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ABSTRACT In this paper, a delay-dependent admissibility analysis method and dissipative controller design
are developed for a class of nonlinear time-delay descriptor systems subject to actuator saturation and
L2-disturbances via a Takagi-Sugeno (T-S) fuzzy model. A less conservative admissible condition is first
derived under which the system is not only regular, impulse free but also stable under certain initial
conditions. The method can eliminate the impulsive behavior of a descriptor system so as to ensure the
existence and uniqueness of solutions. The estimate of attraction domain is also determined in which the
admissible initial states converge asymptotically to the origin. The disturbance attenuation capability is
studied by designing the dissipative fuzzy controller such that the closed-loop system is admissible and holds
the dissipative performance for the prescribed disturbance attenuation level and L2-disturbances. Themethod
is more suitable for admissibility analysis and robust control synthesis. Moreover,H∞ control processes can
be achieved in the same design process, which shows that the cost and time may potentially be reduced when
a controller is designed for an actual physical system. Simulations are performed to validate the proposed
methods and illustrate the decrease in conservativeness for a classic nonlinear system based on the T-S fuzzy
time-delay descriptor model under actuator saturation and L2-disturbances. The study seeks to establish
a foundation for investigating the control synthesis of T-S fuzzy time-delay descriptor systems subject to
actuator saturation.

INDEX TERMS Delay-dependent, dissipative control, L2-disturbances, actuator saturation, T-S fuzzy
descriptor systems.

I. INTRODUCTION
As is well known, time-delays involving in-state or control
variables inevitably occur in a variety of practical systems
and may frequently lead to undesirable system instability and
poor performance, which greatly increases the difficulty and
complexity of stability analysis and controller design. There-
fore, the stability analysis and control of such systems have
been the focus of research in recent decades [1]–[15]. These
investigationsmay be divided into two types: delay dependent
and delay independent. Delay dependent research takes the
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size of delays into account. It is less conservative, especially
when the delay is relatively small [1]. A vital problem in delay
dependent control is the appearance of an integral term, which
does not be expressed normally as linear matrix inequalities
(LMIs). A large number of research methods and techniques
have contributed to stabilize the time-delay system and deal
with the integral term, such as Jensen’s inequality, Park’s
inequality, Moon’s inequality, Wirtinger’s inequality, free-
weighting-matrix approach and so on. Each method has its
own technical characteristics, so it is necessary to choose an
appropriate method so as to reduce the conservativeness.

Actuators are frequently involved in most practical
control applications to follow control signals emitted from
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controllers. Unfortunately, in the operation of driving the
actuator the physical limitation of the actuator satura-
tion is often unavoidable [7]. Performance deterioration
and even instability can occur in a closed-loop system
if the effect of actuator saturation is not considered
when designing a controller. Therefore, problems involving
control synthesis on actuator saturation have received
extensive attention during the past decades, either for state
systems [16]–[24], or descriptor systems [25]–[30]. The
stability or admissibility analysis and disturbance rejection
ability is worthy of study for linear systems or descriptor
systems subject to actuator saturation. Existing works on dis-
turbance rejection ability for systems with actuator saturation
are divided into two categories depending how disturbances
enter the system [21] – inputs with disturbances and inputs
without disturbances, such as [20] and [21], [26] respectively.
Although many stabilization methods above have been pro-
posed, some cannot be applied directly to time-delay systems
with saturating actuators. Thus the research on time-delay
systems has received more and more attention as of
late [7]–[10], [12]–[15]. For example, [8] determines simul-
taneously a state feedback control law and an associated
domain of safe admissible states for which the stability of
the closed-loop system is guaranteed when control saturation
effectively occurs; [9] derives a less conservative estimate of
the domain of attraction based on the Lyapunov-Razumikin
and Lyapunov-Krasovskii functional approaches, and the
estimate is maximized over the choice of the feedback gains.
Another approach [10], differing from existing techniques,
represents the saturation non-linearity as the convex combina-
tion of state feedback and auxiliary time-delay feedback, and
proposes improvements to the delay-dependent local stabi-
lization conditions; in [12], a delay-range-dependent method
is adopted and the existence conditions of the stabilizing
controller are derived. An estimate for the domain of attrac-
tion of the origin is obtained for the systems with different
time-delay ranges. [13] develops delay-range-dependent suf-
ficient conditions such that the descriptor system with time-
varying delays is regular, impulse free and α-stable, and also
presents an estimate of the convergence rate of such stable
systems and an iterative LMI (ILMI) algorithm to compute a
static output feedback controller gains. [14] establishes less
conservative sufficient conditions to ensure that closed-loop
system is locally robust admissible, and determines a domain
of attraction in which the admissible initial states are ensured
to converge asymptotically to the origin. By adopting the idea
of the cone complementarity algorithm, the minimization
problem is solved efficiently.

Willems introduced the dissipative notion in [31], which
unifies passivity and the small gain concept. From the appli-
cation point of view, a lot of systems must be dissipative
in order to achieve effective noise attenuation [32], [33].
In general, dissipativity means that the increase in energy
storage in the system is no more than the supplied energy
from outside the system [34]. However, it is very difficult to
find the storage function for a nonlinear dissipative system.

Therefore, some scholars are dedicated to finding a sim-
ple solution for dissipative control [32]–[40]. However, it is
known as an undeniable fact that the analysis and synthesis
of nonlinear systems is far more complex than linear ones.
T-S fuzzy descriptor system model is introduced by
Taniguchi et al. [41], which is an innovative and simple
method that deals with the problems involving a class of
nonlinear singular systems. Many nonlinear dynamic sys-
tems can be represented as T-S fuzzy systems, which can
approximate a nonlinear systemwith any precision [36]–[43].
A number of excellent results have been reported, such as [42]
and [43]. Two efficient robust fuzzy model predictive control
algorithms are given in [42] for T-S fuzzy discrete systems
with multiple time delays and bounded disturbances using
Lyapunov-Razumikhin function methods. The model predic-
tive control is investigated in [43] using Razumikhin methods
for T-S fuzzy discrete systems subjected to bounded time-
varying delay and persistent disturbances. Most recently,
robust control issue related to LMI technique is reported
in [46] and helpful to investigate the dissipative control for
descriptor systems subject to actuator saturation.

In this paper, a delay-dependent admissibility analysis
method and dissipative controller design are developed for
a class of nonlinear time-delay descriptor system subject
to actuator saturation and L2-disturbances via a T-S fuzzy
model. A less conservative admissible condition is first
derived under which the system is admissible for certain
initial conditions. The method can eliminate the impul-
sive behavior of a descriptor system so as to ensure the
existence and uniqueness of solutions. The estimate of
attraction domain is also determined in which the admis-
sible initial states converge asymptotically to the ori-
gin. The disturbance attenuation capability is studied by
designing the dissipative fuzzy controller such that the
closed-loop system is admissible and holds the dissipa-
tive performance for the prescribed disturbance attenuation
level and L2-disturbances. The method is more suitable for
admissibility analysis and robust control synthesis for the
time-delay nonlinear descriptor systems in the presence of
actuator saturation and L2-disturbances. Moreover, H∞ con-
trol processes can be achieved in the same design process,
which shows that the cost and time could potentially be
reduced when a controller is designed for an actual system.
Simulations are performed to validate the proposed methods
and illustrate the decrease in conservatism for a classic non-
linear system based on the T-S fuzzy time-delay descriptor
model under actuator saturation and L2-disturbances. The
study seeks to establish a foundation for investigating the
control synthesis of T-S fuzzy time-delay descriptor control
systems subject to actuator saturation.

The main innovations of this paper are as follows:
• The time-delays involving in-state or control variables

may greatly increase the difficulty and complexity of the
admissibility analysis and controller design. Until recently,
there has been a lack of research discussing delay-dependent
admissibility analysis and dissipative control of T-S fuzzy
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time-delay descriptor systems with actuator saturation and
L2-disturbances. The studies on stabilization and dissipative
control for such systems are still under way.
• The advantage of the method described in this paper is

the ability to eliminate the impulsive behavior of a descrip-
tor system which ensures the existence and uniqueness
of solutions. That is, it is not necessary to assume that
the systems under consideration are regular and impulse
free.
• The proposed method is more suitable for the admis-

sibility analysis and robust control synthesis for the time-
delay nonlinear descriptor systems in the presence of actuator
saturation and L2-disturbances.
• Moreover, the fact that H∞ control processes can be

achieved in the same design process indicates that the cost and
time required may be potentially be reduced when designing
a controller for actual physical systems. The study seeks to
establish a foundation for investigating the control synthesis
of T-S fuzzy time-delay descriptor control systems subject to
actuator saturation.

This paper is organized as follows. Section 2 gives
the problem formulations and preliminaries. In Section 3,
a delay-dependent admissible sufficient condition is first
derived. The estimate of attraction domain is also deter-
mined. The disturbance attenuation capability is then
studied by designing the dissipative fuzzy controller.
In Section 4, a design example is given to show the advan-
tages of developed results. Some conclusions are drawn
in Section 5.

Notation: The following notations will be used through-
out this paper: Rn and Rn×m denote respectively the
n-dimensional Euclidean space and the set of all n × m
real matrices. The superscript T stands for matrix trans-
position. And the notation A < 0(A ≤ 0) means that
A is real symmetric and negative definite matrix (negative
semi-definite matrix). ρ(A) represents the spectral radius
of matrix A. λmin(A)(λmax(A)) denotes the minimum (max-
imum) eigenvalue of matrix A. Cn,d = C([−d, 0],Rn)
denotes the Banach space of continuous vector functions
mapping [−d, 0] into Rn. xt = x(t + θ ) (θ ∈ [−d, 0], t ≥ 0)
denotes the function family defined on [−d, 0] which is
generated by a n-dimensional real vector valued continuous
function x(t) (t ∈ [−d, +∞)). ‖ · ‖ refers to the Euclidean
vector norm or spectral matrix norm,

‖ϕ‖c = sup
−d≤t≤0

‖ϕ(t)‖

stands for the norm of a function ϕ ∈ Cn,d . All
matrices, if the dimensions are not explicitly stated, are
assumed to have compatible dimensions for algebraic
operations.

II. PROBLEM FORMULATIONS AND PRELIMINARIES
Consider a nonlinear dynamical time-delay descriptor system
subject to actuator saturation and L2-disturbances. It can be
described by the following fuzzy IF-THEN rules:

Model rule i:
IF ξ1(t) isMi1 and ξ2(t) isMi2 · · · and ξp(t) isMip, THEN

Eẋ(t) = Aix(t)+ Aidx(t − d)+ Bisat(u(t))+Wiw(t),
z(t) = Cix(t)
x(t) = ϕ(t), t ∈ [−d, 0] (1)

where r is the number of IF-THEN rules and Mij(j =
1, 2, · · · , p) are fuzzy sets ξ1(t), ξ2(t), · · · , ξp(t) are premise
variables which are the functions of state variables, and let

ξ (t) =
(
ξ1(t), ξ2(t), · · · , ξp(t)

)T
The scalar d is a time-delay of the system and ϕ(t) is a con-
tinuous initial function Ai,Aid ,Bi,Ci and Wi are known real
constant matrices with appropriate dimensions. The matrix
E ∈ Rn×n is singular and rank (E) = s < n. x(t) ∈ Rn is
the state; z(t) ∈ Rq is the controlled output; w(t) ∈ Rp

is the exogenous disturbance signal in L2[0,∞) ; u(t) ∈ Rm

is control input; sat: Rm
→ Rm is the vector valued standard

saturation function defined as

sat(u) = (sat(u1)sat(u2) · · · sat(um))T ,
sat(ui) = sign(ui) min{1, |ui|}, i = 1, 2, · · · ,m.

Note that it is without loss of generality to assume unity
saturation level. A non-unity saturation level can be absorbed
into Bi and u(t) [21]. By fuzzy blending, the final fuzzy
sigular systems are inferred as follows

Eẋ(t) =
r∑
i=1

hi(ξ (t))(Aix(t)+ Aidx(t − d)

+Bisat(u(t))+Wiw(t)),

z(t) =
r∑
i=1

hi(ξ (t))Cix(t),

x(t) = ϕ(t), t ∈ [−d, 0], (2)

where Mij(ξj(t)) is the grade of membership of ξj(t) in Mij.

It can be seen that

βi(ξ (t)) =
p∏
j=1

Mij(ξj(t)) ≥ 0, i = 1, 2, · · · , r

which implies that

hi(ξ (t)) = βi(ξ (t))/
r∑
i=1

βi(ξ (t)) ≥ 0,
r∑
i=1

hi(ξ (t))=1

for all t .
Consider the following fuzzy controller via the parallel

distributed compensation (PDC) for the fuzzy model (2)

u(t) =
r∑
j=1

hj(ξ (t))Fjx(t) , F̄lx(t). (3)

For the matrices Fj ∈ Rm×n, we define

L̄(Fj) ,
{
x(t) ∈ Rn

∣∣∣∣fjix(t)∣∣ ≤ 1, i ∈ [1,m]
}
,

j = 1, 2, · · · , r,

where fji represents the ith row of Fj.
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Lemma 1 [16]: Let Fj,Hj ∈ Rm×n, j = 1, 2, · · · , r . Then,
for any x(t) ∈ L̄(Hj)

sat(Fjx(t)) ∈ co{3kFjx(t)+3
−

k Hjx(t)},

k ∈ [1, 2m], j = 1, 2, · · · , r, (4)

where co{·} denotes the convex hull of a set. 3 expresses
the set of m× m diagonal matrices whose diagonal elements
are either 1 or 0. There are 2m elements in the set, labeled
as 3k , k ∈ [1, 2m]. We also let 3−k = I −3k .
The following fact is needed about the convex hull of

a set of points [17]. For a group of points u1, u2, · · · , u`,
the convex hull of these points is defined as

co{ui |i ∈ [1, l] } ,

{
l∑
i=1

αiui
∣∣∣∣∣
l∑
i=1

αi = 1,αi ≥ 0

}
. (5)

For a non-singular matrix

P=
(
P1 0
P3 P4

)
(P1 ∈ Rs×s,P1 > 0,P4 ∈ R(n−s)×(n−s), |P4| 6= 0),
we denote

ε(EP, ρ) = {x(t) ∈ Rn
∣∣∣xT (t)EPx(t) ≤ ρ } (6)

and an ellipsoid

ε(P1, ρ) = {x1(t) ∈ Rs
∣∣∣xT1 (t)P1x1(t) ≤ ρ },

where x(t) = (xT1 (t), x
T
2 (t))

T (x1(t) ∈ Rs, x2(t) ∈ Rn−s).
Lemma 2: x(t) ∈ ε(EP, ρ) if and only if x1(t) ∈ ε(P1, ρ).
Proof: Assume that x ∈ ε(EP, ρ). Then x1(t) ∈

ε(P1, ρ) by the inequality |xT1 (t)P1x1(t) = |x
T (t)EPx(t)| ≤

ρ. On the other hand, assume that x1(t) ∈ ε(P1, ρ). Then
that x(t) ∈ ε(EP, ρ) can be obtained through the inequality∣∣xT (t)EPx(t)∣∣ = ∣∣xT1 (t)P1x1(t)∣∣ ≤ ρ. Thus, x(t) ∈ ε(EP, ρ)
if and only if x1(t) ∈ ε(P1, ρ).
Lemma 3 [39]: For a positive scalar ρ,

ε(EP, ρ) ⊂
r⋂
j=1

L̄(Hj),

if and only if

ε(P1, ρ) ⊂
r⋂
j=1

L̄(Hj1)

where Hj = [Hj1, 0],Hj1 ∈ Rm×s, 0 ∈ Rm×(n−s).

Lemma 4: If ε(EP, ρ) ⊂
r⋂
j=1

L̄(Hj), then

ε(EP, ρ) ⊂ L̄(
r∑
j=1

hj(ξ (t))Hj) = L̄(H̄l).

Proof: For any x(t) ∈ ε(EP, ρ), we have

x(t) ∈ L̄(Hj)(j = 1, 2, · · · , r),

under condition ε(EP, ρ) ⊂
r⋂
j=1

L̄(Hj). Therefore, it can be

derived that∣∣∣∣∣∣
r∑
j=1

hj(ξ (t))hjix(t)

∣∣∣∣∣∣ ≤
r∑
j=1

∣∣hj(ξ (t))∣∣ ∣∣hjix(t)∣∣ ≤ 1,

where hji is the ith row of matrix Hj. The above inequality

indicates that ε(EP, ρ) ⊂ L̄(
r∑
j=1

hj(ξ (t))Hj) = L̄(H̄l).

Remark 1: Lemmas 2-4 are crucial in that they allow us
to determine the estimate of attraction domain in a manner
resembling normal state systems while also playing an impor-
tant role in admissibility analysis. Using Lemma 2-4 as a
basis, Lemmas 5-8 can be applied to determine the feasibility
conditions under which a controller can be designed via
LMIs for a time-delay T-S fuzzy descriptor system subject
to actuator saturation and L2- disturbances.

Let ε(EP, ρ) ⊂
r⋂
j=1

L̄(Hj). By Lemma 1 and Lemma 4,

we have

sat(F̄lx(t)) ∈ co{3k F̄lx(t)+3
−

k H̄lx(t)}, k ∈ [1, 2m]. (7)

Then it is obvious from the expression (4) that

sat(u(t)) = sat(
r∑
j=1

hj(ξ (t))Fjx(t))

= sat
(
F̄lx

)
=

2m∑
k=1

αk (3k F̄lx(t)+3
−

k H̄lx(t))

=

2m∑
k=1

αk

r∑
j=1

hj(ξ (t))(3kFj +3
−

k Hj)x(t). (8)

Applying the above controller to system (2) results in the
following closed-loop systems

Eẋ(t) =
2m∑
k=1

αk

r∑
i=1

hi(ξ (t))
r∑
j=1

hj(ξ (t)){(Ai + Bi3kFj

+Bi3
−

k Hj)x(t)+ Aidx(t − d)+Wiw(t)}

, Āhlkx(t)+ Āhdx(t − d)+ W̄hw(t),

z(t) =
r∑
i=1

hi(ξ (t))Cix(t) , C̄hx(t),

x(t) = ϕ(t), t ∈ [−d, 0]. (9)

Note that rank (E) = s < n. Then without loss of gener-
ality [39], we can decompose matrices in system (9) with
w(t) = 0 as following

E =
(
Is 0
0 0

)
, Āhlk =

(
Āhlk11 Āhlk12
Āhlk21 Āhlk22

)
,

Āhd =
(
Āhd11 Āhd12
Āhd21 Āhd22

)
, (10)

where Āhlk11 ∈ Rs×s, Āhlk22 ∈ R(n−s)×(n−s), Āhd11 ∈
Rs×s, Āhd22 ∈ R(n−s)×(n−s).
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Definition 1 [1]: System (9) with w(t) = 0 is said to be
regular if det(sE − Āhlk ) is not identically 0; system (9) is
said to be impulse-free if degs det(sE − Āhlk ) = rank(E)
Lemma 5 [1]: System (9) w(t) = 0 is impulse-free if and

only if Āhlk22 is non-singular.
Lemma 6 [2], [3]: Assume that Āhlk22 is non-singular and

ρ(Ā−1hlk22Āhd22) < 1, then system (9) with w(t) = 0 is
stable if there exist positive numbers α, β, η and a continuous
functional V : Cn[−d, 0]→ R such that

β‖x1(t)‖2 ≤ V (xt ) ≤ η ‖xt‖2c ,

V̇ (xt ) ≤ −α‖x(t)‖2, (11)

where xt = x(t + θ ), θ ∈ [−d, 0], and

x(t) =
(
xT1 (t) x

T
2 (t)

)T (x1(t) ∈ Rs, x2(t) ∈ Rn−s)

satisfying (9). System (9) with w(t) = 0 is said to be
admissible if it is regular, impulse-free and stable.

Consider an augmented Lyapunov functional in the follow-
ing form

V (xt ) = xT (t)ETPx(t)+
∫ t

t−d
xT (s)Qx(s)ds

+

∫ 0

−d

∫ t

t+θ
ẋT (s)ETZEẋ(s)dsdθ

= xT1 (t)P1x1(t)+
∫ t

t−d
xT (s)Qx(s)ds

+

∫ 0

−d

∫ t

t+θ
ẋT (s)ETZEẋ(s)dsdθ, (12)

where xt = x(t + θ ), θ ∈ [−d, 0], and

x(t) =
(
xT1 (t) x

T
2 (t)

)T (x1(t) ∈ Rs, x2(t) ∈ Rn−s)

satisfying (9).
Lemma 7 [6]: For any positive symmetric constant matrix

Z ∈ Rn×n, scalars a, b, satisfying a < b, a vector function
x(t) in [a, b] → Rn such that the integration concerned is
well defined, then∫ b

a
xT (t)Zx(t)dt ≥

1
b− a

∫ b

a
xT (t)dtZ

∫ b

a
x(t)dt. (13)

Lemma 8 [44]: Given any real matrices X , Y and W with
appropriate dimensions such that Y > 0. Then, we have

XTYX + XTW +W TX +W TY−1W ≥ 0. (14)

III. ADMISSIBLE ANALYSIS AND DISSIPATIVE CONTROL
Theorem 1: Given scalar d0 > 0, then for any delay 0 <

d ≤ d0 and a positive scalar ρ , system (9) with w(t) = 0
subject to actuator saturation and L2-disturbances is delay-
dependent admissible within the set ε(EP, ρ), if there exists
a common matrix

P =
(
P1 0
P3 P4

)

(P1 ∈ Rs×s,P3 ∈ R(n−s)×s,P4 ∈ R(n−s)×(n−s),P1 > 0,
|P4| 6= 0) and matrices

Q =
(
Q1 Q2
QT2 Q4

)
≥ 0,Z =

(
Z1 Z2
ZT2 Z4

)
> 0

Fi,Hi such that the following set of matrix inequalities hold

8iik

=


4iik ∗ ∗

ϒi

(
−Q−
1
d E

TZE

)
∗

2iik Aid −
1
d Z
−1

 < 0, i = 1, 2, · · · , r,

(15)

8ijk +8jik

=


4ijk +4jik ∗ ∗

ϒi + ϒj

(
−2Q−
2
d E

TZE

)
∗

2ijk +2jik Aid + Ajd − 2
d Z
−1

 < 0,

j < i = 1, 2, · · · , r . (16)

ε(EP, ρ) ⊂
r⋂
j=1

L̄(Hj) (17)

[λmax(P1)+ dλmin(Q)] ‖ϕ‖2c +
d2

2
λmax(ETZE) ‖ϕ̇‖2c ≤ ρ,

(18)

where

8ijk =

4ijk ∗ ∗

ϒi −Q− 1
d E

TZE ∗

2ijk Aid −
1
d Z
−1

 ,
4ijk =

(
Ai + Bi3kFj + Bi3

−

k Hj
)T
P

+PT
(
Ai + Bi3kFj + Bi3

−

k Hj
)

+Q−
1
d
ETZE,

ϒi = ATidP+
1
d
ETZE,

2ijk = Ai + Bi3kFj + Bi3
−

k Hj, (19)

and

‖ϕ‖2c = sup
−d≤t≤0

‖ϕ(t)‖2 , ‖ϕ̇‖2c = sup
−d≤t≤0

‖ϕ̇(t)‖2 ,

The estimate of attraction domain is

ρ1 = [λmax(P1)+ dλmin(Q)] ‖ϕ‖2c

+
d2

2
λmax(ETZE) ‖ϕ̇‖2c ≤ ρ. (20)

The asterisk ∗ denotes the transpose of symmetric position
elements in the matrix in the following discussion.

Proof: To derive the admissibility of system (9) with
w(t) = 0, we first prove that the closed-loop system (9)
w(t) = 0 is regular and impulse free within ε(EP, ρ).
Consider the Lyapunov functional (12) for system (9).

From the expression of P and E , it is easy to see that
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ETP = PTE ≥ 0. Following a method similar to one in [2],
it can be derived that

λmin(P1)‖x1(t)‖2

≤ V (xt )

≤ [λmax(P1)+ dλmax(Q)

+
d2

2
(λ1 + λ2 + λ3 + λ4)] sup

θ∈[−2d,0]
‖x(t + θ )‖2

= [λmax(P1)+ dλmax(Q)

+
d2

2
(λ1 + λ2 + λ3 + λ4)]‖xt‖2c1 , (21)

where sup
θ∈[−2d,0]

‖x(t + θ )‖2 = ‖xt‖2c1 .The following fact can

be deduced

ĀThlkZĀhlk =
2m∑
k=1

αk

r∑
i=1

hi(ξ (t))
r∑
j=1

hj(ξ (t))

· (Ai + Bi3kFj + Bi3
−

k Hj)
TZ

·

2m∑
l=1

αl

r∑
m=1

hm(ξ (t))
r∑

n=1

hn(ξ (t))

· (Am + Bm3lFn + Bm3
−

l Hn)

=

2m∑
k=1

2m∑
l=1

r∑
i=1

r∑
j=1

r∑
m=1

r∑
n=1

αkαl

· hi(ξ (t))hj(ξ (t))hm(ξ (t))hn(ξ (t))

(Ai + Bi3kFj + Bi3
−

k Hj)
TZ

(Am + Bm3lFn + Bm3
−

l Hn)

=

2m∑
k=1

2m∑
l=1

r∑
i=1

r∑
j=1

r∑
m=1

r∑
n=1

αkαl ·

hi(ξ (t))hj(ξ (t))hm(ξ (t))hn(ξ (t))

ATi ZAm + A
T
i ZBm3lFn+

ATi ZBm3
−

l Hn + F
T
j 3kBTi ZAm+

FTj 3kBTi ZBm3lFn+
FTj 3kBTi ZBm3

−

l Hn+
HT
j 3
−

k B
T
i ZAm + H

T
j 3
−

k B
T
i ZBm3lFn

+HT
j 3
−

k B
T
i ZBm3

−

l Hn


,

2m∑
k=1

2m∑
l=1

r∑
i=1

r∑
j=1

r∑
m=1

r∑
n=1

αkαl

· hi(ξ (t))hj(ξ (t))hm(ξ (t))hn(ξ (t))�1
klijmn,

ĀThlk Āhlk =
2m∑
k=1

αk

r∑
i=1

hi(ξ (t))
r∑
j=1

hj(ξ (t))

· (Ai + Bi3kFj + Bi3
−

k Hj)
T

2m∑
l=1

αl

r∑
m=1

hm(ξ (t))
r∑

n=1

hn(ξ (t))·

(Am + Bm3lFn + Bm3
−

l Hn)

=

2m∑
k=1

2m∑
l=1

r∑
i=1

r∑
j=1

r∑
m=1

r∑
n=1

αkαl ·

hi(ξ (t))hj(ξ (t))hm(ξ (t))hn(ξ (t))

(Ai + Bi3kFj + Bi3
−

k Hj)
T

(Am + Bm3lFn + Bm3
−

l Hn)

=

2m∑
k=1

2m∑
l=1

r∑
i=1

r∑
j=1

r∑
m=1

r∑
n=1

αkαl ·

hi(ξ (t))hj(ξ (t))hm(ξ (t))hn(ξ (t))

ATi Am + A
T
i Bm3lFn+

ATi Bm3
−

l Hn + F
T
j 3kBTi Am+

FTj 3kBTi Bm3lFn+
FTj 3kBTi Bm3

−

l Hn+
HT
j 3
−

k B
T
i Am + H

T
j 3
−

k B
T
i Bm3lFn

+HT
j 3
−

k B
T
i Bm3

−

l Hn


,

2m∑
k=1

2m∑
l=1

r∑
i=1

r∑
j=1

r∑
m=1

r∑
n=1

αkαl ·

hi(ξ (t))hj(ξ (t))hm(ξ (t))hn(ξ (t))�2
klijmn,

ĀThdZ
TZĀhd

=

(
r∑
i=1

hi(ξ (t))Aid

)T
ZTZ

r∑
j=1

hj(ξ (t))Ajd

=

r∑
i=1

r∑
j=1

hi(ξ (t))hj(ξ (t))ATidZ
TZAjd

,
r∑
i=1

r∑
j=1

hi(ξ (t))hj(ξ (t))�3
ij,

ĀThdZĀhd

=

(
r∑
i=1

hi(ξ (t))Aid

)T
Z

r∑
j=1

hj(ξ (t))Ajd

=

r∑
i=1

r∑
j=1

hi(ξ (t))hj(ξ (t))ATidZAjd

,
r∑
i=1

r∑
j=1

hi(ξ (t))hj(ξ (t))�4
ij,

λ1 = λmax(�1
klijmn), λ2 = λmax(�2

klijmn),

λ3 = λmax(�3
ij), λ4 = λmax(�4

ij),

i, j,m, n = 1, 2, · · · , r, k ∈ [1, 2m]. (22)

Note that

x ∈ ε(EP, ρ)⇔ x ∈ ε(E(
P
ρ
), 1).

Then we have Hj2 = 0(j = 1, 2, · · · , r) by expression
(17) [25], whereHj = [Hj1,Hj2],Hj1 ∈ Rm×s,Hj2 ∈
Rm×(n−s). The following abbreviated form will be used from
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here on.
r∑
j=1

hj(ξ (t))Hj : = H̄l = [H̄l1, 0],

Hl1 ∈ Rm×s, 0 ∈ Rm×(n−s),
r∑
j=1

hj(ξ (t))Fj : = F̄l = [F̄l1, F̄l2],

F̄l1 ∈ Rm×s, F̄l2 ∈ Rm×(n−s). (23)

It can be derived by inequalities (15) and (16) along with

8̄hlk =

2m∑
k=1

αk

r∑
i=1

hi(ξ (t)hi(ξ (t))8iik

+

2m∑
k=1

αk
∑
j<i

hi(ξ (t))hj(ξ (t))(8ijk +8jik )

that

8̄hlk =

2m∑
k=1

αk

r∑
i=1

r∑
j=1

hi(ξ (t))hj(ξ (t))8ijk

,


4hlk ∗ ∗

ϒh

(
−Q−
1
d E

TZE

)
∗

Āhlk Āhd −
1
d Z
−1

 < 0,

∀x(t) ∈ ε(EP, ρ)\0 (24)

where 4hlk = ĀThlkP + PT Āhlk + Q − 1
d E

TZE and
ϒh = ĀThdP+

1
d E

TZE .
By Schur complement lemma, the above inequality (24) is

equivalent to

Ḡhlk =
2m∑
k=1

αk

r∑
i=1

hi(ξ (t))
r∑
j=1

hj(ξ (t))

·


(
4ijk ∗

ϒi −Q− 1
d E

TZE

)
+

d
(
2T
ijk

ATid

)
Z
(
2ijk Aid

)


,
2m∑
k=1

αk

r∑
i=1

hi(ξ (t))
r∑
j=1

hj(ξ (t))Ḡijk < 0,

∀x(t) ∈ ε(EP, ρ)\0 (25)

Noting expression (10) and inequality (24), then it turns out
with some manipulations that

ĀThlkP+ P
T Āhlk + Q−

1
d
ETZE

=

(
⊕ ⊕

⊕
(
PT4 Āhlk22 + Ā

T
hlk22P4 + Q4

) ) < 0,

k ∈ [1, 2m],∀x ∈ ε(EP, ρ)\0 (26)

where ⊕ denotes matrices which are not relevant in the
discussion. It is obtained from the above inequality (26)

that

PT4 Āhlk22 + Ā
T
hlk22P4 + Q4 < 0,

k ∈ [1, 2m],∀x(t) ∈ ε(EP, ρ)\0 (27)

which indicates that Āhlk22 is non-singular.
Taking the matrix inequality (24)and the expression (10)

into account, it is not hard to see that( ĀThlkP+ PT ĀThlk+Q− 1
d E

TZE

)
∗

ĀThdP+
1
d E

TZE −Q− 1
d E

TZE



=


⊕ ⊕

⊕

(
PT4 Āhlk22+
ĀThlk22P4 + Q4

) (
⊕ ⊕

⊕ P4Āhd22

)
(
⊕ ⊕

⊕ ĀThd22P4

) (
⊕ ⊕

⊕ −Q4

)


< 0, k ∈ [1, 2m],∀x(t) ∈ ε(EP, ρ)\0, (28)

where
⊕

represents matrices that are not relevant in the
following discussion. The inequality (28) implies that(
PT4 Āhlk22 + Ā

T
hlk22P4 + Q4 PT4 Āhd22

ĀThd22P4 −Q4

)
< 0,

k ∈ [1, 2m],∀x(t) ∈ ε(EP, ρ)\0. (29)

Pre- and post-multiplying (29) by
(
−ĀThd22Ā

−T
hlk22 I

)
and its

transpose, respectively, it can be obtained that

ĀThd22Ā
−T
hlk22Q4Ā

−1
hlk22Āhd22 − Q4 < 0. (30)

Then we have ρ(Ā−1hlk22Āhd22) < 1 by the above
inequality (30).

Taking the time derivative of V (xt ) along with the trajec-
tory of the closed-loop system (9) with w(t) = 0 yields

V̇ (xt )

=
(
Āhlkx(t)+ Āhdx(t − d)

)T Px(t)
+ xT (t)PT

(
Āhlkx(t)+ Āhdx(t − d)

)
+ xT (t)Qx(t)− xT (t − d)Qx(t − d)

+ d
(
Āhlkx(t)+ Āhdx(t − d)

)TZ (Āhlkx(t)+ Āhdx(t − d))
−

∫ 0

−d
ẋT (t + θ )ETZEẋ(t + θ )dθ, (31)

By Jensen’s inequality and noting expression (31), it follows
that

V̇ (xt )

≤ xT (t)ĀThlkPx(t)+ x
T (t − d)ĀThdPx(t)

+ xT (t)PT Āhlkx(t)+ xT (t)PT Āhdx(t − d)

+ xT (t)Qx(t)− xT (t − d)Qx(t − d)

+ d
(
Āhlkx(t)+ Āhdx(t − d)

)T Z (Āhlkx(t)+Āhdx(t−d))
−

1
d
xT (t)ETZEx(t)+

1
d
xT (t)ETZEx(t − d)

+
1
d
xT (t − d)ETZEx(t)−

1
d
xT (t − d)ETZEx(t − d),
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= ςT1 (t)




ĀThlkP+
PT Āhlk+
Q−
1
d E

TZE

 ∗

(
ĀThdP+
1
d E

TZE

) (
−Q−
1
d E

TZE

)

 ς1(t)

+ dςT1 (t)
(
ĀThlk
ĀThd

)
Z
(
Āhlk Āhd

)
ς1(t)

= ςT1 (t)Ḡhlkς1(t)

=

2m∑
k=1

αk

r∑
i=1

hi(ξ (t))
r∑
j=1

hj(ξ (t))ςT1 (t)Ḡijkς1(t), (32)

where

ς1(t) =
(

x(t)
x(t − d)

)
.

It is clear from the fact Ḡijk < 0,
r∑
i=1

hi(ξ (t)) = 1 and

2m∑
k=1

αk = 1 that

V̇ (xt ) ≤ −α‖ς1(t)‖2 ≤ −α‖x(t)‖2,

∀x(t) ∈ ε(EP, ρ)\0, (33)

where α = − λmax
1≤i,j≤r,k∈[1,2m]

(Ḡijk ).

From V̇ (xt ) ≤ 0, it follows that V (xt ) ≤ V (x0) = V (ϕ),
x0 = ϕ(t), t ∈ [−d, 0]. Therefore, we have

xT1 (t)P1x1(t) = xT (t)ETPx(t) ≤ V (xt )

≤ V (x0) = V (ϕ)

= ϕT1 (0)P1ϕ1(0)+
∫ 0

−d
ϕT (s)Qϕ(s)ds

+

∫ 0

−d

∫ 0

θ

ϕ̇T (s)ETZE ϕ̇(s)dsdθ

≤ [λmax(P1)+ dλmin(Q)] ‖ϕ‖2c

+
d2

2
λmax(ETZE) ‖ϕ̇‖2c ≤ ρ, (34)

where

‖ϕ‖2c = sup
−d≤t≤0

‖ϕ(t)‖2 , ‖ϕ̇‖2c = sup
−d≤t≤0

‖ϕ̇(t)‖2 .

Thus, the system is admissible as it is also regular and
impulse-free. The estimate of attraction domain is

ρ1= [λmax(P1)+dλmin(Q)] ‖ϕ‖2c+
d2

2
λmax(ETZE) ‖ϕ̇‖2c≤ρ.

Theorem 2: Given scalar δ > 0 and d0 > 0. Then for any
delay 0 < d ≤ d0 and a positive scalar ρ, system (9) with
w(t) = 0 subject to actuator saturation and L2-disturbances
is delay-dependent admissible within ε(EX−1, ρ), if there
exists a common matrix

X = P−1 =
(

P−11 0
−P−14 P3P

−1
1 P−14

)
,

(
X1 0
X3 X4

)

(X1 ∈ Rs×s,X3 ∈ R(n−s)×s,X4 ∈ R(n−s)×(n−s),X1 >

0, |X4| 6= 0), matrices

Q =
(
Q1 Q2
QT2 Q4

)
≥ 0,

Z̄ = Z−1 > 0,Gi,Mi such that the following LMIs hold

_

8iik

=


4̄iik ∗ ∗ ∗ ∗

ATid −Q ∗ ∗ ∗

2̄ijk Aid − 1
d Z̄ ∗ ∗

X 0 0 −(2I − Q) ∗
EX 0 0 0 −dZ̄

 < 0,

i = 1, 2, · · · , r, k ∈ [1, 2m], (35)
_

8ijk +
_

8jik

=



 4̄ijk
+

4̄jik

 ∗ ∗ ∗ ∗ATid
+

ATjd

 −2Q ∗ ∗ ∗ 2̄ijk
+

2̄jik

 Aid
+

Ajd

 − 2
d Z̄ ∗ ∗

X 0 0 −
1
2 (2I − Q) ∗

EX 0 0 0 −
d
2 Z̄


< 0, j < i =, 1, 2, · · · , r, k ∈ [1, 2m], (36)(

ρ ρgj1i
ρgTj1i X1

)
≥ 0, i ∈ [1,m], j = 1, 2, · · · , r, (37)

[λmax(X
−1
1 )+ dλmin(Q)] ‖ϕ‖2c

+
d2

2
λmax(ET Z̄−1E) ‖ϕ̇‖2c ≤ ρ. (38)

where

_

8ijk =


4̄ijk ∗ ∗ ∗ ∗

ATid −Q ∗ ∗ ∗

2̄ijk Aid − 1
d Z̄ ∗ ∗

X 0 0 −(2I − Q) ∗
EX 0 0 0 −dZ̄


4̄ijk = XTATi +M

T
j 3kBTi + G

T
j 3
−

k B
T
i

+AiX + Bi3kMj + Bi3
−

k Gj +
1
d
ET Z̄E

+
1
d
ETEX +

1
d
XTETE,

2̄ijk = AiX + Bi3kMj + Bi3
−

k Gj,

Gj = HjX =
(
Hj1X1 0

)
,
(
Gj1 0

)
,FiX = Mi, (39)

and gj1i denotes the ith row of Gj1.
Proof: Pre- and post-multiplying inequality (15) by

diag
{
P−T , I , I

}
and diag

{
P−1, I , I

}
, respectively, and

noting X = P−1,Gj = HjX ,Mi = FiX , it can be derived

159642 VOLUME 7, 2019



B. Zhu et al.: Delay-Dependent Admissibility Analysis and Dissipative Control

that 
^

4ijk ∗ ∗

^

ϒ i

(
−Q−
1
d E

TZE

)
∗

2̄iik Aid −
1
d Z
−1

 < 0 (40)

where
^

4ijk =

(
XTATi +M

T
i 3kBTi + G

T
i 3
−

k B
T
i

)
+
(
AiX + Bi3kMi + Bi3

−

k Gi
)

+XTQX −
1
d
XTETZEX ,

^

ϒ i = ATid +
1
d
ETZEX

Note that inequalities

−
1
d
XTETZEX ≤

1
d
ETZ−1E +

1
d
ETEX +

1
d
XTETE

and

XTZ + ZTX ≤ ZTY−1Z + XTYX ,Y > 0.

From here, it is easy to see that the inequality (40) holds only
if  4̃iik ∗ ∗

ATid −Q ∗

2̄iik Aid − 1
d Z
−1

 < 0, (41)

where

4̃iik =

(
XTATi +M

T
i 3kBTi + G

T
i 3
−

k B
T
i

)
+
(
AiX + Bi3kMi + Bi3

−

k Gi
)

+XTQX +
1
d
ETZ−1E +

1
d
ETEX

+
1
d
XTETE +

1
d
XTETZEX .

By Schur complement lemma, the above inequality is equiv-
alent to that

4̂iik ∗ ∗ ∗ ∗

ATid −Q ∗ ∗ ∗

2̄iik Aid − 1
d Z
−1

∗ ∗

X 0 0 −Q−1 ∗

EX 0 0 0 −dZ−1

 < 0, (42)

where

4̂iik = XTATi +M
T
i 3kBTi + G

T
i 3
−

k B
T
i

+AiX + Bi3kMi + Bi3
−

k Gi

+
1
d
ETZ−1E +

1
d
ETEX +

1
d
XTETE .

Let Z̄ = Z−1 . Noting the inequality −Q−1 ≤ Q− 2I and
the Schur complement lemma, we then have

_

8iik < 0.We can
in amanner similar to the one above prove that

_

8ijk+
_

8jik < 0
in (36). This proof is omitted as the proof would be a repeat
of the above steps.

By Lemma 3,

ε(EP, ρ) ⊂
r⋂
j=1

L̄(Hj)

if and only if

ε(P1, ρ) ⊂
r⋂
j=1

L̄(Hj1)

where Hj = [Hj1, 0],Hj1 ∈ Rm×s, 0 ∈ Rm×(n−s). Then the
condition

ε(P1, ρ) ⊂
r⋂
j=1

L(Hj1)

is equivalent to [16]

hj1iP
−1
1 hTj1i ≤

1
ρ
, i ∈ [1,m], j = 1, 2, · · · , r . (43)

By Schur complement equivalence, the above inequality (43)
is equivalent to(

ρ hj1iρP
−1
1

ρP−11 hTj1i P−11

)
≥ 0, i ∈ [1,m], j = 1, 2, · · · , r,

(44)

where hj1i is the ith row of Hj1. Note that gj1i is the ith row of
Gj1 . Then inequality (44) is equivalent to(

ρ ρgj1i
ρgTj1i X1

)
≥ 0, i ∈ [1,m], j = 1, 2, · · · , r .

Note that

X = P−1 =
(

P−11 0
−P−14 P3P

−1
1 P−14

)
=

(
X1 0
X3 X4

)
,

Z̄ = Z−1. Then the condition (18) is equivalent to

[λmax(X
−1
1 )+dλmin(Q)] ‖ϕ‖2c+

d2

2
λmax(ET Z̄−1E) ‖ϕ̇‖2c≤ρ.

In this section, we shall focus on the delay-dependant
dissipative analysis and control problem for system (9) with
time-delay.

Definite the quadratic energy supply function associated
with system (9) by

s(w, z) = zT (t)Q̄z(t)+ 2zT (t)S̄w(t)+ wT (t)R̄w(t), (45)

where Q̄ = Q̄T , R̄ = R̄T and S̄ are real matrices with
appropriate dimensions.

We then introduce the following definitions.
Definition 2 [31]: Given matrices Q̄ = Q̄T , R̄ = R̄T

and S̄, system (9) with energy supply function (45) is said
to be quadratic dissipative, if for some real functional $ (·),
$ (0) = 0 such that the following condition is satisfied:∫ τ

0
[zT (t)Q̄z(t)+ 2zT (t)S̄w(t)+ wT (t)R̄w(t)]dt

+$ (x0) ≥ 0,∀τ ≥ 0. (46)
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Furthermore, system (9) is said to be strictly quadratic dissi-
pative, if for some positive scalar δ, the following condition
is satisfied:∫ τ

0
[zT (t)Q̄z(t)+ 2zT (t)S̄w(t)+ wT (t)R̄w(t)]dt

+$ (x0)− δ
∫ τ

0
wT (t)w(t)dt ≥ 0,∀τ ≥ 0 (47)

Without loss of generality, we always assume matrix Q̄ ≤ 0

and Q̄1 =
(
−Q̄

) 1
2 in the following part.

Theorem 3: Given scalar δ > 0, d0 > 0, matrices Q̄ =
Q̄T , R̄ = R̄T and S̄. Then for any delay 0 < d ≤ d0 and a
positive scalar ρ, system (9) subject to actuator saturation and
L2 -disturbances is delay-dependent admissible and strictly
dissipative within ε(EP, ρ), if there exists a common non-
singular matrix

P =
(
P1 0
P3 P4

)
(P1 ∈ Rs×s,P3 ∈ R(n−s)×s,P4 ∈ R(n−s)×(n−s),P1 > 0,
|P4| > 0), matrices

Q =
(
Q1 Q2
QT2 Q4

)
≥ 0,Z =

(
Z1 Z2
ZT2 Z4

)
> 0,

Hi,Fi such that the following matrix inequalities hold

9iik

=


4iik ∗ ∗ ∗ ∗

ϒi −
1
2 �̄22 ∗ ∗ ∗

1i 0 −
1
2 �̄33 ∗ ∗

2iik Aid Wi −
1
d Z
−1
∗

Q̄1Ci 0 0 0 −I

 ,
< 0, i = 1, 2, · · · , r, (48)

9ijk +9jik

=



(
4ijk+

4jik

)
∗ ∗ ∗ ∗(

ϒi+

ϒj

)
−�̄22 ∗ ∗ ∗(

1i+

1j

)
0 −�̄33 ∗ ∗(

2ijk+

2jik

) Aid
+

Ajd

 Wi
+

Wj

 − 2
d Z
−1
∗(

5i+

5j

)
0 0 0 −2I


< 0, j < i = 1, 2, · · · , r, (49)

ε(EP, ρ) ⊂
r⋂
j=1

L̄(Hj), (50)

ρ1 = [λmax(P1)+ dλmin(Q)] ‖ϕ‖2c

+
d2

2
λmax(Z1) ‖ϕ̇‖2c ≤ ρ, (51)

where

9ijk =


4ijk ∗ ∗ ∗ ∗

ϒi −
1
2 �̄22 ∗ ∗ ∗

1i 0 −
1
2 �̄33 ∗ ∗

2ijk ATid Wi −
1
d Z
−1
∗

5i 0 0 0 −I

 ,
1i = Wi

TP− S̄TCi,

5i = Q̄1Ci,

�̄22 = 2Q+
2
d
ETZE,

�̄33 = 2R̄− 2δI , (52)

and symbols 4ijk , ϒi and 2ijk can be found in (19). The
estimate of attraction domain is

ρ1 = [λmax(P1)+ dλmin(Q)] ‖ϕ‖2c

+
d2

2
λmax(Z1) ‖ϕ̇‖2c ≤ ρ

where

‖ϕ‖2c = sup
−d≤t≤0

‖ϕ(t)‖2 , ‖ϕ̇‖2c = sup
−d≤t≤0

‖ϕ̇(t)‖2 . (53)

Proof: Firstly, we prove that closed-loop system (9) is
admissible within ε(EP, ρ). By inequalities (48) and (49)
along with

9̄hlk =

2m∑
k=1

αk (
r∑
i=1

hi(ξ (t))hi(ξ (t))9iik

+

∑
j<i

hi(ξ (t))hj(ξ (t))(9ijk +9jik )),

it can then be derived that

9̄hlk =

2m∑
k=1

αk

r∑
i=1

r∑
j=1

hi(ξ (t))hj(ξ (t))9ijk

,


4hlk ∗ ∗ ∗ ∗

ϒh −
1
2 �̄22 ∗ ∗ ∗

1h 0 −
1
2 �̄33 ∗ ∗

Āhlk Āhd W̄h −
1
d Z
−1
∗

5h 0 0 0 −I


< 0, (54)

where1h = W̄ T
h P − S̄T C̄h and 5h = Q̄1C̄h. Symbols 4hlk

andϒh can be found in (24). FromSchur complement lemma,
the above inequality is equivalent to4hlk ∗ ∗

ϒh −
1
2 �̄22 ∗

1h 0 −
1
2 �̄33


+

5T
h
0
0

 (5h 0 0)

+ d

 ĀThlk
ĀThd
W̄ T
h

Z (Āhlk ĀhdW̄h) < 0. (55)
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Then, it is obvious from inequality (55) and the proof of
Theorem 1 that system (9) with w(t) = 0 is admissible within
ε(EP, ρ). And the estimate of attraction domain is

ρ1 = [λmax(P1)+ dλmin(Q)] ‖ϕ‖2c +
d2

2
λmax(Z1) ‖ϕ̇‖2c ≤ ρ.

Next, it will be prove that the close-loop system (9) is
strictly dissipative. To this end, we select the descriptor type
Lyapunov-Krasovskii functional (9) as $ (·) of Definition 2.
it can be derived that ETP = PTE ≥ 0 from the expression
of P and E . Then, the time-derivative of V (xt ) along with the
solution of closed-loop system (9) is given by

V̇ (xt ) = (Āhlkx(t)+ Āhdx(t − d)+ W̄hw(t))TPx(t)

+ xT (t)PT (Āhlkx(t)+ Āhdx(t − d)+ W̄hw(t))

+ xT (t)Qx(t)− xT (t − d)Qx(t − d)

+ d(Āhlkx(t)+ Āhdx(t − d)+ W̄hw(t))TZ (Āhlkx(t)

+ Āhdx(t − d)+ W̄hw(t))

−

∫ 0

−d
ẋT (t + θ )ETZEẋ(t + θ )dθ (56)

By Jensen’s inequality and expressions (55) and (56), it fol-
lows that

V̇ (xt)− zT (t)Q̄z(t)− 2zT (t)S̄w(t)

−wT (t)R̄w(t)+ δwT (t)w(t)

≤ ς̄T1 (t)



4hlk ∗ ∗

ϒh −
1
2 �̄22 ∗

1h 0 −
1
2 �̄33


+

5T
h
0
0

 (5h 0 0)

+ d

 ĀThlk
ĀThd
W̄ T
h

Z (Āhlk ĀhdW̄h)


ς̄1(t) < 0

where

ς̄1(t) =

 x(t)
x(t − d)
w(t)

 (57)

It follows from the inquality (57) that

V̇ (xt)− zT (t)Q̄z(t)− 2zT (t)S̄w(t)− wT (t)R̄w(t)

e+ δwT (t)w(t) < 0. (58)

By integrating (58) over the period [0, τ ], it can be derived
that

V (xτ ) ≤ V (x0)+
∫ τ

0
[zT (t)Q̄z(t)+ 2zT (t)S̄w(t)

+wT (t)R̄w(t)]dt − δ
∫ τ

0
wT (t)w(t)dt. (59)

This shows that system (9) is strictly dissipative by
Definition 2. In a word, the system (9) subject to actuator

saturation and is admissible and strictly dissipative within
ε(EP, ρ). Furthermore estimate of attraction domain is

ρ1 = [λmax(P1)+ dλmin(Q)] ‖ϕ‖2c +
d2

2
λmax(Z1) ‖ϕ̇‖2c ≤ ρ.

We should note that matrix inequalities in (48)-(50) of
Theorem 3 are not linear matrix inequalities. In the following,
we propose a design method of the dissipative controller
via LMIs.
Theorem 4: Given scalar δ > 0, d0 > 0, matrices

Q̄ = Q̄T , R̄ = R̄T and S̄. Then for any delay 0 < d ≤
d0 and a positive scalar ρ, system (9) subject to actuator
saturation and L2-disturbances is delay-dependent admissible
and strictly dissipative within ε(EX−1, ρ), if there exists a
common matrix

X = P−1 =
(

P−11 0
−P−14 P3P

−1
1 P−14

)
=

(
X1 0
X3 X4

)
(X1 ∈ Rs×s,X4 ∈ R(n−s)×(n−s),X1 > 0, |X4| 6= 0), matrices

Q =
(
Q1 Q2
QT2 Q4

)
≥ 0,

Z̄ = Z−1 > 0, Gi, Mi such that the following set LMIs hold
_

9 iik

=



4̄iik ∗ ∗ ∗ ∗ ∗ ∗

ATid −Q ∗ ∗ ∗ ∗ ∗

1i 0 − 1
2 �̄33 ∗ ∗ ∗ ∗

2̄ijk Aid Wi −
1
d Z̄ ∗ ∗ ∗

5i 0 0 0 −I ∗ ∗

X 0 0 0 0 −2�66 ∗

EX 0 0 0 0 0 −dZ̄


< 0, i = 1, 2, · · · , r, k ∈ [1, 2m], (60)
_

9 ijk +
_

9 jik =

(
01 ∗

02 03

)
< 0,

j < i = 1, 2, · · · , r, k ∈ [1, 2m], (61)(
ρ ρgj1i
ρgTj1i X1

)
≥ 0, i ∈ [1,m], j = 1, 2, · · · , r, (62)

[λmax(X
−1
1 )+ dλmin(Q)] ‖ϕ‖2c

+
d2

2
λmax(ET Z̄−1E) ‖ϕ̇‖2c ≤ ρ, (63)

where

_

9 ijk =



4̄ijk ∗ ∗ ∗ ∗ ∗ ∗

ATid −Q ∗ ∗ ∗ ∗ ∗

1i 0 − 1
2 �̄33 ∗ ∗ ∗ ∗

2̄ijk Aid Wi −
1
d Z̄ ∗ ∗ ∗

5i 0 0 0 −I ∗ ∗

X 0 0 0 0 −�66 ∗

EX 0 0 0 0 0 −
1
2dZ̄


�66 =

1
2
(2I − Q),

1i = Wi
T
− S̄TCiX ,5i = Q̄1CiX ,

Gj = HjX = (Hj1X1 0) , (Gj1 0),FiX = Mi,
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01 =



(
4̄ijk+

4̄jik

)
∗ ∗(

ATid+
ATjd

)
−2Q ∗(

1i+

1j

)
0 −�̄33



02 =



(
2̄ijk+

2̄jik

) (
Aid+
Ajd

) (
Wi+

Wj

)
(
5i+

5j

)
0 0

X 0 0
EX 0 0



03 =


−

2
d Z̄ ∗ ∗ ∗

0 −2I ∗ ∗

0 0 −�66 ∗

0 0 0 −
d
2 Z̄

 (64)

and gj1i denotes the ith row of Gj1 The other symbols
4̄ijk , 2̄ijk can be found in (39). and �̄33 is defined in (52).
The estimate of attraction domain is ρ1 = [λmax(X

−1
1 ) +

dλmin(Q)] ‖ϕ‖2c +
d2
2 λmax(ET Z̄−1E) ‖ϕ̇‖2c ≤ ρ.

Proof: Pre- and post-multiplying inequality (48) of
Theorem 3 by diag{P−T , I , I , I , I } and diag{P−1, I , I , I , I },
respectively, and noting X = P−1,Gj = HjX ,Mi = FiX ,
then the inequality 9iik < 0 in (48) only if

9̃iik

=


^

4ijk ∗ ∗ ∗ ∗
^

ϒ i −
1
2 �̄22 ∗ ∗ ∗

1i 0 −
1
2 �̄33 ∗ ∗

2̄iik Aid Wi −
1
d Z
−1
∗

5i 0 0 0 −I

 < 0, (65)

where symbols 4̆ijk and ϒ̆i are defined in (40), 2̄iik and �̄22
can be found in (39) and (52) respectively.

Noting

−
1
d
XTETZEX ≤

1
d
ETZ−1E +

1
d
ETEX +

1
d
XTETE,

XTZ + ZTX ≤ ZTY−1Z + XTYX (Y > 0),

then it is easy to see that inequality (65) holds only if

9̂iik

=


4̃iik ∗ ∗ ∗ ∗

ATid −Q ∗ ∗ ∗

1i 0 − 1
2 �̄33 ∗ ∗

2̄iik Aid Wi −
1
d Z
−1
∗

5i 0 0 0 −I

 < 0 (66)

where 4̃iik is defined in (41). Let Z̄ = Z−1. Noting −Q−1 ≤
Q− 2I and Schur complement lemma, then 9̂iik < 0 in (66)
only if

_

9 iik < 0 in (60).
Similarly, we can prove that9ijk +9jik < 0 in (49) only if

_

9 ijk +
_

9 jik < 0 in (61). See the Appendix for the full proof.

From the proof above of theorem 2, it can be seen that
inequalities in (50) and (51) are respectively equivalent to
inequalities (62) and (63).
Remark 2: Let Q̄ = −

1
γ 2
I , R̄ − δI = I , S̄ = 0,

the dissipative control then degenerates into H∞ control.
This implies that the dissipative control is more general than
H∞ control. Once the dissipative controller is obtained, H∞
controller is only a special case of the former, which could
potentially reduce the time and cost spent when designing
the controller for an actual system with time-delay in the
presence of actuator saturation.

IV. DESIGN EXAMPLE
Example 1: The following nonlinear descriptor system (67)
will be expressed as a T-S fuzzy model, and the dissipative
controller under saturated control will be designed by solving
the set of LMIs in Theorem 4 as validation for the proposed
method. Consider a nonlinear time-delay system with actua-
tor saturation [3]

(1+ a cos θ (t))θ̈ (t) = −bθ̇3(t)+ cθ (t)+ cdθ (t − d)

+ gw(t)+ f sat(u), (67)

where the range of θ̇ (t) is assumed to satisfy
∣∣θ̇ (t)∣∣ < φ.

When |a| ≥ 1, the methods in [41] and [45] are not
applicable. [3] uses the descriptor fuzzy control approach
to achieve the stabilization of the system (67), in which the
condition |a| < 1 is no longer needed, and reducing the
terms and LMIs computations involved. We will validate our
derivation by using the nonlinear system in the following
section.

Let x(t) = (x1(t) x2(t) x3(t))T , where x1(t) = θ (t), x2(t) =
θ̇ (t), x3(t) = θ̈ (t). Then nonlinear system (67) is exactly
represented as the following T-S descriptor fuzzy model.

Eẋ(t) =
3∑
i=1

hi(ξ (t))(Aix(t)+ Aidx(t − d))

+

3∑
i=1

hi(ξ (t))(Bisat(u(t))+Wiw(t)),

z(t) =
3∑
i=1

hi(ξ (t))Cix(t),

x(t) = ϕ(t), t ∈ [−d, 0], (68)

where

E =

 1 0 0
0 1 0
0 0 0

 ,A1 =
 0 1 0
0 0 1
c −b(φ2 + 2) a− 1

 ,
A2 =

 0 1 0
0 0 1
c 0 −a− 1− aφ2

 ,
A3 =

 0 1 0
0 0 1
c 0 a− 1

 ,
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B1 = B2 = B3 =

 0
0
f

 ,
W1 = W2 = W3 =

 0
0
g

 ,
A1d = A2d = A3d =

 0 0 0
0 0 0
0 0 cd

 ,
C1 = C2 = C3 =

(
c11 0 0

)
,

h1 =
x22 (t)

φ2 + 2
, h2 =

1+ cos x1(t)
φ2 + 2

,

h3 =
φ2 − x22 (t)+ 1− cos x1(t)

φ2 + 2
. (69)

For simulation purposes, we select the following
coefficients

a = −0.0063, b = 0.0209, c = −0.00145, f = −0.0074,
g = −0.00191, c11 = 1, cd = 0.0267,
Q̄ = −1, R̄ = 0.0100, S̄ = 0.0300, d = 0.0011,ρ = 1.5
φ =

(
0.1000 −0.1000 −0.1000

)
. (70)

By solving the set of LMIs in (60)-(63), then we can obtain
the feasible solutions of a fuzzy dissipative controller with
dissipative degree δ = 2.8909 as follows.

P =

(
41.9650 2.4611 0
2.4611 12.6190 0
50.3500 25.0701 0.0040

)
,

P1 =
(
41.9650 2.4611
2.4611 12.6190

)
,

F1 = 103(0.0239 6.7993 − 0.0911),
F2 = 103(0.0239 7.7621 0.0039),
F3 = 103(0.0239 7.7621 − 0.0911),
H1 = 10−8(0.3167 − 0.5293 0),
H2 = 10−8(−0.3167 0.5293 0),
H3 = 10−8(−0.3167 0.5293 0). (71)

The simulation shows that system (67) under the saturated
control is regular, impulse-free and stable when the following
initial conditions are satisfied

ρ1 = [λmax(P1)+ dλmin(Q)] ‖ϕ‖2c +
d2

2
λmax(Z1) ‖ϕ̇‖2c

= 42.1707 ‖ϕ‖2c + 6.0500e− 007 ‖ϕ̇‖2c ≤ 1.5. (72)

Let ϕ = [0.1000 − 0.1000 − 0.1000],∀t ∈ [−0.00110].
Figures 1-3 show state evolution under saturated control.
Figure 4 indicates the saturated actuator output corresponding
to the trajectory shown in Figures 1-3.
Remark 3: The example shows that the obtained method

can stabilize the system and achieve dissipative performance
for the prescribed disturbance attenuation level δ = 2.8909
and disturbances w(t) = e−t sin t in the presence of actu-
ator saturation. An estimation of the attraction domain is
ρ1 = 1.2651 in simulation above.
Example 2: In many cases, it is more convenient to

express practical models by the descriptor systems than

FIGURE 1. The state response curves.

FIGURE 2. The phase plane curve.

FIGURE 3. The ellipsoid ε(EP, 1.5) and trajectory with disturbance.

ordinary ones due to the presence of algebraic constraint
equations. The following is an example economic model
expressed using a descriptor system instead of the ordinary
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FIGURE 4. The actuator output corresponding to the trajectories shown
in figures 1-3.

one [36].

ẋ1(t) = (−
ᾱβ̄

r2
−
η̄c
p
)x1(t)+ ᾱx2(t)−

c
p
x3(t)− η̄x21 (t)

− x1(t)x3(t)+ ᾱdx1(t − d)+ d11w(t),
ẋ2(t) = β̄x1(t)− r2x2(t),

0 = p
(
ᾱβ̄

r2
− r1 − β̄ −

η̄c
p

)
x1(t)+ px1(t)x3(t)

+ b13sat(u(t)),
z(t) = c11x1(t)+ c12x2(t)+ c13x3(t).

where u(t) represents the government’s ability to develop
and manage free resources. Excessive control exerted by the
government can lead to an instability or even collapse of
entire population systems. d11 indicates the disturbance factor
for young populations, such as seasonal interference and
disease interference. The meaning of the other coefficients
and variables are described in [36]. The above non-linear
economic model can be expressed by the following T-S fuzzy
descriptor model.

Eẋ(t) =
2∑
i=1

hi(x1(t))(Aix(t)+ Bisat(u(t)

+Aidx(t − d)+Wiw(t))

z(t) =
2∑
i=1

hi(x1(t))Cix(t),

where

E =

 1 0 0
0 1 0
0 0 0

 ,

A1 =



(
−
ᾱβ̄
r2
−

η̄c
p + η̄l

)
ᾱ −

c
p + l

β̄ − r2 0

p

(
ᾱβ̄
r2
− r1−

β̄ −
η̄c
p

)
0 − pl

 ,

A2 =



(
−
ᾱβ̄
r2
−

η̄c
p

−η̄l

)
ᾱ −

c
p − l

β̄ − r2 0

p

(
ᾱβ̄
r2
− r1−

β̄ −
η̄c
p

)
0 pl

 ,

A1d =

 ᾱd 0 0
0 0 0
0 0 0

 , A2d =

 ᾱd 0 0
0 0 0
0 0 0

 ,
W1 = W2 =

 d11
0
0

 , B1 = B2 =

 0
0
b13

 ,
C1 = C2 = (c11 c12 c13) ,

h1(x1(t)) =
1
2

(
1−

x1(t)
l

)
,

h2(x1(t)) =
1
2

(
1+

x1(t)
l

)
, |x1(t)| < l, l > 0.

By following the steps prescribed by the method presented
in Example 1, we are able to stabilize the above non-linear
economic model in the presence disturbances and actuator
saturation while achieving dissipative performance for the
prescribed disturbance attenuation along with obtaining an
estimate of the attraction domain. For the sake of brevity,
we will not repeat the proof here.

Current research has shown that T-S fuzzy descriptor sys-
tems can have a wide range of applications in bio-economic
systems. For example, in [47], the hepatitis B model is
constructed using T-S fuzzy descriptor systems. The fuzzy
controller is designed to inhibit the development of the dis-
ease while achieving system stability at free-disease equilib-
rium. In [37], a new SEIR (Susceptible, Exposed, Infectious,
Recovered) infectious disease model was established based
on a T-S fuzzy descriptor system. The state evolution diagram
of the susceptible and infectious persons was given to show
that the T-S fuzzy descriptor system can fit the SEIR infec-
tious disease model. The dissipative controller is designed
to have the susceptible population reach a stable state while
effectively inhibiting the interference caused by seasonal
influence. That is, by controlling the number of susceptible
persons within a population, the purpose of controlling the
spread of the disease is achieved. In turn, an outbreak of the
infectious disease modeled may be avoided.

The applications of T-S fuzzy descriptor systems in real-
life situations demonstrate that the analysis and control of the
T-S fuzzy descriptor system is worth studying in depth.

V. CONCLUSION
A delay-dependent admissibility analysis method and a dis-
sipative controller design scheme are developed for a class
of nonlinear time-delay descriptor system subject to actuator
saturation and L2-disturbances via a T-S fuzzy model. The
presented method can eliminate the impulsive behavior of a
descriptor system which ensures the existence and unique-
ness of solutions, and is more suitable for the admissibil-
ity analysis and robust control synthesis for the time-delay
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nonlinear descriptor systems in the presence of actuator satu-
ration and L2-disturbances. Moreover, H∞ control processes
can be achieved in the same design process which indicates
that the cost and time should be potentially reduce when
designing a controller for an actual physical system. The
study may lay a foundation for investigating the control
synthesis of T-S fuzzy time-delay descriptor control systems
subject to actuator saturation.

APPENDIX
Proof of 9ijk +9jik < 0 in Theorem 4:

Proof: Before and after multiplying the inequal-
ity (49) of Theorem 3 by diag{P−T , I , I , I , I } and
diag{P−1, I , I , I , I } respectively, and noting X = P−1,Gj =
HjX ,Mi = FiX , then the inequality 9ijk +9jik < 0 only if

 ^

4ijk
+
^

4jik

 ∗ ∗ ∗ ∗
^

ϒ i
+
^

ϒ j

 −�̄22 ∗ ∗ ∗(
1i
+

1j

)
0 −�̄33 ∗ ∗(

2̄ijk
+

2̄jik

) (
Aid
+

Ajd

) Wi
+

Wj

 − 2
d Z
−1
∗(

5i
+

5j

)
0 0 0 −2I


< 0, (73)

where
^

4ijk and
^

ϒ i are defined in (40), 2̄ijk is defined in (39),
�̄22 and �̄33 is defined in (52), 5i and 1i can be found in
(64). Note

−
1
d
XTETZEX ≤

1
d
ETZ−1E +

1
d
ETEX +

1
d
XTETE,

XTZ + ZTX ≤ ZTY−1Z + XTYX (Y > 0).

Then it can be seen that the above inequality (73) holds only if

 4̃ijk
+

4̃jik

 ∗ ∗ ∗ ∗ATid
+

ATjd

 −2Q ∗ ∗ ∗1i
+

1j

 0 −�̄33 ∗ ∗ 2̄ijk
+

2̄jik

 Aid
+

Ajd

 Wi
+

Wj

 − 2
d Z
−1
∗(

5i+

5j

)
0 0 0 −2I


< 0, (74)

where 4̃ijk can be found in (41).

Let Z̄ = Z−1. Noting the inequality −Q−1 ≤ Q − 2I and
Schur complement lemma, then the inequality (74) holds only
if

_

9 ijk +
_

9 jik < 0 in (61).
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