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ABSTRACT The performance of any production system is highly dependent on processing equipment that
is free of faults and breakdowns. This can be achieved through maintenance planning and statistical quality
control. The aim of this research is to develop a model for statistical quality control with an integrated
optimization-based maintenance model for multicomponent series systems using an exponentially weighted
moving average chart. The optimization model is based on both the preventive and corrective maintenance
policies. The developed model is used to find the optimal values of sample size, sample frequency, width of
control chart limit in units corresponding to the standard deviation, and interval of preventive maintenance
while minimizing the total expected cost of the system per unit time. The study included a case study example
to demonstrate its applicability and to analyze the influence of cost parameters on the developed integrated
model. Finally, sensitivity analysis was conducted to demonstrate the effectiveness of the proposed model.

INDEX TERMS preventive maintenance, optimization, mathematical model, quality control, multi-
component system, EWMA chart.

NOTATIONS
(Rδ)E Probability of nonconforming

items produced due to external
reasons

(Rδ)M/C Probability of nonconforming
items produced due to machine
failure

[ETCPUT](M∗Q)EWMA
Expected total cost per unit time of
integrated maintenance and quality
policy

ARL2E Average run length due to external
reasons when the system is in an
out-of-control state

ARL2M/C Average run length due to machine
failure when the system is in an
out-of-control state
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ARL1 Average run length when the
system is in an in-control state

ARL2 Average run length when the
system is in an out-of-control state

CF Fixed cost per sample
Cfalse Investigating a false alarm cost per

unit time
CFCPCM Fixed cost per corrective

maintenance
CFrej Cost of rejection when the process

moves to out-of-control
ClP Cost of lost production
Creseting Cost of resetting
CV Variable cost per sample
E [CCM]FM2 Expected cost of CM due to FM2
FCcmi Fixed cost of corrective maintenance

of ith component
MTTRCM Mean time to repair for required

corrective action
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MTTRCM Mean time to replacement for
required corrective maintenance
of FM2

Npmi Number of preventive maintenances
for ith component

NFi Number of failures of ith component
R′ Proportion of non-conforming units
Tpmi Preventive maintenance interval of

ithcomponent
T1 Expected time to determine the

occurrence of an assignable cause
Tevalution Evaluation time period available to

carry out maintenance work
Tfalse Expected time spent searching for a

false alarm
Tresetting Time to reset the process due to

external reason
TS Time to take and chart a sample
TTRcmi Time to replacement for corrective

maintenance of ith component
TTRpmi Time to repair for preventive

maintenance of ith component
βi Shape parameter of ith component
ηi Scale and parameter of ith component
θ1 Failure due to external causes
θ2 Failure due to machine degradation
µ0 Process mean
σ0 Process standard deviation
E
[
Crejection

]
M/C Expected cost of rejection due to

machine failure
E [Cfalse] Expected cost for a false alarm
E
[
Cnon−conforming

]
Expected cost of non-conforming
units when the process is in an
in-control state

E
[
Cprocess

]
Expected cost of process failure

E
[
Creseting

]
Expected cost of resetting

E
[
CSampling

]
Expected cost of sampling

E [TCQ]processfailure Expected total cost of quality loss
due to process failure

E
[
TCycle

]
Expected process cycle time

E [Tfalse] Expected time to investigate false
alarms

E [Tin−control] Expected in-control time
E [Tout−of−control] Expected out-of-control time
E [CMC] Expected cost of corrective

maintenance
E [PMC] Expected cost of preventive

maintenance
E [TMC] Expected total maintenance cost
FM1 Failure mode 1
FM2 Failure mode 2
FN(·) Cumulative distribution function of

the standard normal distribution
Hs Sample frequency

L Optimal value of the control limit or
decision boundary

LC Labor cost
Ns Sample size
PFM1 Probability of occurrence of failure

due to FM1
PFM2 Probability of occurrence of failure

due to FM2
PR Production rate
δ Magnitude of shift
θ Process failure rate
λ Control limit chart coefficient or

smoothing parameter of the chart
τ Mean elapsed time from the last sample

prior to the assignable cause to the occurrence
of the assignable cause when integrating
maintenance and quality policy together

I. INTRODUCTION
The performance of a production system is significantly
affected by the breakdown-free operations of equipment and
processes. Performance can be improved if these break-
downs are minimized in a cost-effective manner. Mainte-
nance actions and quality control policies play important
roles in fulfilling this objective. A suitable preventive mainte-
nance (PM) policy minimizes machine failure probability and
improves machine performance in terms of product quality
and production costs. Similarly, an appropriately designed
quality control chart may assist in distinguishing any abnor-
mal behaviors in processes and thereby aid in initiating a
restoration action. However, both PM and quality control add
costs, such as those related to down time, repair/replacement,
sampling, and inspection. Traditionally, it is possible to opti-
mize both of these activities independently. However, studies
indicate the existence of a relationship between the mainte-
nance of a component and process quality because mainte-
nance tasks increase with component life and enhance the
process quality [1]. Thus, joint consideration of PM and
quality control policies may be more significant in terms of
the cost of improving a production system’s performance.
Recent studies indicate that increasing research attention is
focused on this joint consideration.

Several techniques and approaches have been performed
on maintenance strategies and mathematical modeling [2].
Wang [3] suggested that most optimal maintenance models
in the literature use the optimization criterion of minimiz-
ing total maintenance cost. Laggoune et al. [4] proposed
a PM plan method to reduce the cost rate of a multicom-
ponent series system subjected to random failures. The
works in [2], [5], [6] used common planning approaches
for multicomponent manufacturing systems involving
group/block replacement models based on time, cost, or both.
Samrout et al. [7] presented an approach to reduce preventive
maintenance cost of series-parallel systems using ant colony
optimization. Duarte et al. [8] introduced an optimization
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algorithm for maintenance management of a series system
based on PM. In addition, Cassady and Kutanoglu [9]
suggested an integrated model incorporating production
scheduling and preventive maintenance planning for a single
production machine to minimize the total expected weighted
completion time of jobs. Kuo [10] presented a maintenance
strategy for a joint machine and product quality control issue
of a finite horizon discrete time state unobservableMarkovian
deteriorating batch production system, using dynamic pro-
gramming. Kouki et al. [11] developed an approach joining
quality control and maintenance aspects by considering a
PM strategy with minimal repair to minimize the total cost
(including costs of non-conforming units and maintenance)
per unit time. Ho and Quinino [12] presented an integrated
model for process control and on-line corrective mainte-
nance using a variable sampling interval (VSI) and Markov
chain approach. Mehrafrooz and Noorossana [13] improved
the study of Linderman et al. [14] and suggested an inte-
grated model jointly considering PM and complete failure.
Yeung et al. [15] presented a model for optimization of an
X-bar control chart in conjunctionwith an age-dependent pre-
ventive replacement policy. Zhou and Zhu [16] developed an
integrated mathematical model for maintenance and process
quality control using a grid-search approach.

Panagiotidou and Tagaras [17] proposed a model with an
age-based PMpolicy formaintenance procedure optimization
for a production process with two states of quality, namely
process quality failure and shift.

Liu et al. [18] proposed a Markov chain method for the
joint optimization of an X-bar chart and condition-based
maintenance policy for a two-unit series system. Zhong and
Ma [19] proposed an integrated model of SPC and mainte-
nance for a two-stage dependent process through modeling of
eight different production scenarios. Rasay et al. [20] devel-
oped an integrated model for maintenance planning and sta-
tistical process control for a single component of a machine
system. The process has two operational states, including an
in-control state and an out-of-control state, where the process
failure mechanism is supposed as a general continuous dis-
tribution with non-decreasing failure rate. Bahria et al. [21]
developed an integrated approach for the joint control of pro-
duction, maintenance, and quality for batch manufacturing
systems. They considered systems subject to degradation,
which is the origin of the production of defective units. The
quality control of lots produced was performed using an
X-bar control chart.

Based on the abovementioned studies, the following obser-
vations are made:

1) Integrated models often ignore the possibility of
component failure in which downtime of the
machine or improper performance could lead to poor
product quality. Therefore, effective methods for main-
tenance must be developed.

2) Most studies mainly focus on comprehensive PM or a
preventive replacement policy that restores the equip-
ment to a good-as-new state.

3) There is a lack of studies that show how to determine
the optimal values of decision variable parameters of
the process quality control model, i.e., sample size
(Ns), frequency of sample frequency (Hs), width of
control chart limit in units corresponding to the stan-
dard deviation (L), and chart parameter (λ)). There is
also no clear strategy to determine the optimal average
observation number for use in both in-control and out-
of-control states.

4) As mentioned earlier, when a machine has a failure,
it could create poor quality products, leading to product
rejection. Corrective maintenance costs consist of time
and costs involved in repair/replacement as well as the
cost of damaged products.

5) In any production system, the corrective maintenance
cost significantly exceeds the preventive maintenance
cost. The cost of rejection is very high, thereby reduc-
ing the PM period. This aspect is largely neglected in
most maintenance optimization models.

Thus, it is observed that most of the integrated models
developed for integrating maintenance and process quality
control do not employ an exponentially weighted moving
average (EWMA) control chart. Also, previously developed
integrated approaches do not consider maintenance of multi-
component systems. Therefore, this study presents an inte-
grated model to determine the optimal expected total cost
of corrective maintenance (CM), PM, process failures, sam-
pling, and inspection by jointly optimizing maintenance
procedures and quality control chart parameters. In several
preventive maintenance models, the system can be assumed
to be in one of two states after each PM action: good-as-
new or bad-as-old. There is an important case in which the
failure pattern changes in a preventively maintained system.
One method to model this considers incomplete maintenance
in which the failure rate of the system after each PM action
is between the two states of good-as-new and bad-as-old.
It is assumed that each specific PM action reduces the rate of
component failure and evolves with the component life. If the
PM for a system is designed using incomplete maintenance,
the component failure behavior is supposed to be changed
after each PM action and affects the quality control chart poli-
cies. Thus, an EWMA chart is used for quality control [22].

This involves performing PM action when the deviation
from the product feature used to measure quality is no longer
at its target value. It is our goal to develop joint models
that incorporate maintenance policy and quality control to
take advantage of both methodologies. Therefore, the main
contribution of this study is the implementation of a new inte-
grated approach to optimize maintenance actions and process
control policies to classify machine failures.When a potential
failure occurs, CM actions for restoring the machine are
performed. Simultaneously, the process is monitored using
a control chart to identify the actual state of operation. When
a quality shift is detected due to machine degradation (partial
failure), the CM tasks necessary to restore the machine to an
in-control state are performed. Whenever a quality shift is
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detected due to external reasons, a resetting of the process is
initiated to return the operation to an in-control state. Hence,
this type of maintenance action has double the benefits: elim-
inating costs related to out-of-control operations andmachine
degradation and improving machine reliability by protecting
it against failures.

In the next section, the problem description, model build-
ing, and assumptions are presented. Section III presents the
integrated cost model, followed by a solution procedure in
Section IV. In Section V, the sensitivity analysis results are
reported. Finally, Section VI concludes the paper.

II. PROBLEM DESCRIPTION
In this study, we considered two failure consequences associ-
atedwith component failures: (1) failure leading to immediate
breakdown of the machine (failure mode 1 (FM1)) and (2)
failure leading to reduction in process quality due to shifting
of the process mean (failure mode 2 (FM2)).

A failure is defined as any event whereby the machine
either shuts down or produces more rejections than expected.
For example, if a work head belt of a grinding machine is
broken, the machine to stop working completely, while if a
ball screw of a chuck nut is loosened, the grinding machine
may continue to run but may also produce components with
poor quality. Therefore, it is necessary to consider these
types of failures and failure costs, which may be defined in
maintenance planning decisions. The latter example above
can be considered as FM2, i.e., deterioration of machine
performance without complete failure [23], [24].

A. PROPOSED METHODOLOGY
Consider a production machine consisting of N serially
related components, where each component can be exposed
to degradation due to continuous operation over a period of
time and produces matching and non-matching products. For
each component, the time to failure can be represented by
two Weibull distribution parameters: scale (η) and shape (β).
The machine operates 6 days weekly through 12 working
hours in two shifts. If a failure occurs in any components,
minimal repair is conducted to return the machine to work-
ing order. The maintenance decision requires consideration
of system availability, the available time for maintenance,
and production requirements. For every component, either
replace or repair is selected. The service age of a component
is improved by maintenance; however, component failure
may occur randomly. The proposedmethodology is as follow:
Stage 1: Select a multi-component single machine pro-

duction system, i.e., one for monitoring. The monitored pro-
duction system must be in an ‘‘in-control’’ state prior to the
monitoring process.
Stage 2: Monitor for quality loss of the product or any

machine failure causing the process mean to shift. In this
step, an EWMA control chart is used for monitoring a single
critical to quality (CTQ) characteristic.
Stage 3: Build the integrated model of CM, PM, and SPC.

FIGURE 1. Flow chart of the proposed methodology.

Stage 4: Apply the global optimization tool box from the
MATLAB software to solve the integrated model.
Stage 5: Conduct sensitivity analysis to determine the

range of decision parameters of the control chart and the PM
interval. These are used to show the impact of controlled
parameters on the system as a whole. Figure 1 shows a flow
chart of the proposed methodology and its implementation
stages.

B. MODEL FORMULATION
The correctivemaintenance actions are implemented to repair
and restore the machine to active status when FM1 occurs.
However, FM2 causes rejection of components; therefore,
if FM2 is observed, the process is immediately stopped
and corrective maintenance tasks are implemented to repair
and restore the process to its normal state. Detection of the
FM2 may always be possible, which leads to the machine
continuing to produce more defective items than expected.
In the case of FM2, the cause could be external (E), such
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FIGURE 2. States of failure mode in machine and processing.

as environmental factors, operator errors, or incorrect tools.
In this study, an EWMA control chart is used to monitor the
production process to detect FM2 or any external causes. PM
actions are used to minimize the probability of both FM1 and
FM2 events. By reducing the causes of FM2, a reduction
in costs due to an out-of-control status is achieved. As a
result, PM consumes some of the machine production time
and some production resources. Figure 2 illustrates the modes
of machine and process failures.

C. ASSUMPTIONS
Our assumptions are as follows:

1) A multi-component series system produces a single
part with a single (CTQ) characteristic.

2) The production process is in an in-control state with
process mean µ0 and standard deviation σ0.

3) The time until the assignable cause occurs is a random
exponentially distributed variable.

4) The process mean shift is (µ0 + δ), and the stan-
dard deviation (σ0) remains constant. Additionally, δ
denotes the magnitude of the shift.

5) The process is monitored using an EWMA control
chart.

6) FM1 and FM2 are independent and based on a
time to failure distribution. The probabilities of
FM1 and FM2 are PFM1 and PFM2, respectively, and
PFM1+PFM2= 1. These probabilities can be acquired
from quality and failure reports provided by main-
tenance and production line personnel. The reports
includes component ID, time of repair, time to failure,
action taken, failure mode, and failure cost.

7) Corrective maintenance should be minimized while
preventive maintenance actions could be imperfect.

8) The required resources and services are always
available.

9) The system stops during detection and restoration
periods. After restoration by corrective maintenance,
the system returns to the normal status process.

D. EXPONENTIALLY WEIGHTED MOVING AVERAGE
CONTROL CHART
In the late 1950s, Roberts [25] introduced the first
EWMA control chart, which was further studied by
Crowder [26]–[28] and Lucas and Saccucci [29]. It is
considered as a good alternative to the CUSUM and
other control charts proposed by other researchers [25].
Gomes et al. [30], Aslam et al. [31], and Riaz andAhmad [32]
highlighted that EWMA charts are used for detecting small
shifts in the process mean. EWMA can detect shifts of
0.5σ0 to 2σ0 much faster than Shewhart charts (i.e., X-bar
charts and individual-X charts) with the same sample size.
Montgomery [33] explained that although EWMA is pre-
sented as a statistical process monitoring tool, it really has
a much wider interpretation. From the viewpoint of statisti-
cal process control, an EWMA control chart is comparable
to a CUSUM control chart in its capacity of monitoring
a process and detecting the presence of assignable causes
that result in changes. However, EWMA forecasts where the
average will be in the next period, which makes it easily
applicable in industry. In addition, EWMAcontrol charts may
be used for autocorrelated processes with a slowly drifting
mean. Therefore, EWMA is adapted for autocorrelated data
for identifying similarities between sample observations and
time lag between them; other control charts (i.e., CUSUM
and Shewhart) assume independence between samples [30].
This makes EWMA a more powerful tool.

The EWMA statistic is defined as follows:

Zi = λXi + (1− λ)Zi−1, 0 < λ ≤ 1 (1)

In (1), λ is the chart parameter, which is pre-estimated. The
initial value is the process mean, i.e., Z0 = µ0, where Zi
denotes the real value of X obtained from sample i. The upper
and lower control limits UCL and LCL, respectively, and
centerline CL for the proposed EWMA control chart are as
defined as follows:

UCL = µ0 + Lσ0

√
λ

(2− λ)

[
1− (1− λ)2i

]
(2a)

CL = µ0, and (2b)

LCL = µ0−Lσ0

√
λ

(2− λ)

[
1− (1− λ)2i

]
(2c)

where L denotes the decision boundary of the control chart;
it is a predefined constant depending on the false alarm rate.
An out-of-control state is defined using the proposed EWMA
control chart when Zi is plotted without specific control
limits. For large samples,

[
1− (1− λ)2i

]
tends to 1, and the

upper and lower control limits are simplified as follows:

UCL=µ0+Lσ0

√
λ

(2−λ)
and LCL=µ0−Lσ0

√
λ

(2−λ)

In this study, parameters λ and L were used to determine
the‘out-of-control average run length ARL2, which is defined
as the average number of observation units taken when the
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process mean has been shifted from µ0 to (µ0 + δ), for the
magnitude shift of δ, which occurs due to any external causes
or degradation of the production machine. The average run
length when the process mean is in an in-control state is
denoted by ARL1 and is computed using (3) [34].

ARL1 (a, b) =
1

1− FN
(
(K−a)

√
n

b

)
+ FN

(
(−K−a)

√
n

b

) (3)

In this model, it assumed that the observed subgroups{
Xi,1,Xi,2, . . . ,Xi,n

}
at period time i = 1, 2, . . . n, where n

is the subgroup size, are independent and distributed as Xi,j ∼

N (µ0 + aσ0, bσ0), i = 1, 2, . . . , 1 ≤ j ≤ n. The process is
statistically in an in-control state when a = 0 or b = 1, while
the process is considered in an out-of-control state when the
process mean µ0 has changed (a 6= 0), the process standard
deviation σ0 has changed (b 6= 1), or both.

In (3), FN(·) is the cumulative distribution function of the
standard normal distribution, and K = 3/

√
n, which corre-

sponds to the false alarm rate α = 0.0027 or an in-control
ARL1 = 370. Several studies have computed ARL2 depend-
ing on the pre-specified optimum value of ARL1 of 370 [22].
Srivastava and Wu [35] proposed an optimum value of λ,
which minimizes ARL2 for given ARL1. This is a very
good approximate to out-of-control ARL2, which is produced
through a Markov-chain approach [29]. For sufficiently large
ARL1, the optimum λ is given by

λ ≈
2c∗δ2

b− log (b)
, (4)

where

b = 2 log

[
2
(
2
π

)0.5

c∗δ2T

]
(4a)

where c∗ is an optimal constant value that minimizes ARL2.
Srivastava and Wu [35] found that the optimal value of c∗ is
0.5117.

The width of control limit L is approximated as

L ≈
[
b− log (b)0.5 − λ

]
(5)

The corresponding minimum ARL2 is then expressed as

ARL2 ≈
1
δ2

(
1.2277L2

−2.835+ 9.740L−2
)
+

1
2
(1− λ)

(6)

III. COST MODEL METHODOLOGY AND OPTIMIZATION
To demonstrate the benefits of integrated PM and SPC with
the EWMA control chart, the next section presents the cost
model development to capture the costs correlated with pro-
cess manufacturing that are affected bymaintenance planning
and quality control policies. These total costs include the
preventive and corrective maintenance costs and the process
failure costs through the evaluation period.

A. COST MODEL FOR CORRECTIVE AND PREVENTIVE
MAINTENANCE POLICIES
The following data are required to determine the corrective
and preventive maintenance costs:

1) Time to implement the maintenance actions and any
logistical delays of materials,

2) costs of materials, labor, and downtime,
3) equipment restoration degree (i.e., good-as-new, bad-

as-old, or imperfect) and restoration factor determined
by expert judgement [36], and

4) probability of equipment failure captured from histori-
cal data.

The expected total maintenance cost is the sum of the
expected cost of preventive and corrective maintenances and
is expressed as

E [TMC] = E [CMC]+ E [PMC] (7)

E[CMC] and E [PMC] are corrective and preventive main-
tenance, respectively. These are described and calculated in
the following sections.

1) CORRECTIVE MAINTENANCE POLICY COST MODEL
The corrective maintenance cost is the combination of costs
due to failure mode detection (down time costs for repairing
and restoring the machine during a given time period and
costs of labor and materials required) and is expressed as

E [CMC]=
∑N

i=1

{[
TTRcmi × (PR× ClP + LC)+ FCcmi

]
×NF i

}
(8)

TTRcmi is the replacement time for corrective maintenance
of the ith component, PR is the production rate, Clp is the
cost due to lost production, and LC is the labor cost. FCcmi

is a fixed cost of corrective maintenance for the ith com-
ponent or the cost of the ith component. NFi is number of
failures of the ith component. In this study, the expected
number of corrective maintenances (NFi) was obtained using
the hazard function for given values of η and β, which are the
characteristic life and shape parameters, respectively, during
a given PM interval for the machine (TPM) [9].

NF i =

Tpmi∫
0

z (t) dt =

Tpmi∫
0

βi

η
βi
i

tβi−1dt (9)

where z (t) corresponds to the hazard function of the under-
lying Weibull probability distribution, and ηi and βi are the
scale and shape parameters of the ith component, respectively.

2) PREVENTIVE MAINTENANCE POLICY COST MODEL
The preventive maintenance costs include the down time
costs due to repairs and restoration of the components in
addition to the costs of required labor and materials. The
preventive maintenance cost is expressed as

E [PMC]=
∑N

i=1

{([
TTRpmi×(PR×ClP+LC)

]
+FCpmi

)
×Npmi

}
(10)
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FIGURE 3. An expected process control cycle length.

TTRpmi is the preventive maintenance repair time of the ith

component. FCpmi is the fixed cost of preventive maintenance
of the ith component or the cost of consumables during the
repair of the ith component. Npmi is the number of preven-
tive maintenances of the ith component, which is calculated
as [37]

Npmi =
Tevalution

Tpmi

(11)

Tpmi is the preventive maintenance interval of the ith compo-
nent and is calculated as [9]

Tpmi = ηi

[
TTRpmi

TTRcmi (βi − 1)

] 1
βi

(12)

B. COST MODEL OF PROCESS QUALITY POLICY(
E [TCQ]process failure

)
The expected process control cycle length equation is derived
and used to develop the expression for the expected process
failure cost.

1) EXPECTED PROCESS CYCLE LENGTH E
[
TCycle

]
The expected process cycle length is defined as the expected
time between sequential in-control periods. This includes
in-control time, out-of-control time, and time of process
resetting or machine restoration. The expected cycle length
is shown in Figure 3.

a: EXPECTED IN-CONTROL TIME E
[
Tin−control

]
:

The in-control time is assumed to follow a negative expo-
nential distribution with mean 1/θ and includes a mean
time to failure and expected time to investigate false alarms

E [Tfalse] [38]. It is expressed as follows:

E [Tin−control] = 1/θ + E [Tfalse] (13)

where

E [Tfalse] = Tfalse ×
S

ARL1
(14)

Tfalse denotes the expected search time for a false alarm,
ARL1 denotes the average number of samples taken before
the process becomes out-of-control case or a false alarm
occurs, and S denotes the expected number of samples while
the process is in-control. With a process failure rate of θ , it is
calculated as [39]

S =
(
e−θ×Hs

)/(
1− e−θ×Hs

)
(15)

This study assumes that the failure rate due to external rea-
sons ‘E’ is θ1, and the failure rate due to machine degradation
(FM2) is θ2. Thus, the overall process failure rate θ due to
FM2 and ‘E’ is θ = θ1 + θ2, where

θ1 =
1

MTBFProcess
(16)

θ2 =
Nf × PFM2

evalution period(Tevalution)
(17)

b: EXPECTED OUT-OF-CONTROL TIME E
[
Tout−of−control

]
:

The out-of-control time includes the following events:
(1) The time between occurrence of an assignable cause

and the next sample [37]:{
Hs×

(
ARL2M/C ×

θ2

θ
+ ARL2E ×

θ1

θ

)}
(18)

(2) The expected time to an out-of-control state (τ ), as cal-
culated by Duncan [39], τ = Hs/2
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(3) The expected time to collect and plot the samples:

(Ns× TS) (19)

(4) The expected time to validate an assignable cause,
expressed as T1.

(5) The expected time to reset the process or restore the
machine due to FM2:(

Tresetting ×
θ1

θ
+MTTRCM ×

θ2

θ

)
(20)

ARL2M/C and ARL2E denote the average run length during
an out-of-control period due to machine failure and due to
external reasons, respectively, Ns denotes the sample size, TS
denotes the time to collect and plot the sample, and Tresetting
denotes the time to reset the process if the failure is due to
external reasons. Therefore, the out-of-control time can be
expressed as [37]

E [Tout−of−control]

=

{
Hs×

(
ARL2M/C ×

θ2

θ
+ ARL2E ×

θ1

θ

)}
− τ + (Ns× TS)+ T1

+

(
Tresetting ×

θ1

θ
+MTTRCM ×

θ2

θ

)
(21)

Hence, the expected process cycle time is the sum of both
the expected in-control and expected out-of-control times.
It is expressed as [37]

E
[
TCycle

]
=

{
1
θ
+ Tfalse ×

S
ARL1

}
+

{
Hs×

(
ARL2M/C ×

θ2

θ
+ ARL2E ×

θ1

θ

)}
− τ

+ (Ns× TS)+ T1

+

(
Tresetting ×

θ1

θ
+MTTRCM ×

θ2

θ

)
(22)

2) EXPECTED COST OF PROCESS FAILURE E
[
Cprocess

]
The expected process costs are consideredwhen the operating
process is in the in-control and out-of-control states. These
costs include costs due to the defective products, sampling,
downtime, cause analysis, and restoring the system.

a: EXPECTED COSTS WHILE THE OPERATING PROCESS
CORRESPONDS TO THE IN-CONTROL STATE
Cfalse is the cost associated with false alarms. It consists of
the cost of analysis for the source of the false alarm. Thus,
the expected cost for a false alarm is expressed as follows:

E [Cfalse] = Cfalse × Tfalse ×
S

ARL1
(23)

Let CF be the fixed cost per sample and CV be the variable
cost per job. Thus, the expected cost per cycle for sampling
is the sum of the fixed cost per sample and variable cost per
job [37] as shown in (24) at the bottom of this page.

The expected cost of non-conforming units when the pro-
cess is in-control is

E
[
Cnon−conforming

]
=
(
R′ × PR× CFrej

)
×

(
1
θ
+ Tfalse ×

S
ARL1

)
(25)

The expected cost of identifying and repairing a valid
alarm for an assignable cause due to external failure is further
expressed as

E
[
Creseting

]
=
(
Creseting × Treseting

)
×

(
θ1

θ

)
(26)

b: EXPECTED COSTS WHILE THE OPERATING PROCESS
CORRESPONDS TO THE OUT-OF-CONTROL STATE
The cost of rejections when the process is in the out-of-
control state due to machine failure is

E
[
Crejection

]
M/C

=
(
(Rδ)M/C × PR× CFrej

)
×

(
Hs×

(
ARL2M/C×

θ2

θ
+ARL2E×

θ1

θ

)
−τ+Ns×TS

)
×
θ2

θ
(27)

where (Rδ)M/C denotes the probability of nonconforming
items produced due to FM2. In addition, the cost of rejection
when the process is in the out-of- control state due to external
reasons is given as follows:

E
[
Crejection

]
E

=
(
(Rδ)E × PR× CFrej

)
×

(
Hs×

(
ARL2M/C×

θ2

θ
+ARL2E×

θ1

θ

)
−τ+Ns×TS

)
×
θ1

θ
(28)

(Rδ)E denotes the type 2 error probability due to external
reasons. Additionally, the proportion of non-conforming units
Rδ due to the shift δ is as defined by Montgomery [33],
i.e., Rδ = 1 − F (3− δ) − F (−3− δ), where F denotes
the standard normal cumulative distribution function, and δ
denotes the magnitude of the shift due to FM2. The expected
cost of finding and adopting a corrective action for a valid

E
[
CSampling

]
=

(CF + CV × Ns)×
(
1
θ
+ Tfalse ×

S
ARL1

+ Hs×
(
ARL2M/C ×

θ2
θ
+ ARL2E ×

θ1
θ

)
− τ + (Ns× TS)

)
Hs

(24)
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FIGURE 4. Sheet metal working machine.

alarm due to FM2 is given as

E [CCM]FM2 =
{[
(MTTRCM)FM2 ×

(
PR× Clp + LC

)]
+CFCPCM

}
×

(
θ2

θ

)
(29)

The expected cost of process failure corresponds to the
sum of expected costs while operating the process corre-
sponding to in-control and the expected costs while operat-
ing the process corresponding to out-of-control. The sum of
(23)–(29) is the expected cost of process failure per cycle and
is expressed as

E
[
Cprocess

]
=
{
E [Cfalse]+ E

[
CSampling

]
+ E

[
Cnon−conforming

]
+E

[
Creseting

]
+ E

[
Crejection

]
M/C + E

[
Crejection

]
E

+E [CCM]FM2

}
(30)

In addition, the expected cost of the process failure quality
for the evaluation period is given as

E [TCQ]process failure = E
[
Cprocess

]
×M (31)

where

M =
Tevalution

E
[
TCycle

] (32)

3) OPTIMIZATION COST MODE PER UNIT TIME OF SYSTEM
[ETCPUT](M∗Q)EWMA
The expected total cost per unit time of the system is
expressed as [ETCPUT](M∗Q)EWMA

; it is assumed that produc-
tion is in the in-control state:

[ETCPUT](M∗Q)EWMA
=
E [TQC]process failure + E [TMC]

Tevalution
(33)

The economic objective involves minimizing [ETCPUT]
(M∗Q)EWMA . The model is solved to determine the optimal

values of decision variables Ns, Hs, L, λ, and TPM.
We minimize

[ETCPUT](M∗Q)EWMA
=

E [TQC]process failure + E [TMC]

Tevalution
subject to Nsmin ≤ Nsm ≤ Nsmax

Hsmin ≤ Hsm ≤ Hsmax

Lmin ≤ Lm ≤ Lmax

λmin ≤ λm ≤ λmax

TPMmin ≤ TPMm ≤ TPMmax

Ns;Hs;L;TPM ≥ 0

0 < λ ≤ 1

IV. CASE STUDY
A manufacturing system for conical lighting poles (CLPs)
is used in this case study. This system exists at the
Power & Telecommunication Company. The manufacturing
system is a sheet metal working machine, which combines
eight hydraulic cylinders, four tanks of oil, four pumps,
four hydraulic pipes, an electric panel, electric wires, four
punches, and dies or bases, as shown in Figure 4.

In this section, a real-life case study is presented to prove
the applicability of the developed integrated model. The case
is a sheet metal working machine that operates 6 days a week
through 12 working hours in two shifts daily and produces a
single product: a 10-meter high CLP with a process mean of
µ0 = 5 mm and a process standard deviation of σ = 0.01.
Themagnitude of the shift owing to external reasons is δE = 1
and owing to machine failure is δM/C = 0.6, which occurs
at random and results in a shift of process mean from µ0
to (µ0 + δ). In the present case, corrective and preventive
actions are considered for maintenance. Table 1 lists the
parameters of maintenance for components in the selected
machine. A sampling procedure is used for process quality
monitoring based on an EWMA control chart. The CTQ
characteristic considered is the absence of die marks, such
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TABLE 1. Parameters of maintenance for components in selected machine.

FIGURE 5. Die marks before and after correction.

FIGURE 6. EWMA control chart of conical lighting pole samples.

as blows and scratches, as shown in Figures 5(a) and 5(b),
respectively. These marks are observed by the naked eye and
are then measured by a Vernier caliper device. Moreover,

they show obviously when the CLP has a thickness of 5 mm
or more. The normal defect value due to die marks is
±0.5 mm. Based on the quality control policy, the samples
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TABLE 2. Initial parameters for case study.

TABLE 3. Optimal values of the proposed model decision parameters.

FIGURE 7. Influence of parameters on the proposed model’s expected total cost: influence of (a) Ns, (b) Hs, (c) L,
and (d) TPM.

are taken from the production line at uniform intervals and
inspected by the naked eye and Vernier caliper.

In this study, the EWMA chart is implemented with param-
eters L = 1.7 and different values of λ between 0 and 1.
By using pilot runs, it was observed that the chart was effec-
tive at detecting small shifts in the process mean at L = 1.7
and λ = 0.2, as shown in Figure 6. The quality records
observed that there are quality defects, such as blow and
scratch marks, that were caused when three machine com-
ponents failed: hydraulic cylinder, punch, and die, as shown

in Table 1. To correct these marks, workers are forced to
use grinding machines and a heating process, as shown in
Figure 5(c), leading to additional manufacturing costs for the
product. The details of the cost, time, and initial values of
the parameters desired for the process quality control policy
are listed in Table 2. The optimum results of the proposed
integrated model are summarized in Table 3.

Figure 7(a) shows the effect of increasing the number of
samples taken (Ns) on the expected total cost. It is observed
that the optimum value of the number of samples taken is one
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TABLE 4. Sensitivity of the basic variables and influence range of [ETCPUT]_((M∗Q)_EWMA).

TABLE 5. optimal value Ranges of the five decision parameters.

every three hours. This is also the optimum value of sample
frequency (Hs), as shown in Figure 7(b). It is important to
find the optimum values of the decision parameters of the
control chart to find the optimum upper and lower control
limits. Thus, Figure 7(c) displays the impact of changing
the control limit width (L) on the expected total cost. It is
observed that the optimum values of L are in the range
of 1.5 to 2. Figure 7(d) illustrates the effect of the preventive
maintenance interval (TPM ) on the proposed expected total
cost; the optimum range of TPM is 400 to 500 h.

V. SENSITIVITY ANALYSIS FOR DEVELOPED
OPTIMIZATION MODE
An important issue is the sensitivity of the process and cost
parameters used for estimating the effects of range on the
quality of the developed integrated model for joint main-
tenance actions and process quality control policy. Table 4
shows the ranges of the effects on total cost per unit time
when increasing basic variables based on company allowance
policies of 10% (Level A) and 20% (Level B). The total cost
is determined as 51.82 SR if the basic variables are increased
by 20%, as in Level B, or it can stable at 47.26 SR in the
basic level. In addition, Table 5 summarizes the ranges of
optimal values for the four decision variables obtained from
sensitivity analysis.

VI. CONCLUSION
In this study, an EWMA chart was used for monitoring pro-
cess quality control. We also formulated an integrated model
for joint maintenance actions and process quality control
policy. The proposed methodology gives the optimal values
of the decision parameters of process quality control and the

preventive maintenance interval for optimizing the expected
total hourly system cost. An analysis of sensitivity of the
proposed integrated model was used to analyze the effect
of the model parameters and the basic variables on the total
system cost. The key conclusions from this research can be
summarized as follows:

• The proposed methodology allows managers to monitor
the different states of the production line and control the
quality of production units.

• It also assists in planning and implementing the pre-
ventive maintenance interval required to improve the
production yield and performance while minimizing
downtime.

• The proposed methodology could be applied to a wide
range of production manufacturing systems.

• The proposed methodology gives the expected total
hourly system cost by determining the optimal values of
the decision parameters of process quality control (Ns,
Hs, L, and λ) and the preventive maintenance interval
(TPM).
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