sample selection strategy in Section III-D. Then we use
the new set of samples to replace the earliest sample set in the
neighbor buffer N .
Second, we recalculate M by calculating the term∑
i,k 1i,k (xi−xi,k )(xi−xi,k )T in Eqn. 4. Becausewe have used

the FIFO rule to update the training samples, the above two
terms can be obtained according to an incremental strategy
and we do not need to calculate each (xi − xi,k ). For the
samples in the updated target buffer and its corresponding
sample sets in the updated neighbor buffer, only the differ-
ences {(x̂opt − x̂opt,k )} need to be calculated based on the new
sample set. It can be observed that, the FIFO and incremental
strategy based update model can be realized with high effi-
ciency, which greatly reduces the complexity of Eqn. 4.
With the new metric M , the tracking can be contin-

ued in the following frames and the new tracking results
can be obtained. The complete algorithm is summarized
in Algorithm. 1.

We further discuss the strengths and weakness of the pro-
posed method. The main advantage of our tracking method is
that the structured metric is online learned and can make bet-
ter use of the spatial constraints and get finer discriminability.
On one hand, it can adaptively calculate the distance between
the samples of different targets, which is superior to the prede-
fined metrics, e.g. Euclidean metric, cosine similarity. On the
other hand, because the structured learning is introduced
and the training samples are selected densely, the structured
metric learning can achieve better discriminability than the
other metric learning methods [47], [50] which follow the
classificationmodel. Theweakness of the proposedmethod is
that it has larger computation complexity than other methods
withmetric learning. In ourmethod, the complexity formetric
learning is O(mnd), where m is the number of the samples in

Algorithm 1 The SML Tracking Algorithm
Require:

Current frame It ; Previous object’s position pt−1; Target
buffer T and neighbor buffer N ; The learned metricM .

Ensure:
The object tracking result and its position pt in It ;
Updated target buffer T and neighbor buffer N ; The new
learned metricM .

1: IF t = 1: Initialization.
(1) Set the tracking object manually.
(2) Select the target sample {x1} and the neighbor samples
{x1,k} with k = 1, 2, . . . ,Nk in the first frame, normal-
ize them into the fixed size and extract the features for
representation.
(3) Learn the structured metric M by the training sam-
ples.

2: IF t > 1:
2.1 Tracking.
(1) Choose the candidate samples {x̂m} with the sliding
window strategy in It , normalize them and extract the
features.
(2) Calculate the distances between each candidate sam-
ple {x̂m} and the target samples {xi} in the target buffer T
with the learned metricM .
(3) Rank the distance and calculate the KNN distance
according to Eqns. 7 and 8.
(4) Determine the tracking result and its position pt with
Eqn. 9.
2.2 Update.
(1) Take the tracking result x̂opt as the new target sample
to update the target buffer T .
(2) Select new neighboring samples {x̂opt,k} around the
target in frame It and use them to update the neighbor
buffer N .
(3) RelearnM based on the updated T and N .

the target buffer, n is the number in the neighbor buffer, and
d is the dimension of the features. For these parameters, n is
much larger than that in the traditional binary classification
model because the dense sampling brings more computation.
For the comparisonmethods withmetric learning, the compu-
tation complexity in methods [47], [50] is O(d3) and O(d2n)
where n is the number of total samples, and d is the dimension
of the features as well. For most sequences, considering the
number of the samples and the feature dimension, our method
needs to cost more time to learn the metric than many existing
metric learning based methods.

IV. EXPERIMENT
A. INITIALIZATION
The proposed SML tracker is implemented based on
MATLAB and is initialized as follows. Because the histogram
of orientation gradients (HOG) with 6-pixel-window size and
9 orientations has obtained great success and widely used
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in object detection and tracking, we take it as the feature
to represent the samples. Both the training samples and the
candidate samples are normalized to the fixed size 30 × 30,
which is set as the same size as in many other tracking
methods [4], [9] and accords with the size of HOG. The
tradeoff parameter for regularization is experimentally set as
C = 1, which is used to balance the fitting errors and the
regularization term. The buffer depth for the training samples
is set as 25 to balance the robustness and computation com-
plexity. A larger buffer depth will improve the robustness of
the representation but increase the computation time, and vice
versa. The sliding step coefficient for neighbor samples selec-
tion is set as 3, which can achieve a better tradeoff between the
accuracy and computation complexity. The searching radius
for tracking is experimentally set as 24 pixels which can
satisfy the searching requirements on most testing sequences.
A smaller radius may lose the target if it moves quickly while
a larger searching radius will greatly increase the searching
time.

We evaluate the performance of the proposed tracker in the
benchmark dataset, which has 51 video sequences with differ-
ent attributes. The sequences are captured in different condi-
tions, such as occlusion, deformation, illumination changes,
fast motion, scale variations and background clutter. Four
criteria are adopted to evaluate the performance of the tracker.
The first is the average center location error (CLE), which
is defined as the average value of the errors of the position
of the tracked results. The second is the average Pascal VOC
overlap rate (VOR), where the overlap rate score in one frame
is defined as score = (Rt ∩ Rg)/(Rt ∪ Rg), and Rt , Rg denote
the bounding boxes corresponding to the tracked result and
the ground truth respectively. The third is precision, which is
defined based on CLE. If the CLE in one frame is smaller
than a predefined threshold Thp, the tracking in that frame is
taken as precise. Then precision is defined as the rate of the
number of the precise frames and the total frames. The fourth
is success rate (SR) which depends on the VOR. If the overlap
rate is larger than a predefined threshold Ths, the tracking is
considered successful in that frame, and SR is defined as the
rate of the number of the successful frames and the number
of the total frames. By assigning different values to Thp and
Ths, we can further obtain the precision plot and the success
plot, which can be used to evaluate the overall performance of
the tracker. Moreover, the area under the curve (AUC) score
is also used for evaluation.

B. COMPARISON WITH SOME STATE-OF-THE-ART
METHODS
We compare the proposed tracking method with the top
10 trackers in Wu et al’s benchmark [23], including
Struck [22], SCM [55], TLD [56], ASLA [57], CXT [58],
VTD [59], VTS [60], CSK [61], LSK [62] and DFT [63].
We first evaluate the overall performance of the trackers and
then compare them in different conditions.

The comparison results of the overall performance are
shown in Table. 1 and Fig. 3. From Table. 1 we can find that,

TABLE 1. The comparison results of average CLE (in pixel), average VOR,
Precision (Thp = 20) and SR (Ths = 0.5) results of SML and the top
10 trackers in the benchmark. Best results are shown in bold.

FIGURE 3. Precision plots and success plots obtained by SML and the top
10 trackers in the benchmark. The values in the square brackets represent
the precision with Thp = 20 pixels on precision plots and the area under
the curve (AUC) on success plots, respectively.

the proposed SML tracker achieves the smallest average CLE
and the largest average VOR. The precision of SML is 0.765,
which outperforms the second best tracker, Struck, by
about 10%. SML also gets the best SR result. Fig. 3 shows
the precision plots and success plots of SML and the com-
peting trackers. It can be seen that both plots generated by
SML express better than the other trackers.

We also test the performance of the competing trackers in
six representative conditions including occlusions, deforma-
tion, out-of-plane rotation, scale variation, background clutter
and fast motion, and the precision and success plots are
displayed in Fig. 4.

1) OCCLUSIONS
Fig. 4(a) shows the precision plots and the success plots of the
competing trackers on the sequences with occlusions. It can
be observed that the precision of SML at Thp = 20 pixels
is 0.737, which outperforms the second best tracker, SCM,
by about 9.7%, and the AUC score of SML is similar to SCM.
Because the learned metric has powerful discriminability and
the KNN distance decision can improve the robustness to
occlusion, SML can get good tracking results in the condition
of occlusions.

2) DEFORMATION
There are 19 sequences which have deformation to different
degree and the comparison results are displayed in Fig. 4(b).
We can see that SML gets both the best precision at Thp =
20 pixels and the best AUC score, which outperforms SCM
20% and 11.3% respectively. Since our SML method intro-
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FIGURE 4. Precision and success plots obtained by SML and the top
10 trackers in the benchmark for the sequences with different attributes.
The value in the title represents the number of sequences with
corresponding attribute.

duces the FIFO rule and incremental strategy to learn the
metric online, it can well represent the deformation changes
timely.

3) OUT-OF-PLANE ROTATION
Fig. 4(c) illustrates the precision plots and success plots of
the competing trackers on 39 sequences with out-of-plane
rotation. We can find that SML also acquires better plots than
the competing trackers. On one hand, the metric is learned
with high discriminability, which improves the robustness
when matching in the tracking process. On the other hand,
the online update scheme can ensure the metric adapts to
changes in appearance.

4) SCALE VARIATIONS
Fig. 4(d) gives the comparison results on 28 sequences which
has different scale changes. It can be seen that SML gets the
largest precision at Thp = 20 pixels. However, the AUC
score of SML is not as good as SCM and ASLA, because
the latter two methods use particle filter to control the scale
changes while ourmethod adopts the fixed-size bounding box
for representation. But it should be noted that SML is better
than Struck, TLD, etc, which use the fixed-size bounding box
as well.

5) BACKGROUND CLUTTER
There exists background clutter on 21 sequences and the com-
parison results of the competing trackers on these sequences
are shown in Fig. 4(e). It can be found that SML greatly
outperforms the rest trackers and has significant advantages,
which implies that the learned structured metric has powerful
and fine discriminability and can improve the robustness of
SML against the background clutter.

6) FAST MOTION
The comparison results on the sequences with fast motion
in Fig. 4(f) show that SML can get better precision and
success plots than the competing trackers. For example,
SML outperforms Struck by about 10% and 6.5% respec-
tively on precision at Thp = 20 pixels and AUC score. The
good performance of SML in this condition may benefit from
the learned metric which can improve the matching similarity
between the candidate samples and the target samples.

C. COMPARISON WITH OTHER METRIC LEARNING BASED
TRACKING METHODS
We also compare our SML trackingmethodwith anothermet-
ric learning based trackingmethods, theMLSAM tracker [49]
and the DML tracker [18]. The MLSAM tracker builds the
sparse codes based structural appearance model, in which the
adaptive metric is learned by introducing an online multiple
instance learning algorithm. The DML tracker learns a non-
linear distance metric in a feed-forward neural network archi-
tecture to classify the target object and background regions
for tracking. We compare SMLwith MLSAM and DML both
qualitatively and quantitatively.

The comparison results of the overall performance in the
benchmark dataset are shown in Fig. 5. It can be found that
our SML method achieves the better precision and success
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FIGURE 5. Precision and success plots of SML and other metric learning
based trackers.

FIGURE 6. Examples of the tracking results obtained by SML and other
metric learning based methods on some representative sequences. Top to
down: boy, jumping, woman and tiger2.

plots than the other two trackers. Specifically, the precision
at Thp = 20 pixels and the AUC score of SML outper-
form the results of MLSAM and DML by more than 13%
and 6% respectively. In addition, we also demonstrate some
tracking result examples of these trackers on some represen-
tative sequences, shown in Fig. 6. On boy which has fast
motion, out-of-view rotation and small scale changes, SML
and MLSAM can complete the tracking while DML drifts.
There also exists fast motion on jumping, but MLSAM loses
the target on this sequence. Sequence woman has occlusion,
deformation, background clutter and illumination changes,
while tiger2 contains fast motion, scale changes and in-
plane rotation. It can be found that only our SML tracker
successfully completes the tracking on these two sequences,
while both MLSAM and DML fail. The comparison results
indicate that our SML method which takes the advantage
of metric learning performs better than the MLSAM and
DML methods.

D. WITH VS. WITHOUT METRIC LEARNING
Our SML method takes the advantage of metric learn-
ing to improve the tracking performance. To demonstrate

FIGURE 7. Precision plots and success plots obtained by the trackers with
and without metric learning. The values in the square brackets represent
the precision with Thp = 20 pixels on precision plots and the area under
the curve (AUC) on success plots, respectively.

FIGURE 8. Precision and success plots obtained by the trackers with and
without metric learning for the sequences with different attributes. The
value in the title represents the number of sequences with corresponding
attribute.

the effectiveness of metric learning, we implement another
tracker which does not utilize metric learning for comparison.
Hereby, the Euclideanmetric is taken as the standardmetric to
implement the competing tracker, and our SML is denoted as
the tracker with learned metric. The comparison results of the
overall performance of these two trackers are shown in Fig. 7
and the results in three representative conditions are displayed
in Fig. 8.

From Fig. 7 we can find that, the tracker with metric
learning can get better precision plot and success plot than
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FIGURE 9. Precision plots and success plots obtained by the trackers with
different constraints. The values in the square brackets represent the
precision with Thp = 20 pixels on precision plots and the area under the
curve (AUC) on success plots, respectively.

the tracker without metric learning. Both the precision at
Thp = 20 pixels and the AUC score of SML outperform
the tracker with the standard metric by about 18% and 10%
respectively. Concretely, for the tracking results in the condi-
tions of deformation, background and fast motion, the SML
method with metric learning significantly outperforms the
tracker with standard metric on both plots, as Fig. 8 shows.
This indicates that the learned metric can greatly improve the
tracking performance. Because the learnedmetric absorbs the
advantages of both structured learning and metric learning,
the learned metric can not only retain the high and fine
discriminability, but also adapt to the the appearance changes
caused by different conditions.

E. ANALYSIS OF STRUCTURED TERMS
In ourmethod, the proposed structuredmetric learning frame-
work makes use of the compact spatial relations as the struc-
tured constraints, which means that the samples closer to the
target should have smaller distances to the target than the
samples farther away. As mentioned before, the sliding step
coefficient a is set as 3 to exploit the spatial constraints. To
explore the effect of the sliding step size, we construct another
three trackers by setting different values to a. In practice,
the smaller the value of a, the more spatial information is
exploited. Hereby, the competing trackers are with a = 5,
a = 10 and a = 15, respectively. Note that the trackers
with a = 10 and a = 15 can be considered as approximate
realizations of the binary classification, because the step sizes
have been 1/3 or 1/2 of the normalization size and the
samples are selected far away from the target in this condition,
which leads to weak spatial constraints. Because too small
step size will greatly increase the computation complexity,
the trackers with a = 1 and a = 2 are not taken into account.
The comparison results of the overall performance of these

two trackers are shown in Fig. 9 and the results in three
representative conditions are displayed in Fig. 10. From these
results, we can observe that, the tracker with a = 3 obtains
better results than the others, and the performance of the
trackers degrades with the value of a increasing. This indi-
cates that the tracker with the smaller value of a makes
more full use of the spatial structure constraints, which sig-
nificantly improve the tracking performance. Specifically,

FIGURE 10. Precision and success plots obtained by the trackers with
different constraints for the sequences with different attributes. The
value in the title represents the number of sequences with corresponding
attribute.

the comparison results between the trackers with a = 3 and
a = 15 imply that the proposed structured terms with small
step size can improve the discriminability of the tracker.

In summary, our SMLmethod can achieve comparable per-
formance to many famous trackers in the benchmark, which
is verified by the results in Fig. 3 and Fig. 4. By comparing
with other metric learning based tracking methods, we can
find that the SML method can make better use of metric
learning and achieve better tracking performance, which is
shown in Fig. 5. By adding the metric learning term, it can
be observed that SML gets better results than that without
metric learning, which is illustrated in Fig. 7 and Fig. 8.
We also explore the effect of the structured term in Fig. 9 to
determine the best constraint. Although the proposed SML
method obtains great success, there still exist many issues
which decrease its performance. First, SML cannot work well
in some complex conditions. For examples, there are complex
deformations, huge illumination changes, fast motion and
severe scale changes on sequences Matrix and ironman, our
SML method drifts on both these two sequences. Second,
because SML adopts the online metric learning, it costs more
time to learn the metric than the traditional matching methods
and cannot realize real time tracking in the current stage,
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which also limits its application. We would like to address the
above issues to further improve its performance and evaluate
the tracking performance from the theoretical justification
using methods proposed by [64], [65] in the future.

V. CONCLUSION
In this paper, we propose a structured distance metric learn-
ing based tracking method. After formulating tracking as a
structured metric learning problem, a specific distance metric
learning method is developed to adapt to the tracking task.
By integrating structured learning and metric learning,
the distance constraints of both the target samples and neigh-
bor samples are taken into account, and the corresponding
distance metric is learned. The learned metric can better
measure the distances between the candidate samples and
the target samples, as well as own high discriminability. The
experimental results in the benchmark dataset demonstrate
that the proposed tracking approach based on structured met-
ric learning can acquire comparable performance to many
state-of-the-art methods.
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